1.4.1-2全称命题与特称命题1(含答案)

合集下载

全称命题与特称命题

全称命题与特称命题

全称命题与特称命题1.全称量词:“所有”、“任意”、“每一个”等,通常用符号“”表示,读作“对任意”。

含有全称量词的命题,叫做全称命题。

全称命题“对M 中任意一个x ,有p(x)成立”可表示为“”,其中M 为给定的集合,p(x)是关于x 的命题.2.存在量词:“有一个”,“存在一个”,“至少有一个”,“有点”,“有些”等,通常用符号“”表示,读作“存在”。

含有存在量词的命题,叫做特称命题 特称命题“存在M 中的一个x ,使p(x)成立”可表示为“”,其中M 为给定的集合,p(x)是关于x 的命题.3. 对含有一个量词的命题进行否定全称命题p :,他的否定: 全称命题的否定是特称命题。

特称命题p :,他的否定:特称命题的否定是全称命题。

练习题:1.命题“2,210x R x ∀∈+>”的否定是( ).A .200,210x R x ∃∈+>B .2,210x R x ∀∈+≤ C .200,210x R x ∃∈+< D .200,210x R x ∃∈+≤2.命题“x ∃∈R ,2210x x -+<”的否定是( )A .x ∃∈R ,221x x -+≥0 B .x ∃∈R ,2210x x -+> C .x ∀∈R ,221x x -+≥0D .x ∀∈R ,2210x x -+<3.命题:p 2,11x x ∀∈+≥R ,则p ⌝是 ( ) A .2,11x x ∀∈+<R B .11,2≥+∈∀x R x C .11,200<+∈∃x R x D .11,200≥+∈∃x R x5.下列命题是真命题的是( ) 1x ,Z x .D 1x ,N x .C 3x ,Q x .B 22x ,R x .A 30022002<∈∃≥∈∀=∈∃>+∈∀6.(逻辑)已知命题p :1sin ,≤∈∀x R x ,则( ) A .1sin ,:≥∈∃⌝x R x p B .1sin ,:≥∈∀⌝x R x pC .1sin ,:>∈∃⌝x R x pD .1sin ,:>∈∀⌝x R x p7.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<08.命题“(,),,,2330x y x R y R x y ∃∈∈++<”的否定是( ) A. 000000(,),,,2330x y x R y R x y ∃∈∈++< B. 000000(,),,,2330x y x R y R x y ∃∈∈++≥ C. (,),,,2330x y x R y R x y ∀∈∈++≥ D. (,),,,2330x y x R y R x y ∀∈∈++>9.命题“042,2≤+-∈∀x x R x ”的否定为( ) A.042,2≥+-∈∀x x R x B.042,2>+-∈∀x x R x C.042,2>+-∈∃x xR x D.042,2>+-∉∃x x R x10.命题“x ∃∈R ,2450x x ++≤”的否定是 .11.已知命题0:p x R ∃∈,200220x x ++≤,则p ⌝为 ( )A. 2000,220x R x x ∃∈++>B. 2000,220x R x x ∃∈++< C. 2000,220x R x x ∀∈++≤ D. 2000,220x R x x ∀∈++>12.命题“04,2>++∈∀x x R x ”的否定是13若命题p :x ∀∈R 22421ax x a x ,++≥-+是真命题,则实数a 的取值范围是 .14.若命题“x R ∀∈,210x ax ++≥”是真命题,则实数a 的取值范围为 .15.命题“2,20x R x x ∀∈++≤”的否定是__________ _______.16.命题“若b a >,则122->b a ”的否命题为______________________________.17.若“,x R ∃∈使2220x ax -+<”是假命题,则实数a 的范围 .18.若命题“2,10x R x ax ∃∈++<”是真命题,则实数a 的取值范围是_____________.。

1.4.2 全称命题与特称命题的否定

1.4.2 全称命题与特称命题的否定
含有一个量词的命题的否定
温故知新
全称量词: “所有的”, “任意一个”, “一切” ,
“每一个”, “任给”……常用符号“"”表示.
全称命题:含有全称量词的命题叫做全称命题.
全称命题格式为: 对M中任意一个x,有p(x)成立.
符号语言表示为: "x∈M,p(x).
温故知新
存在量词:“存在一个”, “至少有一个”,“有
7.(2010 年高考湖南卷文科 2)下列命题中的假命题 是 ... A. $x R, lg x 0 C. B. $x R, tan x 1 D. "x R, 2x > 0
"x R, x3 > 0
一不变:元素的性质不变.
练习: 写出下列命题的否定 . (1) p: $x0∈R, x02 + 2x0 + 2 ≤ 0; (2) p: 有的三角形是等边三角形; (3) p: 有一个素数含三个正因数 . 注意: 特称命题的否定是全称命题.
写出下列命题的否定:
(1) p: ∃x0∈R , x02 + 2x0 + 2 ≤ 0;
p:每一个平行四边形都不是菱形.
( 3)$x0 R, x + 1 < 0 .
2 0
p : "x R , x 2 + 1 0 .
特称命题的否定
特称命题: p: $x0∈M , p(x0) ﹁ p: "x∈M , ﹁ p(x) 特称命题的否定: 注意事项:
三变:更换量词,否定结论,给元素去下标;
∀x∈M,¬ p(x)
课堂小结
1、全称量词、全称命题的定义. 2、全称命题的符号记法. 3、判断全称命题真假性的方法. 4、存在量词、特称命题的定义. 5、特称命题的符号记法. 6、判断特称命题真假性的方法. 7、含有一个量词的否定.

高中数学教案:全称命题与特称命题

高中数学教案:全称命题与特称命题

全称命题与特称命题课程目标知识提要全称命题与特称命题∙全称量词与全称命题短语“所有的”“任意一个”在逻辑中通常叫做全称量词(universal quantifier),并用符号“ ”表示.含有全称量词的命题,叫做全称命题.通常,将含有变量的语句用,,,来表示,变量的取值范围用表示,那么,全称命题“对中任意一个,有成立”可用符号简记为.∙特称量词与特称命题短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词(existential quantifier),并用符号“ ”表示.含有特称量词的命题,叫做特称命题.特称命题“存在中元素,使成立”可用符号简记为.全(特)称命题的概念与真假判断∙全称量词与全称命题短语“所有的”“任意一个”在逻辑中通常叫做全称量词(universal quantifier),并用符号“ ”表示.含有全称量词的命题,叫做全称命题.通常,将含有变量的语句用,,,来表示,变量的取值范围用表示,那么,全称命题“对中任意一个,有成立”可用符号简记为,.∙特称量词与特称命题短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词(existential quantifier),并用符号“ ”表示.含有特称量词的命题,叫做特称命题.特称命题“存在中元素,使成立”可用符号简记为,.全(特)称命题的否定∙全称命题的否定一般地,对于含有一个量词的全称命题,,其否定为.全称命题的否定是特称命题.∙特称命题的否定一般地,对于含有一个量词的特称命题,,其否定为.特称命题的否定是全称命题.精选例题全称命题与特称命题1. 命题“ ,”的否定为.【答案】,2. 若命题,,则命题为.【答案】,3. 命题,的否定为.【答案】,4. 命题“ ,使得”的否定是.【答案】5. 已知命题,则是.【答案】,6. 下列命题中,假命题的序号是.,;,;,能被和整除;,.【答案】④7. 命题:存在实数,使得关于的方程有实数根,则,命题的真假是.【答案】对一切实数,关于的方程没有实数根;假【分析】(1)原命题为存在性命题,故为全称命题;(2)间接考查的真假.8. 若命题一元一次不等式的解集一定是,命题关于的不等式的解集一定是,则“ ”,“ ”及“ ”形式的复合命题中的真命题是.【答案】【分析】为假命题(因为可以不大于),也是假命题.因为,的大小关系未知,所以“ ”“ ”为假命题,“ ”为真命题.9. 若命题” 使”是假命题,则实数的取值范围为.【答案】10. 命题“ ,使得”的否定是.【答案】,11. 写出下列命题的否定:(1)若是锐角三角形,则的任何一个内角是锐角;【解】若是锐角三角形,则中存在某个内角不是锐角.(2)所有可以被整除的整数,末位数字都是;【解】存在一个可以被整除的整数,末位数字不是.(3),;【解】,.(4)存在一个四边形,它的对角线互相垂直且平分.【解】对于所有四边形,它的对角线不互相垂直或不平分.12. 用符号“ ”与“ ”表示下列命题,并判断真假:(1)不论取什么实数,方程必有实根;【解】,方程必有实根.假命题;(2)存在一个实数,使.【解】,.真命题.13. 判断下列命题是全称命题还是存在性命题,并判断其真假.(1)对数函数都是单调函数;【解】命题中隐含了全称量词“所有的”,原命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)至少有一个整数,它既能被整除,又能被整除;【解】命题中含有存在量词“至少有一个”,因此是存在性命题,真命题.(3),;【解】命题中含有全称量词“ ”,是全称命题,真命题.(4),.【解】命题中含有存在量词“ ”,是存在性命题,真命题.14. 命题:二次函数的图象与轴相交,命题:二次函数的图象与轴相交,判断由,组成的新命题“ ”的真假.【解】:二次函数与轴相交,易知图象过点,故为真.:二次函数的图象与轴相交,而,故为假,所以为假命题.15. 设集合边形,:内角和为.试用不同的表述写出全称命题:‘’‘’.【解】任意边形的内角和都为.16. 判断命题" ,则方程有解"是全称命题还是特称命题,并写出它的否定.【解】由于表示是任意实数,即命题中含有全称量词"任意的",因而是全称命题;其否定是:" ,使方程无解".17. 写出下列命题的否定.(1) ,;【解】,使得;(2) ,是有理数;【解】,使得不是有理数;(3) 使;【解】都有;(4) 使得.【解】都有.18. 指出下列语句中的全称量词或存在量词:(1)每个人都喜欢体育锻炼;【解】全称量词:每个.(2)有的等差数列是等比数列;【解】存在量词:有的.(3)有些相似三角形是全等三角形;【解】存在量词:有些;(4)两个正数的算术平均数不小于它们的几何平均数.【解】全称量词:任意.19. 写出下列命题的非,并指出其真假:(1)至少有一个实数,使;(2);(3);(4)若与是对顶角,则.【解】(1)任意实数,使;真(2);假(3);假(4)若与是对顶角,则;假.20. 用量词符号" , "表示下列命题,并判断下列命题的真假.(1)任意实数都有,;【解】;假命题,时,结论不成立;(2)存在实数,;【解】;假命题,时,;(3)存在一对实数,使成立;【解】;真命题,如,;(4)有理数的平方仍为有理数;【解】;真命题;(5)实数的平方大于.【解】;假命题,.(6)有一个实数乘以任意一个实数都等于.【解】,有;真命题,即满足.全(特)称命题的概念与真假判断1. 已知命题:“ ,,”,且命题是假命题,则实数的取值范围为.【答案】【分析】命题是假命题,则命题是真命题,即关于的方程有实数解,而,所以.2. 若命题" , "是真命题,则实数的取值范围是.【答案】3. 命题" "的否定形式是.【答案】4. 对于语句(1);(2);(3)(4);其中正确的命题序号是.(全部填上)【答案】5. 判断下列存在性命题的真假:(1),;(2)至少有一个整数,它既不是合数,也不是素数;(3)是无理数,是无理数.【答案】(1)真;(2)真;(3)真6. 下列四个命题:,使得;,;,;,.其中的真命题是.【答案】【分析】由,得,故错误;结合指数函数和三角函数的图象,可知,错误;因为恒成立,所以正确.7. (1)任意属于,有成立,用符号语言可简记为;(2)符号语言:,,读作.【答案】(1),则成立(2)存在实数使不等式成立.8. 给出下列四个命题:①偶数都能被整除;②实数的绝对值大于;③存在一个实数,使④,为第一象限的角,则.其中即使全称命题又是假命题的是.(写出所有符合要求的序号)【答案】②④9. 下列命题中真命题的个数有个①②③使【答案】【分析】①③正确.10. 若命题 " 不成立 " 是真命题,则实数的取值范围是.【答案】【分析】该命题等价于:对恒成立.当时,恒成立;当时,解得.综上,.11. 判断下列命题的真假:(1),;【解】因为时,成立,所以,“ ,”是真命题;(2),;【解】因为时,不成立,所以," ,“是假命题;(3),;【解】因为使成立的数只有与,但它们都不是有理数,所以,“ ,”是假命题;(4),.【解】因为对任意实数,都有成立,所以,” ,“是真命题.12. 判断下列命题是全称命题还是存在性命题:(1)有的质数是偶数;【解】存在性命题.(2)与同一平面所成的角相等的两条直线平行;【解】全称命题.(3)有的三角形三个内角成等差数列;【解】存在性命题.(4)与圆只有一个公共点的直线是圆的切线.【解】全称命题.13. 判断下列命题是全称命题还是存在性命题,并判断其真假:(1)对数函数都是单调函数;【解】全称命题,真命题;(2)至少有一个整数,它既能被整除又能被整除;【解】存在性命题,真命题;(3) ,使.【解】存在性命题,真命题.(1)设,判断命题" , "的真假;【解】取,则,显然,,因此,此时.故这个命题是假命题.(2)设,判断命题" , "的真假.【解】由,得.因为,,所以,成立.因此," , "是真命题.15. 写出下列命题的否定,并判断其真假,写出理由.(1):任意两个第一象限角和,有;【解】:存在两个第一象限角和,有此为真命题.(2):存在一个函数,既是奇函数又是偶函数.【解】:对所有函数,不能既是奇函数又是偶函数.此为假命题,如,.16. 已知,命题:" , "命题:" ". (1)若命题为真命题,求实数的取值范围;【解】由命题为真命题,,.(2)若命题为假命题,求实数的取值范围.【解】由命题为假命题,所以为假命题或为假命题为假命题时,由.为假命题时,综上.17. 判断下列命题是全称命题还是存在性命题,并判断真假.①是整数( );②对所有的实数,;③对任意一个整数,为奇数;④末位是的整数,可以被整除;⑤角平分线上的点到这个角的两边的距离相等;⑥正四面体中两侧面的夹角相等;⑦有的实数是无限不循环小数;⑧有些三角形不是等腰三角形;⑨有的菱形是正方形.【解】①⑥是全称命题,⑦⑨是存在性命题;③⑨是真命题,①②是假命题.18. 判断下列命题是全称命题还是存在性命题.(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;【解】全称命题;(2)负数的平方是正数;【解】全称命题;(3)有些三角形不是等腰三角形;【解】存在性命题;(4)有些菱形是正方形.【解】存在性命题.19. 写出下列命题的否定,并判断真假.(1) ,;【解】,(真命题).(2) ,;【解】,(假命题).(3)集合是集合或的子集;【解】存在集合既不是集合的子集,也不是的子集(假命题).(4) 是异面直线,,,使,.【解】,是异面直线,,,有既不垂直于,也不垂直于(假命题).20. 判断下列命题是全称命题还是存在性命题:(1)任何实数的平方都是非负数;【解】全称命题;(2)任何数与相乘,都等于;【解】全称命题;(3)任何一个实数都有相反数;【解】全称命题;(4)有些三角形的三个内角都是锐角.【解】存在性命题全(特)称命题的否定1. 命题:“ ”的否定是.【答案】2. 命题:“ ,”的否定是.【答案】,3. 已知命题:,,则为.【答案】,4. 若:" ",则"非 "为.【答案】,使5. 已知命题,则命题的否定是.【答案】6. 命题 " " 的否定是.【答案】.7. 命题:,的否定是.【答案】,8. 命题:,的否定是.【答案】,;9. 已知命题,,则命题的否定.【答案】,10. 已知命题:,则为.【答案】11. 写出下列命题的否定:(1)中学生的年龄都在岁以上;【解】有的中学生年龄不在岁以上;(2)有的三角形中,有一个内角是直角;【解】任意三角形中’所有内角都不是直角;(3)锐角都相等;【解】有些锐角不相等;(4)我们班上有的学生不会用电脑.【解】我们班上所有的学生都会用电脑.12. 写出下列特称命题的否定:,使.【解】,都有.13. 写出下列命题的否定:(1)三角形的内角和是;【解】存在三角形的内角和不是;(2)所有的等边三角形都全等;【解】存在两个等边三角形不全等;(3)实系数一元二次方程有实数解;【解】有的实系数一元二次方程没有实数解;(4)有的实数没有平方根.【解】所有的实数都有平方根.14. 已知命题:存在一个实数,使.当时,非为真命题,求集合.【解】非为真,故" , "为真即.从而,所求的集合.15. 命题:对任意实数,有或,其中,是常数.(1)写出命题的否定;【解】命题的否定:对某些实数,有且,其中,是常数.(2)实数,满足什么条件时,命题的否定为真?【解】要使命题的否定为真,就是要使关于的不等式组的解集不为空集.通过画数轴可以看出:,应满足的条件是.16. 设函数.求证:,,中至少有一个不小于.【解】假设,,都小于,则有即由,得,即,与矛盾,故假设不成立.即,,中至少有一个不小于.17. 写出下列命题的否定:(1)所有人都晨练;【解】“所有人都晨练”的否定是“有的人不晨练”.(2),>;【解】,的否定是‘‘ ,”.(3)平行四边形的对边相等;【解】“平行四边形的对边相等”是指任意—个平行四边形的对边相等’它的否定是“存在平行四边形,它的对边不相等”.(4),=.【解】‘‘ ,”的否定是‘‘ , ".课后练习1. 请补充条件,使命题成为全称命题.2. 若命题“ ,”是假命题,则实数的取值范围是.3. 设集合四边形,:“对角线互相垂直平分”.试用不同的表述方法写出存在性命题:“ ,”.4. 关于的函数,有以下命题:①,;②,使;③,都不是偶函数;④,使是奇函数.其中假命题的序号是.5. 使’’的非命题是.6. 已知命题,,命题,,若命题“ ”是真命题,则实数的值为.7. 已知命题,,则该命题的否定是.8. 命题“ ,”的否定是.9. 命题“ ,”的否定是.10. 命题“ ,”的否定是.11. 给出下列命题:①,使得;②曲线表示双曲线;③,的递减区间为④对,使得其中真命题为(填上序号)12. 由命题“ ,”是假命题,求得实数的取值范围是,则实数的值是.13. 已知命题:存在,使得,命题:指数函数是上的增函数,若命题“ 且”是真命题,则实数的取值范围是.14. 已知命题:;:.若且为真,则的取值范围是.15. 有下列四个命题:①对任意实数均有.②不存在实数使.③方程至少有一个实数根.④使.其中假命题是.(填相应序号即可)16. 下列四个命题:①;②;③;④.其中真命题的序号是.17. 若存在,使,则实数的取值范围是.18. 若方程和中至少有一个方程有实数根,则实数的取值范围是.19. 下列命题中,是真命题的有.①;②;③;④.20. 命题"存在 "为假命题,则实数的取值范围为.21. 命题 "对任意,都有 "的否定是-----.22. 由命题"存在,使 "是假命题,求得的取值范围是,则实数的值是.23. 命题 " " 的否定是.24. 命题“ ,或”的否定为.25. 命题","的否定是.26. 已知命题,,则命题是.27. 命题"存在实数,使得 "的否定是.28. 命题“至少有一个数,使”的否定是.29. 命题 " "的否定是.30. 已知命题,则命题的否定是.31. 已知,,若使得,求正实数的取值范围.32. 用符号“ ”,“ ”表达下列命题:(1)实数的平方大于等干;(2)存在一个实数,使;(3)存在一对实数对,使成立.33. 已知命题对任意的,都成立.判断此命题是全称命题还是存在性命题,并写出它的否定.34. 写出下列命题的否定,并判断真假.(1) 等圆的面积相等,周长相等;(2) 对任意角,都有;(3) 存在实数,使得或.35. 已知集合,函数的定义域为.(1)若,求实数的取值范围;(2)若,求实数的取值范围.36. 用符号‘’ ‘’与‘’ ‘’表示下面含有量词的命题:(1)自然数的平方大于零;(2)存在一对整数,使.37. 判断下列命题是全称命题还是特称命题,并判断其真假.(1)对数函数都是单调函数;(2)至少有一个整数,它既能被整除,又能被整除;(3) 是无理数,是无理数;(4) ,.38. 设语句.(1)写出,并判断其真假;(2)写出“ ,”并判断命题的真假.39. “ 是的子集”可以用下列数学语言表达:“若对任意的,都有,则称”,请用数学语言表达“ 不是的子集”.40. 判断下列命题是全称命题还是特称命题,并判断其真假.(1)对数函数都是单调函数;(2) 是无理数,是无理数;(3) ,.41. 设语句,写出" ",并判断它是不是真命题.42. 用符号" "," "表达下列命题:(1)实数的平方大于等于;(2)存在一个实数,使;(3)存在一个实数对,使成立.43. 判断下列命题是全称命题还是特称命题,并判断其真假.(1)对于第一象限角,,都有:时,;(2)对于圆上的点的坐标,有的不能使方程成立;(3)对于中的元素,都有.44. 写出下列命题的否定,并判断真假.(1)正方形都是菱形;(2),使;(3),;(4)集合是集合或的子集.45. 判断下列命题的真假:(1)已知,,,,若,或,则;(2) ,;(3)若,则方程无实数根;(4)存在一个三角形没有外接圆.全称命题与特称命题-出门考姓名成绩1. 命题:" "的否定是.2. 已知命题,;命题,,若命题“ 且”是真命题,则实数的取值范围为.3. 命题:“存在,使”为假命题,则实数的取值范围是.4. 命题“ ,”的否定是.5. 给出下列四个命题:①;②矩形都不是梯形;③,;④任意互相垂直的两条直线的斜率之积等于.其中全称命题是.6. 写出下列命题的否定:①有的平行四边形是菱形,②存在质数是偶数.7. 命题“ ”的否定是命题.(填“真”或“假”之一)8. 已知命题,,则为.9. 命题“ ,”的否定是.10. 已知命题:“ ”,则:.11. 已知命题.如果命题是真命题,那么实数的取值范围是.12. 若“ ,”是真命题,则实数的取值集合是.13. 命题:,:,则命题为 (填: "真"或"假").14. “存在,,使”是命题(填“全称”或“特称”),该命题是(填“真”或“假”)命题.15. 若命题“存在,”为假命题,则实数的取值范围是.16. 若命题 "对 "是真命题,则实数的取值范围是.17. 下列命题既是全称命题,又是真命题的个数有个.(1)对数函数都是单调函数;(2)至少有一个整数,它既能被整除,又能被整除;(3)对于任意的无理数,是无理数;(4)存在一个整数,使得.18. " ,使 "是真命题,则实数的取值范围是.19. 若命题" ,使得 "是真命题,则实数的取值范围是.20. 已知命题:;命题:中,,则.则命题 " 且 " 的真假性的是.21. 命题:,的否定是.22. “ 是的子集”可以用下列数学语言表达:“若对任意的,都有,则称”.那么“ 不是的子集”可用数学语言表达为.23. 命题" , "的否定形式是.24. 命题" "的否定.25. 命题" , "的否定是.26. 命题"对任何 "的否定是.27. 已知命题,则.28. 命题"若,则 "的否命题是.29. 若命题"存在实数,使 "的否定是真命题,则实数的取值范围为.30. 命题" , "的否定是31. 写出下列命题的否定,并判断真假.(1)等边三角形都是等腰三角形;(2) ,使;(3) ,有.32. 判断下列命题是否是全称命题或特称命题.若是,用符号表示,并判断其真假.(1)有一个实数,;(2)任何一条直线都存在斜率;(3)所有的实数,,方程恰有唯一解;(4)存在实数,使得.33. 下列语句是不是全称命题或者是特称命题.(1)有一个实数,不能取对数;(2)所有不等式的解集为,都有;(3)有的向量方向不定;(4)正弦函数都是周期函数吗?34. 判断下列命题是全称命题还是特称命题,并判断其真假:(1)对数函数都是单调函数;(2)至少有一个整数,它既能被整除,又能被整除;(3) ,.35. 判断下面对结论的否定是否正确,如果不正确,请写出正确的否定结论:(1)至少有一个是;否定:至少有两个或两个以上是;(2)最多有一个是.否定:最少有一个是;(3)全部都是.否定:全部的都不是.36. 判断下列命题的真假:(1),;(2),;(3),使;(4),使为的约数.37. 写出下列命题的否定,并判断其真假:(1)菱形的对角线互相垂直;(2)二次函数的图象与轴有公共点.38. 写出下列命题的否定,并判断真假:(1)质数都是奇数;(2) ,;(3) (为全集),是集合的真子集.39. 判断下列命题是全称命题,还是存在性命题.(1)平面四边形都存在外接圆;(2)有些直线没有斜率;(3)三角形的内角和等于;(4)有一些向量方向不定;(5)所有的有理数都是整数;(6)实数的平方是非负的.40. 用符号“ ”与“ ”表达下列命题.(1)对任意角,都有;(2)存在正整数,,对任意小的正数,当时,;(3)存在实数,使得.。

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词 1.4.1 全称量词 1.4.2 存在量

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词 1.4.1 全称量词 1.4.2 存在量
所以“p或q”是真命题时,实数a的取值范围是(-∞,1]∪[2,+∞).
方法技巧 (1)含参数的全称命题为真时,常转化为不等式的恒成立问题来 处理,最终通过构造函数转化为求函数的最值问题. (2)含参数的特称命题为真时,常转化为方程或不等式有解问题来处理,最 终借助根的判别式或函数等相关知识获得解决.
是错误的,故选C.
方法技巧 (1)全称命题的真假判断
要判定一个全称命题“∀x∈M,p(x)”是真命题,必须对限定集合M中的每个
元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中的一
个x=x0,使得p(x0)不成立即可. (2)特称命题的真假判断 要判断特称命题“∃x0∈M,p(x0)”为真命题,只需在限定集合M中找出一个 x=x0,使得p(x0)成立即可;要判断特称命题为假命题,就要验证集合M中的每 个元素x都不能满足p(x),即在集合M中,使p(x0)成立的元素x0不存在.
新知探求 课堂探究
新知探求 素养养成
知识点一 全称量词与全称命题
问题1:结合你学过的知识,谈谈你对全称量词的含义的理解.
答案:短语“所有”在陈述中表示所述事物的全体,在逻辑中通常叫做全称量
词.

梳理 全称量词有:所有的、任意一个、任给一个,用符号“
”表示,含
有全∀称x∈量M词,p的(x命) 题,叫做全称命题.“对M中的所有x,p(x)”用符号简记为:
解析:(1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.
(2)含有全称量词“任意”,故是全称命题;
(3)是命题,但既不是全称命题,也不是特称命题;
(4)有一个实数a,a不能取对数. (5)任何数的0次方都等于1吗?
解析:(4)含有存在量词“有一个”,因此是特称命题; (5)不是命题.

2020-2021学年高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词 1

2020-2021学年高中数学 第一章 常用逻辑用语 1.4.1 全称量词 1.4.2 存在量词 1

2020-2021学年高中数学第一章常用逻辑用语1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定课时跟踪训练新人教A版选修2-1年级:姓名:第一章常用逻辑用语[A组学业达标]1.下列命题中为全称命题的是( )A.过直线外一点有一条直线和已知直线平行B.矩形都有外接圆C.存在一个实数与它的相反数的和为0D.0没有倒数解析:命题“矩形都有外接圆”可改写为“每一个矩形都有外接圆”,是全称命题.故选B.答案:B2.下列命题中为特称命题的是( )A.所有的整数都是有理数B.三角形的内角和都是180°C.有些三角形是等腰三角形D.正方形都是菱形解析:A,B,D为全称命题,而C含有存在量词“有些”,故为特称命题.答案:C3.命题“∃x0∈R,2x0<12或x20>x0”的否定是( )A.∃x0∈R,2x0≥12或x20≤x0B.∀x∈R,2x≥12或x2≤xC.∀x∈R,2x≥12且x2≤xD.∃x0∈R,2x0≥12且x20≤x0解析:原命题为特称命题,其否定为全称命题,应选C.答案:C4.下列四个命题中的真命题为( )A.若sin A=sin B,则A=BB.∀x∈R,都有x2+1>0C.若lg x2=0,则x=1D.∃x0∈Z,使1<4x0<3解析:A中,若sin A=sin B,不一定有A=B,故A为假命题,B显然是真命题;C中,若lg x2=0,则x2=1,解得x=±1,故C为假命题;D中,解1<4x<3得14<x<34,故不存在这样的x∈Z,故D为假命题.答案:B5.命题“∀x∈[1,2],x2-a≤0”是真命题的一个充分不必要条件是( ) A.a≥4B.a≤4C.a≥5 D.a≤5解析:当该命题是真命题时,只需a≥(x2)max,x∈[1,2].因为y=x2在[1,2]上的最大值是4,所以a≥4.因为a≥4⇒/ a≥5,a≥5⇒a≥4,故选C.答案:C6.下列命题中,是全称命题的是________;是特称命题的是________.(填序号)①正方形的四条边相等;②有两个角相等的三角形是等腰三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”,是全称命题;④是特称命题.答案:①②③④7.命题p :∃x 0∈R ,x 20+2x 0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定是綈p :____________,它是________命题(填“真”或“假”).解析:∵x 2+2x +5=(x +1)2+4≥0恒成立,∴命题p 是假命题. 答案:特称命题 假 ∀x ∈R ,x 2+2x +5≥0 真8.若命题“∃x 0∈R ,使得x 20+(1-a )x 0+1<0”是真命题,则实数a 的取值范围是________.解析:由题意可知,Δ=(1-a )2-4=(a -3)(a +1)>0,解得a <-1或a >3. 答案:(-∞,-1)∪(3,+∞) 9.判断下列命题的真假,并说明理由. (1)∀x ∈R ,都有x 2-x +1>23;(2)∃x 0∈R 使sin x 0+cos x 0=2; (3)∀x ,y ∈N ,都有(x -y )∈N ; (4)∃x 0,y 0∈Z ,使2x 0+y 0=3.解析:(1)x 2-x +1>23⇔x 2-x +13>0,由于Δ=1-4×13=-13<0,∴不等式x 2-x +1>23的解集是R ,∴该命题是真命题.(2)∵sin x 0+cos x 0=2sin ⎝⎛⎭⎪⎫x 0+π4,∴-2≤sin x 0+cos x 0≤2<2, ∴该命题是假命题.(3)当x =2,y =4时,x -y =-2∉N ,所以该命题是假命题. (4)当x 0=0,y 0=3时,2x 0+y 0=3,所以该命题是真命题.10.已知命题p :∀a ∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a +π3的周期不大于4π. (1)写出綈p ;(2)当綈p 是假命题时,求实数b 的最大值.解析:(1)綈p :∃a 0∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a 0+π3的周期大于4π.(2)因为綈p 是假命题,所以p 是真命题,所以∀a ∈(0,b ],2π1a≤4π恒成立,解得a ≤2,所以b ≤2,所以实数b 的最大值是2.[B 组 能力提升]11.已知命题p :∀x ∈R,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20.则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧q C .p ∧(綈q )D .(綈p )∧(綈q )解析:由20=30知,p 为假命题;令h (x )=x 3+x 2-1,则h (0)=-1<0,h (1)=1>0,∴方程x 3+x 2-1=0在(0,1)内有解,∴q 为真命题,∴p ∧q ,p ∧(綈q ),(綈p )∧(綈q )均为假命题,(綈p )∧q 为真命题,故选B.答案:B12.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)解析:当a =0时,不等式恒成立; 当a ≠0时,要使不等式恒成立,则有⎩⎨⎧a >0,Δ≤0,即⎩⎨⎧a >0,a 2-4a ≤0,解得0<a ≤4.综上,0≤a ≤4,则命题p :0≤a ≤4, 所以綈p :a <0或a >4.。

全称命题与特称命题

全称命题与特称命题
专项训练:全称命题与特称命题
一、单选题
1.命题“ ”的否定是()
A. B.
C. D.
2.已知命题 命题q: ,则下列命题中为真命题的是
A. B. C. D.
3.若集合 ,集合 ,则“ ”是“ ”的()
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
4.命题“对 ,都有 ”的否定为
43.p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,那么p是q的______________条件.
44.已知命题p:∀x∈(1,+∞),log3x>0,则 p为_____.
参考答案
1.D
【解析】
【分析】
利用全称命题的否定的规则写出其否定即可.
【详解】
命题的否定为: , ,故选D.
A. B. C. D.
28.(2015高考湖北,文3)命题“ , ”的否定是()
A. , B. ,
C. , D. ,
29.设 , 是两个不同的平面, 是直线且 ,则“ ”是“ ”的( )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件
30.设 ,则“ ”是“ ”的( )
A.充分而不必要条件B.必要而不充分条件
【点睛】
全称命题的一般形式是: , ,其否定为 .存在性命题的一般形式是 , ,其否定为 .
2.D
【解析】
【分析】
命题 是假命题,命题 是真命题,根据复合命题的真值表可判断真假.
【详解】
因为 ,故命题 是假命题,又命题 是真命题,故 为假, 为假, 为假, 为真命题,故选D.
【点睛】
复合命题的真假判断有如下规律:
7.C

全称命题与特称命题

全称命题与特称命题

全称命题与特称命题【教学目标】知识目标能力目标情感目标【教学重、难点】教学重点:教学难点:【教学模式】【技术运用】【教学过程与情境设计】1、全称命题:短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词. 符号:∀含有全称量词的命题,叫做全称命题. 符号:(),x M p x ∀∈2、特称命题:短语“存在一个”“至少有一个”在逻辑中通常叫做全称量词. 符号:∃含有存在量词的命题,叫做特称命题. 符号:()00,x M p x ∃∈3、全称命题与特称命题的否定:全称命题P :(),x M p x ∀∈,它的否定P ⌝:()00,x M p x ∃∈⌝;特称命题()00:,P x M P x ∃∈,它的否定():,P x M P x ⌝∀∈⌝.2. 例1 判断下列全称命题的真假.⑴所有的素数(质数)都是奇数;(假,反例:2)⑵2,11x x ∀∈+≥R ;(真)⑶对每一个无理数x ,2x 也是无理数;)⑷每个指数函数都是单调函数. (真)(教师分析——学生回答——教师点评)3. 思考:下列语句是命题吗?⑴与⑶,⑵与⑷之间有什么关系?⑴213x +=;⑵x 能被2 和3 整除;⑶存在一个0x ∈R ,使0213x +=;⑷至少有一个0x ∈Z ,0x 能被2 和3 整除.(1)(2)不是命题,而(3)(4)是命题,其原因是加入了量词(学生回答——教师点评——引入新课)4. 存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做全称量词. 符号:∃特称命题:含有存在量词的命题. 符号:()00,x M p x ∃∈例如:有的平行四边形是菱形;有一个素数不是奇数.5. 例2 判断下列全称命题的真假.⑴有一个实数0x ,使200230x x ++=; ⑵存在两个相交平面垂直于同一条直线; ⑶有些整数只有两个正因数;⑷00,0x R x ∃∈≤;⑸有些数的平方小于0.(教师分析——学生回答——教师点评)6.思考:写出下列命题的否定:⑴所有的矩形都是平行四边形;⑵每一个素数都是奇数.7.全称命题P :(),x M p x ∀∈,它的否定P ⌝:()00,x M p x ∃∈⌝;特称命题()00:,P x M P x ∃∈,它的否定():,P x M P x ⌝∀∈⌝.8.例3写出下列命题的否定.⑴所有能被3整除的整数都是奇数;⑵每一个四边形的四个顶点共圆;⑶对任意x Z ∈,2x 的个位数字不等于3;⑷有一个素数含有三个正因数;⑸有的三角形是等边三角形. (教师分析——学生回答——教师点评)下列全称命题的否定中,假命题的个数是( B )(1)所有能被3整除的数能被6整除 ;(2)所有实数的绝对值是正数;(3) x ∀∈Z ,2x 的个位数字不是2A.0B.1C.2D.4(07琼、宁)已知命题p :x ∀∈R ,sin 1x ≤,则( )A. p ⌝:x ∃∈R ,sin 1x ≥B. p ⌝:x ∀∈R ,sin 1x ≥C. p ⌝:x ∃∈R ,sin 1x >D. p ⌝:x ∀∈R ,sin 1x >(07鲁)命题“对任意的x ∈R ,3210x x -+≤”的否定是( )A. 不存在x ∈R ,3210x x -+≤B. 存在x ∈R ,3210x x -+≤C. 存在x ∈R ,3210x x -+>D. 对任意的x ∈R ,3210x x -+>(2009天津卷理)命题“存在0x ∈R ,02x ≤0”的否定是 (A )不存在0x ∈R, 02x >0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x >0【考点定位】本小考查四种命题的改写,基础题。

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词(含解析)1数学教案

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词(含解析)1数学教案

全称量词与存在量词预习课本P21~25,思考并完成以下问题1.全称量词、全称命题的定义是什么?2.存在量词、特称命题的定义是什么?3.全称命题与特称命题的否定分别是什么命题?[新知初探]1.全称量词与全称命题全称量词所有的、任意一个、一切、每一个、任给符号__∀__全称命题含有全称量词的命题形式“对M中任意一个x,有p(x)成立”,可用符号简记为“∀x∈M,p(x)”存在量词存在一个、至少有一个、有一个、有些、有的符号表示__∃__特称命题含有存在量词的命题形式“存在M中的一个x0,使p(x0)成立”可用符号简记为“∃x0∈M,p(x0)”知识点原命题命题的否定全称命题p:∀x∈M,p(x)綈p:∃x0∈M,綈p(x0)的否定特称命题p:∃x0∈M,p(x0)綈p:∀x∈M,綈p(x)的否定[(1)全称命题的否定全称命题的否定是一个特称命题,否定全称命题时关键是找出全称量词,明确命题所提供的性质.(2)特称命题的否定特称命题的否定是一个全称命题,否定特称命题时关键是找出存在量词,明确命题所提供的性质.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)在全称命题和特称命题中,量词都可以省略( )(2)“有的等差数列也是等比数列”是特称命题( )(3)“三角形内角和是180°”是全称命题( )答案:(1)×(2)√(3)√2.命题“∀x∈R,|x|+x2≥0”的否定是( )A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0答案:C3.下列全称命题为真命题的是( )A.所有的质数是奇数B.∀x∈R,x2+1≥1C.对每一个无理数x,x2也是无理数D.所有的能被5整除的整数,其末位数字都是5答案:B4.命题p:∃x0∈R,x20+2x0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定为綈p:______________.答案:特称命题假∀x∈R,x2+2x+5≥0全称命题与特称命题的判断[典例](1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[解] (1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.(2)含有存在量词“有的”,故是特称命题.(3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.判断一个语句是全称命题还是特称命题的思路[注意] 全称命题可能省略全称量词,特称命题的存在量词一般不能省略. [活学活用]用全称量词或存在量词表示下列语句: (1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x 2+12x +1也是有理数;(3)等式sin(α+β)=sin α+sin β对有些角α,β成立; (4)方程3x -2y =10有整数解.解:(1)对任意实数x ,不等式x 2+x +1>0成立. (2)对任意有理数x ,13x 2+12x +1是有理数.(3)存在角α,β,使sin(α+β)=sin α+sin β成立. (4)存在一对整数x ,y ,使3x -2y =10成立.全称命题、特称命题的真假判断[典例] A .∃x 0∈R ,lg x 0=0 B .∃x 0∈R ,tan x 0=1 C .∀x ∈R ,x 2>0D .∀x ∈R ,e x>0(2)下列命题中的真命题是( )A .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数B .∃α0,β0∈R ,使cos(α0+β0)=cos α0+cos β0C .向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为2D .“|x |≤1”是“x ≤1”的既不充分又不必要条件 [解析] (1)对于A ,x =1时,lg x =0; 对于B ,x =k π+π4(k ∈Z)时,tan x =1;对于C ,当x =0时,x 2=0,所以C 中命题为假命题; 对于D ,e x>0恒成立.(2)对于A ,当φ=π2时,f (x )=cos 2x ,为偶函数,故A 为假命题;对于B ,令α0=π4,β0=-π2,则cos(α0+β0)=cos ⎝ ⎛⎭⎪⎫-π4=22,cos α0+cos β0=22+0=22,cos(α0+β0)=cos α0+cos β0成立,故B 为真命题; 对于C ,向量a =(2,1),b =(-1,0),则a 在b 方向上的投影为a ·b |b |=-2+01=-2,故C 为假命题;对于D ,|x |≤1,即-1≤x ≤1,故充分性成立,若x ≤1,则|x |≤1不一定成立,所以“|x |≤1”为“x ≤1”的充分不必要条件,故D 为假命题.[答案] (1)C (2)B指出下列命题是全称命题,还是特称命题,并判断真假. (1)若a >0,且a ≠1,则对任意实数x ,a x>0. (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2. (3)存在两个相交平面垂直于同一条直线. (4)∃x 0∈R ,使x 20+1<0. 解:(1)是全称命题.∵a x>0(a >0,且a ≠1)恒成立,∴命题(1)是真命题. (2)是全称命题.存在x 1=0,x 2=π,x 1<x 2,但tan 0=tan π, ∴命题(2)是假命题. (3)是特称命题.由于垂直于同一条直线的两个平面是互相平行的, ∴命题(3)是假命题. (4)是特称命题.对任意x ∈R ,x 2+1>0,∴命题(4)是假命题.全称命题与特称命题的否定[典例] p n n2n pA.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n(2)(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2[解析] (1)因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”,故选C.(2)由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.[答案] (1)C (2)D全称命题与特称命题的否定的思路(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.判断下列命题的真假,并写出它们的否定.(1)三角形的内角和为180°;(2)每个二次函数的图象都开口向下;(3)存在一个四边形不是平行四边形.解:(1)三角形的内角和为180°,是全称命题,是真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形,其内角和不等于180°.(2)每个二次函数的图象都开口向下,是全称命题,是假命题.命题的否定:存在一个二次函数的图象开口不向下.(3)存在一个四边形不是平行四边形,是特称命题,是真命题.命题的否定:所有的四边形都是平行四边形.利用全称命题与特称命题求参数[典例] 若命题“∀x ∈[-1,+∞),x 2-2ax +2≥a ”是真命题,求实数a 的取值范围.[解] 法一:由题意,∀x ∈[-1,+∞), 令f (x )=x 2-2ax +2≥a 恒成立,所以f (x )=(x -a )2+2-a 2≥a 可转化为∀x ∈[-1,+∞),f (x )min ≥a 恒成立, 而∀x ∈[-1,+∞),f (x )min =⎩⎪⎨⎪⎧2-a 2,a ≥-1,1+a 2+2-a 2,a <-1.由f (x )的最小值f (x )min ≥a ,知a ∈[-3,1]. 法二:x 2-2ax +2≥a , 即x 2-2ax +2-a ≥0, 令f (x )=x 2-2ax +2-a ,所以全称命题转化为∀x ∈[-1,+∞),f (x )≥0恒成立,所以Δ≤0或⎩⎪⎨⎪⎧Δ=4a 2-42-a >0,a <-1,f -1≥0,即-2≤a ≤1或-3≤a <-2.所以-3≤a ≤1. 综上,所求实数a 的取值范围是[-3,1].利用全称命题与特称命题求参数范围的两类题型(1)全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以利用代入可以体现集合中相应元素的具体性质;也可以根据函数等数学知识来解决.(2)特称命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表达.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.命题p :∃x 0∈[0,π],使sin ⎝⎛⎭⎪⎫x 0+π3<a ,若p 是真命题,则实数a 的取值范围为________.解析:由0≤x ≤π,得π3≤x +π3≤4π3,所以-32≤sin ⎝⎛⎭⎪⎫x +π3≤1. 而命题p :∃x 0∈[0,π],使sin ⎝ ⎛⎭⎪⎫x 0+π3<a ,因为p 为真命题,所以a >-32. 答案:⎝ ⎛⎭⎪⎫-32,+∞ 2.已知命题p :∃x 0∈R ,使x 20-mx 0+1=0,命题q :∀x ∈R ,有x 2-2x +m >0.若命题q ∨(p ∧q )为真,綈p 为真,求实数m 的取值范围.解:由于綈p 为真,所以p 为假,则p ∧q 为假. 又q ∨(p ∧q )为真,故q 为真,即p 假、q 真.命题p 为假,即关于x 的方程x 2-mx +1=0无实数解,则m 2-4<0,解得-2<m <2; 命题q 为真,则4-4m <0,解得m >1. 故实数m 的取值范围是(1,2).层级一 学业水平达标1.已知命题p :∀x >0,总有e x>1,则綈p 为( ) A .∃x 0≤0,使得e x 0≤1 B .∃x 0>0,使得e x 0≤1 C .∀x >0,总有e x≤1D .∀x ≤0,总有e x<1解析:选B 因为全称命题的否定是特称命题,所以命题p 的否定綈p 为∃x 0>0,使得e x 0≤1.故选B.2.下列四个命题中的真命题为( ) A .若sin A =sin B ,则A =B B .∀x ∈R ,都有x 2+1>0 C .若lg x 2=0,则x =1 D .∃x 0∈Z ,使1<4x 0<3解析:选B A 中,若sin A =sin B ,不一定有A =B ,故A 为假命题,B 显然是真命题;C 中,若lg x 2=0,则x 2=1,解得x =±1,故C 为假命题;D 中,解1<4x <3得14<x <34,故不存在这样的x ∈Z ,故D 为假命题.3.命题“∃x 0∈R,2x 0<12或x 20>x 0”的否定是( )A .∃x 0∈R,2x 0≥12或x 20≤x 0B .∀x ∈R,2x ≥12或x 2≤xC .∀x ∈R,2x ≥12且x 2≤xD .∃x 0∈R,2x 0≥12且x 20≤x 0解析:选C 原命题为特称命题,其否定为全称命题,应选C. 4.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2解析:选B A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是特称命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.5.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)解析:选D 当a =0时,不等式恒成立; 当a ≠0时,要使不等式恒成立,则有⎩⎪⎨⎪⎧a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,a 2-4a ≤0,解得0<a ≤4.综上,0≤a ≤4,则命题p :0≤a ≤4, 所以綈p :a <0或a >4.6.下列命题中,是全称命题的是________;是特称命题的是________.(填序号) ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.答案:①②③ ④7.命题“至少有一个正实数x 满足方程x 2+2(a -1)x +2a +6=0”的否定是________. 解析:把量词“至少有一个”改为“所有”,“满足”改为“都不满足”得命题的否定. 答案:所有正实数x 都不满足方程x 2+2(a -1)x +2a +6=08.已知命题“∃x 0∈R,2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是________.解析:原命题等价于“∀x ∈R,2x 2+(a -1)x +12>0”是真命题,即Δ=(a -1)2-4<0,解得-1<a <3.答案:(-1,3)9.判断下列命题的真假,并写出它们的否定. (1)∀α,β∈R ,sin(α+β)≠sin α+sin β; (2)∃x 0,y 0∈Z,3x 0-4y 0=20;(3)在实数范围内,有些一元二次方程无解; (4)正数的绝对值是它本身.解:(1)当α=β=0时,sin(α+β)=sin α+sin β,故命题为假命题.命题的否定为:∃α0,β0∈R ,sin(α0+β0)=sin α0+sin β0.(2)真命题.命题的否定为:∀x ,y ∈Z,3x -4y ≠20.(3)真命题.命题的否定为:在实数范围内,所有的一元二次方程都有解.(4)省略了量词“所有的”,该命题是全称命题,且为真命题.命题的否定为:有的正数的绝对值不是它本身.10.已知命题p :∀a ∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a +π3的周期不大于4π.(1)写出綈p ;(2)当綈p 是假命题时,求实数b 的最大值. 解:(1)綈p :∃a 0∈(0,b ](b ∈R 且b >0),函数f (x )=3sin ⎝ ⎛⎭⎪⎫x a 0+π3的周期大于4π. (2)因为綈p 是假命题,所以p 是真命题, 所以∀a ∈(0,b ],2π1a≤4π恒成立,解得a ≤2,所以b ≤2,所以实数b 的最大值是2.层级二 应试能力达标1.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0 解析:选D 由正弦函数的图象,知∀x ∈⎝⎛⎭⎪⎫0,π2,sin x <x ,又3<π,∴当x ∈⎝⎛⎭⎪⎫0,π2时,3sin x <πx ,即∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0恒成立,∴p 是真命题.又全称命题的否定是特称命题,∴綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0. 2.已知命题p :∀x ∈R,2x 2+2x +12<0;命题q :∃x 0∈R ,sin x 0-cos x 0= 2.则下列判断正确的是( )A .p 是真命题B .q 是假命题C .p ,q 都是假命题D .綈q 是假命题解析:选D p :2x 2+2x +12=2⎝ ⎛⎭⎪⎫x 2+x +14=2x +122≥0,∴p 为假命题,綈p 为真命题.q :sin x 0-cos x 0=2sin ⎝⎛⎭⎪⎫x 0-π4,∴x 0=34π时成立.故q 为真,而綈q 为假命题. 3.已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈R ,都有x 2+12x +34>0.给出下列结论:①命题p 是真命题; ②命题q 是假命题; ③命题(綈p )∧q 是真命题; ④命题p ∨(綈q )是假命题. 其中正确的是( ) A .②④ B .②③ C .③④D .①②③解析:选C 对于命题p ,因为函数y =sin x 的值域为[-1,1],所以命题p 为假命题; 对于命题q ,因为函数y =x 2+12x +34的图象开口向上,最小值在x =-14处取得,且f ⎝ ⎛⎭⎪⎫-14=1116>0,所以命题q 为真命题. 由命题p 为假命题和命题q 为真命题可得:命题(綈p )∧q 是真命题,命题p ∨(綈q )是假命题.故③④正确.4.命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:选D 写全称命题的否定时,要把量词∀改为∃,并且否定结论,注意把“且”改为“或”.5.有下列四个命题:①∀x ∈R,2x 2-3x +4>0; ②∀x ∈{1,-1,0},2x +1>0; ③∃x 0∈N ,x 20≤x 0;④∃x 0∈N *,x 0为29的约数. 其中真命题有________个.解析:易知①③④正确.当x =-1时,2x +1<0,故②错误. 答案:36.已知命题p :∃c >0,y =(3-c )x在R 上为减函数,命题q :∀x ∈R ,x 2+2c -3>0.若p ∧q 为真命题,则实数c 的取值范围为________.解析:由于p ∧q 为真命题,所以p ,q 都是真命题,所以⎩⎪⎨⎪⎧0<3-c <1,2c -3>0,解得2<c <3.故实数c 的取值范围为(2,3).答案:(2,3)7.已知命题p :“至少存在一个实数x 0∈[1,2],使不等式x 2+2ax +2-a >0成立”为真,试求参数a 的取值范围.解:法一:由题意知,x 2+2ax +2-a >0在[1,2]上有解,令f (x )=x 2+2ax +2-a ,则只需f (1)>0或f (2)>0,即1+2a +2-a >0,或4+4a +2-a >0.整理得a >-3或a >-2.即a >-3.故参数a 的取值范围为(-3,+∞). 法二:綈p :∀x ∈[1,2],x 2+2ax +2-a >0无解, 令f (x )=x 2+2ax +2-a , 则⎩⎪⎨⎪⎧f 1≤0,f2≤0,即⎩⎪⎨⎪⎧1+2a +2-a ≤0,4+4a +2-a ≤0.解得a ≤-3.故命题p 中,a >-3. 即参数a 的取值范围为(-3,+∞).8.已知f (t )=log 2t ,t ∈[2,8],若命题“对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立”为真命题,求实数x 的取值范围.解:易知f (t )∈⎣⎢⎡⎦⎥⎤12,3. 由题意,令g (m )=(x -2)m +x 2-4x +4=(x -2)m +(x -2)2,则g (m )>0对∀m ∈⎣⎢⎡⎦⎥⎤12,3恒成立.所以⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫12>0,g 3>0,即⎩⎪⎨⎪⎧12x -2+x -22>0,3x -2+x -22>0,解得x >2或x <-1.故实数x 的取值范围是(-∞,-1)∪(2,+∞).(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数 B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数解析:选B 根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.2.设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 由x >y 推不出x >|y |,由x >|y |能推出x >y ,所以“x >y ”是“x >|y |”的必要不充分条件.3.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析:选D ①的逆命题为1a <1b则,a >b ,若a =-2,b =3,则不成立.故A 错;②的逆命题为若(x +2)(x -3)≤0,则-2≤x ≤0是假命题,故B 错;①为假命题,其逆否命题也为假命题,故C 错;②为真命题,其逆否命题也为真命题,D 正确.4.已知命题p :实数的平方是非负数,则下列结论正确的是( ) A .命题綈p 是真命题B .命题p 是特称命题C .命题p 是全称命题D .命题p 既不是全称命题也不是特称命题解析:选C 命题p :实数的平方是非负数,是全称命题,且是真命题,故綈p 是假命题.5.下列命题中,真命题是( ) A .命题“若|a |>b ,则a >b ”B .命题“若“a =b ,则|a |=|b |”的逆命题C .命题“当x =2时,x 2-5x +6=0”的否命题 D .命题“终边相同的角的同名三角函数值相等”解析:选D 原命题可以改写成“若角的终边相同,则它们的同名三角函数值相等”,是真命题,故选D.6.已知命题p :若实数x ,y 满足x 3+y 3=0,则x ,y 互为相反数;命题q :若a >b >0,则1a <1b.下列命题p ∧q ,p ∨q ,綈p ,綈q 中,真命题的个数是( )A .1B .2C .3D .4解析:选B 易知命题p ,q 都是真命题,则p ∧q ,p ∨q 都是真命题,綈p ,綈q 是假命题.7.已知f (x )=e x+x -1,命题p :∀x ∈(0,+∞),f (x )>0,则( ) A .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 B .p 是真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0 C .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)<0 D .p 是假命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0解析:选B 由于函数y =e x 和y =x -1在R 上均是增函数,则f (x )=e x+x -1在R 上是增函数,当x >0时,f (x )>f (0)=0,所以p 为真命题,綈p :∃x 0∈(0,+∞),f (x 0)≤0,故选B.8.下列关于函数f (x )=x 2与函数g (x )=2x的描述,正确的是( ) A .∃a 0∈R ,当x >a 0时,总有f (x )<g (x ) B .∀x ∈R ,f (x )<g (x ) C .∀x <0,f (x )≠g (x )D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解解析:选A 在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),其余三命题均错误.9.已知p:x≥k,q:3x+1<1,如果p是q的充分不必要条件,则实数k的取值范围是( )A.[1,+∞) B.(2,+∞)C.[-1,+∞) D.(-∞,-1)解析:选B3x+1<1⇔x<-1或x>2.又p是q的充分不必要条件,则k>2,故选B.10.下列判断正确的是( )A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈N*,x3>x2”的否定是“∃x0∈N*,x30<x20”C.“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的必要不充分条件D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件解析:选D 选项A是全称命题,不正确;选项B应该是∃x0∈N*,x30≤x20,不正确;对于选项C,f(x)=cos2ax-sin2ax=cos 2ax,周期T=2π2a=πa,当a=1时,周期是π,当周期是π时,a=1,所以“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期是π”的充要条件;选项D正确,故选D.11.设f(x)=x2-4x(x∈R),则f(x)>0的一个必要不充分条件是( )A.x<0 B.x<0或x>4C.|x-1|>1 D.|x-2|>3解析:选C 由f(x)=x2-4x>0,得x<0或x>4.由|x-1|>1,得x<0或x>2.由|x-2|>3,得x<-1或x>5,所以只有C是必要不充分条件.故选C.12.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为,若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1. ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0, 即m >1.∴③是真命题;④原命题为真,逆否命题也为真.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.命题“若a ∉A ,则b ∈B ”的逆否命题是________. 解析:逆否命题既否定其条件又否定其结论,然后交换其顺序. 答案:若b ∉B ,则a ∈A14.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“綈p ”中是真命题的为________.解析:p 为假命题,q 为真命题,故p ∨q 为真命题,綈p 为真命题. 答案:p ∨q ,綈p15.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若綈p 是綈q 的充分条件,则实数a 的取值范围是________.解析:p :a -4<x <a +4,q :2<x <3. 由綈p 是綈q 的充分条件可知,q 是p 的充分条件,即q ⇒p ,∴⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.答案:[-1,6]16.已知在实数a ,b 满足某一前提条件时,命题“若a >b ,则1a <1b”及其逆命题、否命题和逆否命题都是假命题,则实数a ,b 应满足的前提条件是________.解析:由题意,知ab ≠0,当ab >0时,1a <1b ⇔ab ·1a <1b·ab ⇔b <a ,所以四种命题都是正确的.当ab <0时,若a >b ,则必有a >0>b ,故1a>0>1b ,所以原命题是假命题;若1a <1b,则必有1a<0<1b,故a <0<b ,所以原命题的逆命题也是假命题.由命题的等价性,可知四种命题都是假命题,故填ab <0.答案:ab <0三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除; (3)∀x ∈{x |x >0},x +1x>2;(4)∃x 0∈Z ,log 2x 0>2.解:(1)命题中隐含了全称量词“所有的”,因此命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,且为真命题. (3)命题中含有全称量词“∀”,是全称命题,且为假命题. (4)命题中含有存在量词“∃”,是特称命题,且为真命题.18.(本小题满分12分)把下列命题改写成“若p ,则q ”的形式,并判断命题的真假. (1)能被6整除的数一定是偶数;(2)当a -1+|b +2|=0时,a =1,b =-2; (3)已知x ,y 为正整数,当y =x 2时,y =1,x =1.解:(1)若一个数能被6整除,则这个数为偶数,是真命题. (2)若a -1+|b +2|=0,则a =1且b =-2,真命题. (3)已知x ,y 为正整数,若y =x 2,则y =1且x =1,假命题.19.(本小题满分12分)已知c >0,设命题p :y =c x为减函数,命题q :函数f (x )=x +1x >1c 在x ∈⎣⎢⎡⎦⎥⎤12,2上恒成立.若p ∨q 为真命题,p ∧q 为假命题,求c 的取值范围. 解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可.若p 真,由y =c x为减函数,得0<c <1.当x ∈⎣⎢⎡⎦⎥⎤12,2时,由不等式x +1x ≥2(x =1时取等号)知, f (x )=x +1x 在⎣⎢⎡⎦⎥⎤12,2上的最小值为2.若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1,c ≤12,所以0<c ≤12;若p 假q 真,则c ≥1,c >12,所以c ≥1.综上可得,c ∈⎝ ⎛⎦⎥⎤0,12∪[1,+∞). 20.(本小题满分12分)已知k ∈R 且k ≠1,直线l 1:y =k 2x +1和l 2:y =1k -1x -k .(1)求直线l 1∥l 2的充要条件;(2)当x ∈[-1,2]时,直线l 1恒在x 轴上方,求k 的取值范围.解:(1)由题意得⎩⎪⎨⎪⎧k 2=1k -1,k -1≠0,-k ≠1,解得k =2.当k =2时,l 1:y =x +1,l 2:y =x -2,此时l 1∥l 2. ∴直线l 1∥l 2的充要条件为k =2.(2)设f (x )=k2x +1.由题意,得⎩⎪⎨⎪⎧f-1>0,f 2>0,即⎩⎪⎨⎪⎧k2×-1+1>0,k 2×2+1>0,解得-1<k <2.∴k 的取值范围是(-1,2).21.(本小题满分12分)已知“∃x ∈{x |-1<x <1},使等式x 2-x -m =0成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式(x -a )(x +a -2)<0的解集为N ,若x ∈N 是x ∈M 的必要条件,求实数a 的取值范围.解:(1)由题意,知m =x 2-x =⎝ ⎛⎭⎪⎫x -122-14.由-1<x <1,得m ∈⎣⎢⎡⎭⎪⎫-14,2,故M =⎣⎢⎡⎭⎪⎫-14,2. (2)由x ∈N 是x ∈M 的必要条件,知M ⊆N . ①当a >2-a ,即a >1时,N =(2-a ,a ),则⎩⎪⎨⎪⎧2-a <-14,a ≥2,a >1,解得a >94.②当a <2-a ,即a <1时,N =(a,2-a ),则⎩⎪⎨⎪⎧a <1,a <-14,2-a ≥2,解得a <-14.③当a =2-a ,即a =1时,N =∅,不满足M ⊆N . 综上可得a ∈⎝ ⎛⎭⎪⎫-∞,-14∪⎝ ⎛⎭⎪⎫94,+∞. 22.(本小题满分12分)已知命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题.(1)求实数m 的取值集合B ;(2)设不等式(x -3a )(x -a -2)<0的解集为A ,若x ∈A 是x ∈B 的充分不必要条件,求实数a 的取值范围.解:(1)命题:“∀x ∈{x |-1≤x ≤1},都有不等式x 2-x -m <0成立”是真命题,得x 2-x -m <0在-1≤x ≤1时恒成立,∴m >(x 2-x )max ,得m >2, 即B ={m |m >2}.(2)不等式(x -3a )(x -a -2)<0,①当3a >2+a ,即a >1时,解集A ={x |2+a <x <3a },若x ∈A 是x ∈B 的充分不必要条件,则A B ,∴2+a ≥2,此时a ∈(1,+∞);②当3a =2+a ,即a =1时,解集A =∅,若x ∈A 是x ∈B 的充分不必要条件,则A B 成立;③当3a <2+a ,即a <1时,解集A ={x |3a <x <2+a },若x ∈A 是x ∈B 的充分不必要条件,则A B 成立,∴3a ≥2,此时a ∈⎣⎢⎡⎭⎪⎫23,1.综上①②③可得a ∈⎣⎢⎡⎭⎪⎫23,+∞.。

1.4.1-2全称命题与特称命题1(含答案)

1.4.1-2全称命题与特称命题1(含答案)

1.4.1-2全称命题与特称命题1(含答案)1.4.1-1.4.2全称量词和存在量词一、课程学习目标1.了解生活和数学中经常使用的两类量词的含义,熟悉常见的全称量词和存在量词;2.了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及判断此类命题的真假.二、课本知识梳理1.命题用到,这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做,用符号表示,含有全称量词的命题,叫做.通常将含有变量x的语句用p(x),q(x),r(x),……表示,变量x的取值范围用M表示. 那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:读做“对任意x属于M,有p(x)成立”.命题用到了,这样的词语,这些词语都是表示整体的一部分的词叫做。

并用符号“”表示.含有存在量词的命题叫做特称命题:“存在M中一个x,使p(x)成立”可以用符号简记为:。

读做“存在一个x属于M,使p(x)成立”.3.全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“至多有一个”等.三、课前双基自测1.下列全称命题中真命题的个数是()①末位是0的整数,可以被2整除;②角平分线上的点到这个角的两边的距离相等;③正四面体中两侧面的夹角相等;A.1 B.2 C.3 D.02.下列存在性命题中假命题的个数是()①有的实数是无限不循环小数;②有些三角形不是等腰三角形;③有的菱形是正方形;A.0 B.1 C.2 D.33.下列命题为特称命题的是()A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线D.有很多实数不小于34.下列命题中为全称命题的是()A.圆内接三角形中有等腰三角形B.存在一个实数与它的相反数的和不为0C.矩形都有外接圆D.过直线外一点有一条直线和已知直线平行5.下列全称命题中,真命题是( )A. 所有的素数是奇数;B. ;C. D.6.下列特称命题中,假命题是( )A.B.至少有一个能被2和3整除C. 存在两个相交平面垂直于同一直线D.x2是有理数7.已知:对恒成立,则a的取值范围是.四、课时方法积累1. 理解全称量词与特称量词的意义.;2. 重点是正确地判断全称命题和特称命题的真假.五、课堂达标训练1.下列是全称命题且是真命题的是( )A.?x∈R,x2>0 B.?x∈Q,x2∈QC.?x0∈Z,x20>1 D.?x,y∈R,x2+y2>02.设A、B为两个集合.下列四个命题:AB对任意x∈A,有xB;②ABA∩B=;③ABAB;④AB存在x∈A,使得xB.其中真命题的序号是______________.(把符合要求的命题序号都填上)3. 已知:对恒成立,则a的取值范围是.课下练习巩固1.下列命题既是全称命题又是真命题的个数是( )①所有的素数都是奇数;②?x∈R,(x-1)2+1≥1;③有的无理数的平方还是无理数.A.0B.1C.2D.32.判断下列命题是全称命题还是特称命题?(1)方程2x=5只有一解;(2)凡是质数都是奇数;(3)方程2+1=0有实数根;(4)没有一个无理数不是实数;(5)如果两直线不相交,则这两条直线平行;(6)集合A∩B是集合A的子集.3.下列命题中,真命题是()A.一元二次方程都有两个实数根B.一切实数都有算术根C.有些直线没有倾斜角D.存在体积相等的球和正方体4.判断下列语句是不是全称命题或者特称命题,如果是,用量词符号表达出来:(1)中国的所有江河都注入太平洋;(2)0不能作除数;(3)任何一个实数除以1,仍等于这个实数;(4)每一个向量都有方向吗?七、课后感悟反思1.4.1-1.4.2全称量词和存在量词课本知识梳理对所有的,对任意一个,全称量词,,全称命题.,2.存在一个, 至少有一个,存在量词. ,特称命题.三、课前双基自测1 C2 A3 D4 D5 D6 C7 a<2五、课堂达标训练1 B2 ④3 a<2六、课下巩固练习1.B 2.(1)特称命题(2)全称命题(3)特称命题⑷全称命题⑸特称命题⑹全称命题3.D 4.(1) 全称命题(2) 特称命题(3) 全称命题(4) 不是命题.。

1.4全称命题与特称命题

1.4全称命题与特称命题

这些命题和它们的否定在形式上有什么变化?
上面三个命题都是全称命题,即具有形式
“x M”,p(x)
转变观念 改革课堂 服务学生 成就辉煌
例3:写出下列全称命题的否定
转变观念 改革课堂 服务学生 成就辉煌
转变观念 改革课堂 服务学生 成就辉煌
巩固练习: 1.判断下列命题的真假,其中为真命 题的是 ( D )
转变观念 改革课堂 服务学生 成就辉煌
这三个命题都是全称命题,即具有形式 “x∈M, p(x) ”
命题(1)的否定是“并非所有的矩形都是平 行四边形”,也就是说,存在一个矩形不是平 行四边形;
命题(2)的否定是“并非每一个素数都是奇 数”,也就是说,存在一个素数不是奇数;
命题(3)的否定是“并非x∈R, x2-2x+1≥0”, 也就是说,x∈R, x2-2x+1<0;
转变观念 改革课堂 服务学生 成就辉煌
1、全称量词与全称命题
定义:短语“所有的” “任意一个”在逻辑中 通常叫做全称量词
常见的全称量词还有:“一切”, “每一个”, “任给”等等
记法:全称量词用符号 “
”表示
全称命题:含有全称量词的命题,叫做全称命题.
转变观念 改革课堂 服务学生 成就辉煌
例如,命题:
(3)对每一个无理数 x,x2 也是无理数;
假命题
课本23页第1题
答案: 1、(1)真命题 (2)假命题 (3)假命题
2、(1)真命题 (2)真命题 (3)真命题
转变观念 改革课堂 服务学生 成就辉煌
3、思考:写出下列命题的否定
一(1般)地所,有对的于矩含形有都一是个量平词行四 的全边称形命;题的否定,
A,x R, x2 1 0

全称命题与特称命题

全称命题与特称命题

解析:p 为假命题,q 为真命题,故綈 p 且 q 为真命题.
答案:B
6.(2014 年南昌模拟)已知命题 p:“任意 x∈[0,1],a≥ex”;命题 q:“存在 x0∈R,x 20+4x0+a=0”.若命题“p 且 q”是假命题,则实数 a 的取值范围是( )
A.(-∞,4]
C.(-∞,e)∪(4,+∞)
=x2-2cx+1 在(2
范围.
1
,+∞
)上为增函数,若“p 且 q”为假,“p 或 q”为真,求实数 c 的取值
解析:∵函数 y=cx 在 R 上单调递减,∴0<c<1.
即 p:0<c<1,∵c>0 且 c≠1,∴綈 p:c>1.
又∵f(x)=x2-2cx+1 在(2
1
∴c≤2.即 q:0<c≤2,∵c>0 且 c≠1,
解析:当 p 为真命题时,a≥e;当 q 为真命题时,x2+4x+a=0 有解,则 Δ=16-4a≥0,
∴a≤4.∴“p 且 q”为真命题时,e≤a≤4.
“p 且 q”为假命题时,a<e 或 a>4.
答案:C
二、填空题
7.命题“能被 5 整除的数,末位是 0”的否定是________.
解析:省略了全称量词“任何一个”,否定为:有些可以被 5 整除的数,末位不是 0.
一、选择题
1.命题“所有奇数的立方都是奇数”的否定是( )
A.所有奇数的立方都不是奇数
B.不存在一个奇数,它的立方是偶数
C.存在一个奇数,Байду номын сангаас的立方是偶数
D.不存在一个奇数,它的立方是奇数
[A 组 基础演练·能力提升]
解析:全称命题的否定是特称命题,即“存在一个奇数,它的立方是偶数”.

全称量词与存在量词附答案

全称量词与存在量词附答案

1.4 全称量词与存在量词(1)第1课时:全称量词与存在量词 情景设计: 已知2():20p x x x +-=,():sin cos q x x x >, (1)语句()p x ,()q x 是命题吗?为什么?(2)如果在语句()p x 或()q x 前面加上“对所有x R ∈”或“存在一个x R ∈”,它们是命题吗?为什么? 点拔提示:(1)在x 未赋值之前,语句()p x ,()q x 不能判断其真假,所以它们不是命题;(2)在语句()p x 或()q x 前面加上“对所有x R ∈”或“存在一个x R ∈”后,()p x ,()q x 的真假就能确定,所以它们是命题.阅读与积累:1.短语“__________”、“____________” 逻辑中称为全称量词,并用符号“_____” 表示。

对所有的 对任意一个 ∀ 2.短语“__________”、“____________” 逻辑中称为存在量词,并用符号“_____” 表示。

存在一个 至少有一个 ∃3.含有全称量词的命题称为____________;含有存在量词的命题称为___________.全称命题 特称命题4.全称命题形式:_____________;特称命题形式:____________ 。

其中M 为给定的集合,p (x )是一个关于x 的命题。

,()x M p x ∀∈ ,()x M p x ∃∈问题与思考:题1:判断下列命题是全称命题还是特称命题.(1)对任意的n ∈Z, 2n +1 是奇数 (2)所有的正方形都是矩形 (3)有的平行四边形是菱形 (4)有一个素数不是奇数答案:(1)(2)都是全称命题 ;(3)(4)都是特称命题题2: 判断下列命题的真假吗?(1)4,1x N x ∀∈≥有 (2)2,10x R x x ∀∈-+>有(3)1,2=+∈∃x x R x 使 (4)5,2=∈∃x Z x 使 答案:(1) 假命题 (2)真命题 (3) 真命题 (4) 假命题[合作学习与问题探究] [难点·疑点·方法]问题1: 你能用符号“∀”与“∃”表达下列命题吗?①自然数的平方大于或等于零_______________________________________②圆221x y +=上存在一个点到直线1y x =+的距离等于圆的半径____________________________________________________________________ ③基本不等式:________________________________________________④对于数列1n n ⎧⎫⎨⎬+⎩⎭,总存在正整数n ,使得n a 与1之差的绝对值小于0.01:解: ①2,0x N x ∀∈≥; ②(){}22(,),/11x y x y x y ∃∈+==③,,2a b a b R ++∀∈≥; ④,10.01n n N a +∃∈-<名师讲析: 一般地,全称命题写成“,()x M p x ∀∈”,特称命题写成“,()x M p x ∃∈”, 其中M 为给定的集合,p (x )是一个关于x 的命题。

1.4.1-2全称量词与存在量词

1.4.1-2全称量词与存在量词
解析:C 答案已经是全称命题了.
答案:C
3.命题“有些负数满足不等式(1+ 2 x)(1 - 9x )>0”用“ ∃ ”写成特称命题 2 为______________________________ . ∃x0∈R,x0<0,(1+x0)(1-9x0)>0
解析:“有些”即存在.
4. 判断下列命题是全称命题还是特称命题?并 判断其真假. 2 (1)存在一个实数,使等式 x +x+8=0 成立; (2)每个二次函数的图象都与 x 轴相交; 1 (3)若对所有的正实数, 不等式 m≤x+x都成立, 则 m≤2; (4)如果对任意的正整数 n, 数列{an}的前 n 项和 Sn=an2+bn(a,b 为常数),那么数列{an}为等差数 列.
解析:②、③、④、⑥都含有全称量词. 答案:D
2.下列命题不是“存在 x0∈R,x2 0>3”的表述 方法的是( ) 2 A.有一个 x0∈R,使得 x0>3 成立 B.对有些 x0∈R,使得 x2 0>3 成立 2 C.任选一个 x∈R,使得 x >3 成立 D.至少有一个 x0∈R,使得 x2 0>3 成立
例1 判断下列全称命题的真假:
(1)所有的素数都是奇数; (2) (3)对每一个无理数x,x2也是无理数。
解:(1)假命题; (2)真命题; (3)假命题。
小 结:
判断全称命题"x M,p(x)"是真命题的方法:
——需要对集合M中每个元素x,证明p(x)成立
判断全称命题"x M,p(x)"是假命题的方法:
(4)全称命题. ∵Sn=an2+bn,∴a1=a+b. 当命题. n≥2时,an=Sn-Sn-1=an2+bn-a•(n-1)2 -b(n-1)=2na+b-a, 所以an=2an+b-a(n∈N*). 从而数列{an}是等差数列,即这个全称命题也是 真

全称命题与特称命及否定

全称命题与特称命及否定

全称命题p: x M , p( x),
它的否定 p: x0 M , p( x0 )
它的否定 p:x M , p( x), 4.复合命题的否定 特称命题p: x0 M , p( x0 )
例4:写出下列命题的否定形式: (1)3是6的约数或15的约数; (2)菱形的对角线互相垂直平分 (1)3既不6的约数,也不是15的约数. (2)菱形的对角线不互相垂直或不互相平分
例1:判断下列全称命题的真假 假 (1)所有的素数是奇数; (2) x (5, ), f ( x) x 2 4 x 2 0 真 (3) n N 点 pn (n, an ) 都在直线y=2x+1上,则 an 是等差数列 真 2:存在量词 x 与(3),(2)与(4)之间有 问题2:下列语句是命题吗?(1) 什么关系? (1)2x+1=3 (2)x能被2和3整除. (3)存在一个 x0 R 使 2 x0 1 3 (4)至少有一个 x0 Z x0 能被2和3整除 短语“至少有一个” “存在一个” “某些” “有一个” “对 某个” “有的”等在逻辑中通常叫做存在量词.并用符号

特称命题“存在M中元素x0,使p(x0)成立”
可以有符号简记为 x0 M , p( x0 ) 例2:判断下列特称命题的真假 2 假 (1) x0 R, x0 2x0 3 0 (2)存在两个相交平面垂直于同一条直线.假 (3) a Z , a 2 3a 2 真 3.全称命题与特称命题的否定 例3:写出下列命题的否定,并判断真假: (1)所有的矩形都是平行四边形; (2) x R, x 2 2x 1 0 (3)有些实数的绝对值是正数; (4) x0 R, x0 2 1 0
D.x R, sin来自x tan x4.命题p:存在实数m,使方程x2+mx+1=0有实数根, 则“非p”形式的命题是( B ) A.存在实数m,使得方程x2+mx+1=0无实根; B.不存在实数m,使得方程x2+mx+1=0有实根; C.对任意的实数m,使得方程x2+mx+1=0有实根; D.至多有一个实数m,使得方程x2+mx+1=0有实根;

全称命题与特称命题

全称命题与特称命题

02 特称命题的定义与特点
特称命题的定义
特称命题是含有存在量词的命题,表 示某类对象中存在某些具有某种性质 的个体。
例如:“存在自然数n,使得 n^2=4”。
特称命题的特点
存在量词
特称命题使用存在量词来表示某类对象中至少有一个 个体满足给定性质。
描述特定个体
特称命题关注的是某类对象确使用全称命题与特称命题
明确范围
在使用全称命题时,需要明确其涵盖的范围,避免出现逻 辑上的漏洞或错误。
01
具体实例
使用特称命题时,需要提供具体的实例 来支持或反驳某个观点,增强论证的说 服力。
02
03
逻辑连贯
在构建论证时,需要确保全称命题和 特称命题之间的逻辑连贯性,避免出 现矛盾或不一致的情况。
简化性
在推理和证明中,全称命题可以简化复杂的问题,使得推理过程更加简洁明了。
全称命题的逻辑形式
全称命题的逻辑形式通常表示为“∀x: P(x)”,其中“∀”表示“对于所有”,x表示个体变量,P(x)表示 关于x的命题。
全称命题的逻辑形式在推理和证明中具有重要意义。通过使用全称命题,我们可以将一个复杂的命题 简化为一个简单的形式,从而更容易进行推理和证明。同时,全称命题也为我们提供了一种有效的工 具,用于描述和表达普遍适用的真理。
全称命题与特称命题的未来发展
1 2
深入研究
随着逻辑学、语言学等学科的发展,全称命题与 特称命题的研究将更加深入和细致。
应用拓展
随着人工智能、大数据等领域的发展,全称命题 与特称命题的应用将更加广泛和深入。
3
跨学科融合
全称命题与特称命题的研究和应用将进一步与其 他学科融合,推动跨学科领域的发展和创新。

高中数学第一章常用逻辑用语4全称量词与存在量词12全称量词与存在量词1课件新人教A版选修2

高中数学第一章常用逻辑用语4全称量词与存在量词12全称量词与存在量词1课件新人教A版选修2

[点评] 解题时要注意存在性量词、全称量词的不同表示形式. 存在性命题p:∃x∈A,p(x),其否定为¬p:∀x∈A,¬p(x). 全称命题q:∀x∈A,q(x),其否定为¬q:∃x∈A,¬q(x).
命题方向二:含有一个量词的命题的否定的真 假判断
[例3] 写出下列命题的否定并判断真假: (1)不论m取何实数,方程x2+x-m=0必有实数根; (2)所有末位数字是0或5的整数都能被5整除; (3)每一个非负数的平方都是正数; (4)有的四边形没有外接圆; (5)某些梯形的对角线互相平分; (6)被8整除的数能被4整除.
因为 x∈0,12,所以 f(x)+2∈0,34.
要使 x∈0,12时 f(x)+2<logax 恒成立. 显然当 a>1 时不可能.
0<a<1, 所以loga12≥34.
解得344≤a<1.
课堂巩固训练
一、选择题
1.判断下列全称命题的真假,其中真命题为( )
A.所有奇数都是素数
B.∀x∈R,x2+1≥1
知能自主梳理
1.短语“对所有的”“ 对任意一个”在逻辑中通常叫做全称量 词,并用符号“ ∀ ”表示,含有全称量词的命题,叫做 全称命题. 2.短语“存在一个”“ 至少有一个 ”在逻辑中通常叫做存在量 词,并用符号“ ∃”表示,含有存在量词的命题,叫做 特称.命题 3.全称命题p:∀x∈M,p(x),它的否定¬p: ∃x∈M,非p(x) . 4.特称命题p:∃x∈M,p(x),它的否定¬p: ∀x∈M,非p(x) <logax在x∈
上恒成立时,求a的取值范围.
[解析] (1)由已知f(x+y)-f(y)=(x+2y+1)x,令x=1,y=0, 得f(1)-f(0)=2,又因为f(1)=0,所以f(0)=-2.

高中数学人教A版选修2-1 (1.4)全称命题与特称命题

高中数学人教A版选修2-1 (1.4)全称命题与特称命题

练习:写出下列命题的否定,并判断其真假: (1)一切分数都是有理数; (2)有些三角形是锐角三角形; (3)∃x∈R, x²+x=x+2; (4)∀x∈R, 2x+4≥0. (5)∀x∈R, x²>0; (6)∃x∈R, x²=1; (7)∃x∈R, 是方程x²-3x+2=0的根.
一般地,对于含有一个量词的全称命题的否定, 有下面的结论: 全称命题 它的否定 一般地,对于含有一个量词的特称命题的否定,有下
写出下列命题的否定: (1)有些实数的绝对值是正数; (2)有些平行四边形是菱形; (3) ∃x0∈R, x0²+1<0. (4)所有能被3整除的整数都是奇数; (5)对任意x∈Z, x²的个位数字不等于3.
这些命题和它们的否定在形式上有什么变化?
例题
例3 写出下列特称命题的否定,并判断其真假: (1)p:∃x0∈R, x0²+2x0+2≤0; (2)p:有的三角形是等边三角形; (3)p:有一个素数含三个正因数. (4)q:至少有一个实数x,使x³+1=0 (5)r:任意两个等边三角形都是相似的; (6)s:∃x0∈R, x0²+2x0+2=0.
些”、“有一个”、“对某个”、“有的”在逻 辑中通常叫做存在量词。 表示: 用符号“∃”表示,
2.特称命题及表示:
定义: 含有存在量词的命题,叫做特称命题. 表示:特称命题“存在M中的一个x,使p(x)成立”可用
符号简记为∃x∈M,p(x). 读作:“存在一个x属于M,使p(x)成立”.
例如: 命题 (1)有的平行四边形是菱形;
关系(3: )在(1)的基础上,用短语“存在一个”对变量x的 取值进行限定,使(3)变成了可以判断真假的语句;

全称命题和特征命题

全称命题和特征命题

全称命题和特征命题命题 逆命题 否命题 逆否命题1.下列那个命题的逆命题为真( )A .若b a >,则bc ac >B 若22b a >,则0>>b aC .若13>-x ,则42<<xD 若132>-x ,则22<<x2.判断命题“若02=-+m x x ”没有实根,则0≤m ”的真假性3.写出命题“若12,0)1(22-===++-y x y x 且则”的逆命题、否命题、逆否命题,并判断它们的真假.充分条件和必要条件1.“1=a ”是“函数)(sin )(cos 22ax ax y -=的最小正周期是π的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.两条直线0:,0:22221111=++=++C y B x A l C y B x A l 垂直的充要条件是( )A.02121=+B B A AB.02121=-B B A AC.12121-=B B A AD.12121=A A B B 含有逻辑联结词的命题真假判定逻辑联结词:1、定义:“或”、“且”、“非”这些词叫做逻辑联结词 简单命题:不含有逻辑联结词的命题叫做简单命题复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题2.逻辑符号:“或”的符号是“∨”,例如“p 或q ”可以记作“p ∨q ”; 复合命题“且”的符号是“∧”,例如,“p 且q ”可以记作“p ∧q ”; 复合命题“非”的符号是“⌝”,例如,“非p ”可以记作“⌝p ”. 命题p 的否定3.复合命题q p ∧,q p ∨,p ⌝的真假判断例1.指出下列命题的真假(1)命题“不等式0|2|≤+x 没有实数解”; (2)命题“-1是偶数或奇数”;(3)命题“2属于集合Q ,也属于集合R ”; (4)命题“B A A Y ⊆” [剖析]先找出逻辑联结词,再判定命题的真假。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.1-1.4.2全称量词和存在量词
一、课程学习目标
1.了解生活和数学中经常使用的两类量词的含义,熟悉常见的全称量词和存在量词;
2.了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及判断此类命题的真假.
二、课本知识梳理
1.命题用到,这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做,用符号表示,含有全称量词的命题,叫做.
通常将含有变量x的语句用p(x),q(x),r(x),……表示,变量x的取值范围用M表示.那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:
读做“对任意x属于M,有p(x)成立”.
命题用到了,这样的词语,这些词语都是表示整体的一部分的词叫做。

并用符号“”表示.含有存在量词的命题叫做
特称命题:“存在M中一个x,使p(x)成立”可以用符号简记为:。

读做“存在一个x属于M,使p(x)成立”.
3.全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“至多有一个”等.
三、课前双基自测
1.下列全称命题中真命题的个数是()
①末位是0的整数,可以被2整除;
②角平分线上的点到这个角的两边的距离相等;
③正四面体中两侧面的夹角相等;
A.1 B.2 C.3 D.0
2.下列存在性命题中假命题的个数是()
①有的实数是无限不循环小数;②有些三角形不是等腰三角形;③有的菱形是正方形;
A.0 B.1 C.2 D.3
3.下列命题为特称命题的是()
A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体
C.不相交的两条直线是平行直线D.有很多实数不小于3
4.下列命题中为全称命题的是()
A.圆内接三角形中有等腰三角形
B.存在一个实数与它的相反数的和不为0
C.矩形都有外接圆
D.过直线外一点有一条直线和已知直线平行
5.下列全称命题中,真命题是( )
A. 所有的素数是奇数;
B. ;
C. D.
6.下列特称命题中,假命题是( )
A.
B.至少有一个能被2和3整除
C. 存在两个相交平面垂直于同一直线
D.x2是有理数
7.已知:对恒成立,则a的取值范围是.
四、课时方法积累
1. 理解全称量词与特称量词的意义.;
2. 重点是正确地判断全称命题和特称命题的真假.
五、课堂达标训练
1.下列是全称命题且是真命题的是()
A.∀x∈R,x2>0B.∀x∈Q,x2∈Q
C.∃x0∈Z,x20>1D.∀x,y∈R,x2+y2>0
2.设A、B为两个集合.下列四个命题:
AB对任意x∈A,有xB;②ABA∩B=;③ABAB;
④AB存在x∈A,使得xB.
其中真命题的序号是______________.(把符合要求的命题序号都填上)
3. 已知:对恒成立,则a的取值范围是.
课下练习巩固
1.下列命题既是全称命题又是真命题的个数是( )
①所有的素数都是奇数;
②∀x∈R,(x-1)2+1≥1;
③有的无理数的平方还是无理数.
A.0
B.1
C.2
D.3
2.判断下列命题是全称命题还是特称命题?
(1)方程2x=5只有一解;
(2)凡是质数都是奇数;
(3)方程2+1=0有实数根;
(4)没有一个无理数不是实数;
(5)如果两直线不相交,则这两条直线平行;
(6)集合A∩B是集合A的子集.
3.下列命题中,真命题是()
A.一元二次方程都有两个实数根
B.一切实数都有算术根
C.有些直线没有倾斜角
D.存在体积相等的球和正方体
4.判断下列语句是不是全称命题或者特称命题,如果是,用量词符号表达出来:(1)中国的所有江河都注入太平洋;
(2)0不能作除数;
(3)任何一个实数除以1,仍等于这个实数;
(4)每一个向量都有方向吗?
七、课后感悟反思
1.4.1-1.4.2全称量词和存在量词
课本知识梳理
对所有的,对任意一个,全称量词,,全称命题.,
2.存在一个, 至少有一个,存在量词. ,特称命题.
三、课前双基自测
1 C
2 A
3 D
4 D
5 D
6 C
7 a<2
五、课堂达标训练
1 B
2 ④
3 a<2
六、课下巩固练习
1.B 2.(1)特称命题(2)全称命题(3)特称命题
⑷全称命题⑸特称命题⑹全称命题3.D 4.(1) 全称命题(2) 特称命题
(3) 全称命题(4) 不是命题.。

相关文档
最新文档