梁的平面弯曲.
梁的平面弯曲的概念和计算简图
图4-3
1.3梁的计算简图
在进行梁的工程分析和计算时,不必把梁的复杂的工程图原原本 本地画出来,而是以能够代表梁的结构、荷载情况的,按照一定 的规律简化出来的图形代替,这种简化后的图形称为梁的计算简 图。一般应对梁作以下三方面的简化:
1 梁本身的简化 梁本身可用其轴线来代表,但要在图上注明梁的结构尺寸数据, 必要时也要把梁的截面尺寸用简单的图形表示出来。
梁是工程结构中应用得非常广泛的一种构件。例如图4-1[(a)、 (b)、(c)]所示的混凝土公路桥梁、房屋建筑的阳台挑梁,以 及水利工程的水闸立柱等。
图4-1
1.2梁的平面弯曲的概念
梁的轴线方向称为纵向,垂直于轴线的方向称为横向。梁的横 截面是指梁的垂直于轴线的截面,一般都存在着对称轴,常见的 有圆形、矩形、工字形和T形等。梁的纵向平面是指过梁的轴线 的平面,有无穷多个,但通常所说的纵向平面是指梁横截面的纵 向对称轴与梁的轴线所构成的平面,称为梁的纵向对称面。
图4-4
1.4静定梁的基本形式
1.4静定梁的基本形式 1 静定梁与超静定梁的概念 梁可以分为静定梁和超静定梁。如果梁的支座反力的数目等于梁 的静力平衡方程的数目,就可以由静力平衡方程来完全确定支座 反力,这样的梁称为静定梁,如图4-5(a)所示。
反之,如果梁的支座反力的数目多于梁的静力平衡方程的数目, 就不能由静力平衡方程来完全确定支座反力,这样的梁称为超静 定梁,如图4-5(b)所示。
2 静定梁的三种形式 静定梁有三种形式:简支梁、悬臂梁和外伸梁,其计算简图如图 4-6[(a)、(b)、(c)]所示。
图4-5
图4-6
材料力学
图。其中,公路桥梁本身用直线AB代表,左端的支承简化成固 定铰支座,有两个约束反力FAx和FAy,右端的支承简化成活动铰 支座,有一个约束反力FBy,正在行驶中的汽车简化成集中力F, 桥梁本身的自重简化成均布荷载q。
何谓纯弯曲和平面弯曲
何谓纯弯曲和平面弯曲引言:弯曲是一种力学应变情况,常见于各种工程和结构设计中。
在力学学科中,有两种常见的弯曲形式:纯弯曲和平面弯曲。
本文将介绍这两种弯曲形式的概念、特点和应用领域。
一、纯弯曲的定义和特点1. 定义:纯弯曲指的是梁体或构件在受力作用下仅产生弯曲摩擦的力学现象。
在纯弯曲情况下,梁体或构件不发生剪切力和剪切应力。
纯弯曲可以用数学模型来描述,使用弯曲方程计算弯曲应力和变形。
2. 特点:纯弯曲具有以下特点:- 仅产生绕中性轴的弯曲变形,不会引起构件的拉伸或压缩;- 弯矩和弯曲应力大小与受力点的距离成正比;- 相对于构件来说,纯弯曲的强度需求较低。
二、平面弯曲的定义和特点1. 定义:平面弯曲是指梁体或构件在受力作用下产生弯曲力和剪切力的力学现象。
在平面弯曲情况下,梁体或构件既发生弯曲变形,同时也会产生剪切变形。
平面弯曲可以用复杂的数学模型来描述,需要考虑弯曲方程和剪切方程。
2. 特点:平面弯曲具有以下特点:- 产生绕中性轴的弯曲变形和平面内的剪切变形;- 弯矩和弯曲应力大小与受力点的距离成正比;- 相对于构件来说,平面弯曲的强度需求较高,需要考虑弯矩和剪力的耦合效应。
三、纯弯曲和平面弯曲的应用领域1. 纯弯曲的应用:纯弯曲常用于以下领域:- 建筑工程:如梁柱、悬挑结构等;- 桥梁工程:如悬索桥、拱桥等;- 机械工程:如飞机翼梁、汽车车身等。
2. 平面弯曲的应用:平面弯曲常用于以下领域:- 板材加工:如金属板材的弯曲加工;- 车体工程:如汽车车身的弯曲设计;- 船舶工程:如船体的强度设计。
结论:纯弯曲和平面弯曲在力学学科中都是重要的概念,应用于各种工程和结构设计中。
纯弯曲和平面弯曲的区别在于是否考虑剪切变形和剪切力的影响。
对于不同的工程和结构需求,工程师和设计师需要对纯弯曲和平面弯曲进行合理的分析和设计,以确保结构的强度和稳定性。
梁的弯曲
MB 0
MA 0
FAy= - M / l FBy= M / l
(2)列剪力方程和弯矩方程
弯曲内力
A
FAy= - M / l
a
x1 l
b B
C x2
FBy= M / l
AC段:距A端为x1的任意截面1-1以左研究
V x1=FAy M / l 0 x1 a M x1=FAyx1 Mx1 / l 0 x1 a
剪力和弯矩一般是随横截面的位置而变化的。横截面 沿梁轴线的位置用横坐标x表示,则梁内各横截面上的剪 力和弯矩就都可以表示为坐标x的函数,即
V=V(x)和 M=M(x) 以上两函数分别称为梁的剪力方程和弯矩方程。
弯曲内力
二、剪力图和弯矩图
为了形象地表明沿梁轴线各横截面上剪力和弯矩的变 化情况,通常将剪力和弯矩在全梁范围内变化的规律用图 形来表示,这种图形称为剪力图和弯矩图。
FBy
弯曲内力
总结与提示
截面法是求内力的基本方法。 (1) 用截面法求梁的内力时,可取截面任一侧研究,但 为了简化计算,通常取外力比较少的一侧来研究。 (2) 作所取隔离体的受力图时,在切开的截面上,未知 的剪力和弯矩通常均按正方向假定。 (3) 在列梁段的静力平衡方程时,要把剪力、弯矩当作 隔离体上的外力来看待,因此,平衡方程中剪力、弯矩的 正负号应按静力计算的习惯而定,不要与剪力、弯矩本身 的正、负号相混淆。
弯曲内力
q>0
弯曲内力
FQ=0截面
弯曲内力
三、应用规律绘制梁的剪力图和弯矩图
用规律作剪力图和弯矩图的步骤 (1) 求支座反力。 对于悬臂梁由于其一端为自由端,所以可以不求支 座反力。 (2) 将梁进行分段 梁的端截面、集中力、集中力偶的作用截面、分布 荷载的起止截面都是梁分段时的界线截面。 (3) 由各梁段上的荷载情况,根据规律确定其对应的 剪力图和弯矩图的形状。 (4) 确定控制截面,求控制截面的剪力值、弯矩值, 并作图。
第1节 平面弯曲的概念和实例
第七章 直梁弯曲时的内力和应力
第七章 直梁弯曲时的内力和应力
第七章 直梁弯曲时的内力和应力
二、静定梁的基本形式 梁的支座形式:工程中常见的梁的支座有以下三 种形式。 1)固定铰支座:如图a所示,固定铰支座限制梁在 支承处任何方向的线位移,其支座反力可用两个正 交分量表示,即沿梁轴线方向的 FAx 和垂直于梁轴 线方向的FAy。
第七章 直梁弯曲时的内力和应力
第一节
平面弯曲的概念和实例
一、平面弯曲 弯曲变形:当杆件受到垂直于轴线的外力作用或 受到作用面平行于轴线的外力偶作用时,杆件的 轴线会由直线变为曲线,这种变形称弯曲变形。 梁:以弯曲变形为主的杆件称作梁。 直梁:工程中常见的轴线是直线的梁。 平面弯曲:若梁的外力及支 座反力都作用在纵向对称面 内,则梁弯曲时轴线将变成 此平面内的一条平面曲线, 该弯曲变形称为平面弯曲。
或
第七章 直梁弯曲时的内力和应力 2)活动铰支座:如图b所示,活动铰支座只能限制 梁在支承处垂直于支承面的线位移,支座反力可用 一个分量FRA表示。 3)固定端支座:如图c所示,固定端支座限制梁在 支承处的任何方向线位移和角位移,其支座反力有 两个正交力FAx、FAy和一个力偶分量MA。
或
MA
第七章 直梁弯曲时的内力和应力 静定梁的形式:根据梁的支座情况,工程中常见 的静定梁可以简化成以下三种形式。 1)简支梁:梁的支座一端是 固定铰支座,另一端是活 动铰支座。 2)外伸梁:梁的支座与简支 梁相同,只是梁的一端或 两端伸出在支座之外。 3)悬臂梁:梁的一端自由, 另一端是固定支座。
第七章 直梁弯曲时的Biblioteka 力和应力三、梁上载荷的简化
1)集中力:集中力作用在梁上的很小一段范围内, 可近似简化为作用于一点,如图所示的力F。单位 为牛顿(N)或千牛顿(kN)。 2)集中力偶:作用在微小梁段上的力偶,可近似 简化为作用于一点,如图所示的力偶M。单位为牛 顿· 米(N· m)或千牛顿· 米(KN· m)。 3)分布载荷:沿梁轴线方 向、在一定长度上连续分布 的力系,如图所示的均布载 荷q。其大小用载荷集度表 示,单位为牛顿/米(N/m) 或千牛/米(kN/m)。
材料力学第四章平面弯曲
得
∫ A ydA =0
M
dA
z
y z ζdA
My
横截面对中性轴 zdA 的面积矩为零, A 中性轴过形心。 E yzdA 0
A
y
Iyz =0——梁发生平面弯曲的条件
E I E 2 ∫ AσdA· z ∫ A y dA = Mz= y = ρ ρ 1 Mz = EIz —— 梁的弯曲刚度 中性层曲率公式 EI ρ z
y
m MB=-40kN· m MD=22.5kN· B M y B截面 上部受拉、下部受压 tBmax B t max 21.4MPa Iz B yt max 100mm B M y I z 186.6 106 m 4 B B c max 38.6MPa B c max yc max 180mm Iz
max
FQ S
* z max
Izd
d FQ 4 FQ 12 4 d 3 A d 64
3
d/2
z
max
四、薄壁圆环截面梁 中性轴处:
r0
z
max 2
FQ A
max
例 如图所示一T形截面。某截面上的剪力FQ=50kN,与y 轴重合。试求腹板的最大切应力,并画出腹板上的切应力分布图。
1
* FQ S z 1
I zd
4.13MPa
例 一矩形截面外伸梁,如图所示。现自梁中1、2、 3、4点处分别取四个单元体,试画出单元体上的应力,并 写出应力的表达式。
q
1 2 h/4 4 3
z l/4 b
l/4
l
解: (1)求支座反力:
FRA
FRB
1 l/4
梁的平面弯曲的简介
梁的平面弯曲的简介
在平面弯曲中,荷载与支反力构成一个平面平衡力系。对 于上述三种类型的梁,支反力未知数都只有三个,由静力学可 知,平面一般力系有三个独立的平衡方程,因此这些梁的支反 力可以用静力平衡条件确定,这种梁称为静定梁。
但在实际工作中,有时需要多加支座约束,以改善梁的强 度和刚度,提高承载能力,这时支反力未知数超过三个,单凭 静力平衡条件不能完全确定其支反力,这种梁称为超静定梁或 静不定梁。解超静定梁需要考虑梁的变形、列出补充方程,与 静力平衡条件联立求解, 静定梁的分类
梁在发生平面弯曲时,外力或外力的 合力都作用在通过梁轴线的纵向平面内, 为使梁在此平面内不致发生随意的移动和 转动,必须有足够的支座约束。按支撑的 情况,常见的梁有下述三种类型。
梁的平面弯曲的简介
(1)悬臂梁:梁的一端固定,另一端自由,如图8-4(a)所示。 (2)简支梁:梁的一端为固定铰链,另一端为活动铰链支座,如 图8-4(b)所示。 (3)外伸梁:梁的支撑情况同简支梁,但梁的一端或两端伸出支 座之外,如图8-4(c)所示。
工程力学
梁的平面弯曲的简介
1.1 梁的弯曲变形
工程实际中将以弯曲为主要 变形的构件称为梁。梁的弯曲变 形是工程实际中的一种基本变形, 如桥式起重机的横梁、列车车厢 的轮轴、建筑结构中的横梁、钢 架的横梁和立柱等。本章主要讨 论的是平面弯曲。平面弯曲的受 力特点是:在过轴线的纵向对称 面内,受到垂直于轴线的荷载作 用。如图8-1所示。
工程力学
图8-1
梁的平面弯曲的简介
梁的平面弯曲变形特点 是:杆的轴线在纵向对称面 内由直线变成一光滑连续曲 线。例如图8-2所示的火车 轮轴,其因在轴的两端分别 受到垂直轴线的集中力作用 而发生平面弯曲;
平面弯曲概念梁的类型
平面弯曲概念梁的类型平面弯曲是指在空间中只发生一维变形,即沿一条直线方向发生变形,而其他方向保持不变。
这种变形特点主要体现在梁的横向方向上,梁在横向方向的变形可以分为简支梁、悬臂梁和连续梁。
1. 简支梁:简支梁是指两个支点之间的梁,支点是指在梁两端支撑的点。
在简支梁中,当梁受到集中力作用时,沿梁的长度方向发生弯曲。
在弯曲的过程中,梁上任意一点的变形可以由梁的弯曲方程来描述。
一般情况下,简支梁在两个支点之间的部分是线性变形的,即沿着支点之间的区域变形相对均匀。
而支点周围的区域受到局部的力的作用,产生非线性变形。
2. 悬臂梁:悬臂梁是指一个端部固定在支点上,另一个端部自由悬挂的梁。
在悬臂梁中,只有一个支点,梁在支点处固定,而另一端自由悬挂。
当梁受到集中力作用时,悬臂梁会在支点处产生弯曲。
与简支梁不同的是,悬臂梁的悬臂区与支点之间的变形是非线性的,变形幅度较大。
3. 连续梁:连续梁是指由两个或多个简支梁或悬臂梁相连接组成的梁。
在连续梁中,两个相邻的梁通过节点连接在一起。
当梁受到集中力作用时,整个连续梁系统会发生弯曲。
在连续梁中,节点附近的区域变形相对较大,而两个节点之间的梁段产生线性变形。
总结起来,平面弯曲梁的类型主要包括简支梁、悬臂梁和连续梁。
这些梁在受到集中力作用时,会发生弯曲变形。
在简支梁和悬臂梁中,梁的变形是非线性的,而在连续梁中,梁的变形是线性的。
这些梁的变形特点对于工程设计和结构分析非常重要,需要考虑到梁的形状、材料、力的大小和作用位置等因素,来确定合适的梁的尺寸和支撑结构,以保证梁的强度和稳定性。
《工程力学》项目9平面弯曲
项目9 剪切与挤压
• 任务9.4 平面弯曲梁横截面上的应力 • 梁的横截面上只有弯矩而剪力为零的平面弯曲称为纯弯
曲,如图 9-20梁上CD段;而横截面上既有弯矩也有剪力 的平面弯曲称为横力弯曲或剪力弯曲,如图 9-20梁上AC、 DB段。
图 9-20
项目9 剪切与挤压
9.4.1纯弯曲时梁横截面上的应力 1.实验现象 2.假设及推理 • 研究纯弯曲时梁横截面上的应力,可
式(9-2),即可确定截面上的剪力和弯矩为
3
FS2
YA
qa 4
M2
YAa
3 qa2 4
项目9 剪切与挤压
• 3-3截面:将杆件截面右侧的所有的外力给屏蔽起来,如图
9-7(d)所示,取截面的左侧为研究对象,即可确定截面上
的剪力和弯矩为
FS3
YA
P
3 qa qa 4
1 4
qa
M3
YAa
P0
3 4
9-4(b)所示。 外伸梁:梁的支撑情况同简支梁,但梁的一端或两端伸出支座
之外,如图 9-4(c)所示。
图9-4
项目9 剪切与挤压
• 任务9.2 梁弯曲的内力
• 9.2.1梁弯曲内力——剪力和弯矩
• 根据力系的平衡条件,可确定在留 下部分的截面上的内力为平行于横 截面的剪力和作用在纵向对称面内 的内力矩即弯矩。根据平衡方程可 得剪力与弯矩的大小,即
• 为了直观清楚地显示沿梁轴线方向的各截面剪力和 弯矩的变化情况,可绘制剪力图和弯矩图。对剪力 图,正值画在轴线的上侧,负值画在轴线的下侧; 对弯矩图正值画在轴线的下侧,负值画在轴线的上 侧,即弯矩坐标正向向下。
项目9 剪切与挤压
• 【例 9-2】图 9-8(a)所示的简支梁受均布荷载作用,试 作其剪力图和弯矩图。
工程力学第八章 梁的平面弯曲
③静力平衡关系
空间平行力系的简化
N=∫AσdA My=∫AzσdA Mz=∫AyσdA ∵是纯弯曲
∴∑X=0 N=∫AσdA=0 ∑My=0 My=∫AzσdA=0 又∵∫AσdA=-Ε/ρ∫AydA ∴∫AydA=0 ∫AydA=Sz是横截面对Z轴(中性轴)的静面积
A
B
Q(x) + -
M(x)
+
④在集中力偶作用处,弯矩图将发生突
变,突变值等于集中力偶矩的大小;当
集中力偶顺时针作用时,弯矩图向上跳
跃(沿x方向),当集中力偶逆时针作用
时,弯矩图向下跳跃(沿x方向)。
M
A
C
B
Q(x)
-
M/L
Mb/L
M(x)
+
Ma/L
⑤若在梁的某一截面上Q(x)=0,亦即弯
=[(ρ+|y|)dψ-ρdψ]/ ρdψ
=|y|/ρ 这表明纵向纤维的线应变与它到中性层的距离
成正比。 ∵ε与y的符号相反 ∴ε=- y/ρ
②物理关系
当应力不超过材料的比例极限时,材料 符合虎克定律,σ=E·ε,将ε代入得σ=- E y/ρ
表明,横截面上任意点处的正应力σ与该 点到中性轴的距离成正比,即沿截面高 度,正应力呈线形分布。
危险截面上下边缘处的点叫危险点。 弯曲强度条件:
σmax= Mmax/ WZ≤[σ]
对于拉压许用应力不同的材料,其强度
条件应同时满足:
σmax拉≤[σ拉]
σmax压≤[σ压]
弯矩图: 没有载荷斜直线, 均布载荷抛物线, 集中载荷有尖点, 力偶载荷有突变。
平面弯曲梁
第九章平面弯曲梁§ 9-1弯曲变形的概念一、平面弯曲弯曲变形是工程实际中最常见的一种基本变形。
弯曲变形构件的受力特点是:在通过杆轴线的平面内,受到力偶或垂直于轴线的外力的作用。
变形的特点是:杆的轴线被弯曲为一条曲线,这种变形称为弯曲变形。
在外力作用下产生弯曲变形或以弯曲变形为主的杆件,称为梁。
由横截面的对称轴与梁的轴线组成的平面称为纵向对称平面,当外力作用线都位于梁的纵向对称平面内,梁的轴线在纵向对称平面内被完成一条光滑的平面曲线,这种弯曲变形称为平面弯曲。
单跨静定梁,一般可分为三类:1、悬臂梁:即一端固定,一端自由的梁;2、简支梁:即一端为固定铰支座,另一端为可动铰支座的梁;3、外伸梁:即一端或两端伸出支座之外的简支梁。
梁在两个支座之间的部分称为跨,其长度则称为跨长或跨度。
恳X ~X§ 9-2梁的弯曲内力一剪力与弯距图一、梁的内力一剪力Q和弯矩M梁在横截面上的内力可用截面法求得。
(一)截面法求内力如图(a)所示的简支梁,受集中载荷P i、P2、P3的作用,为求距 A端x处横截面m-m上的内力,首先求出支座反力R A、F B,然后用截面法沿截面 m-m假想地将梁一分为二,取如图(b)所示的左半部分为研究对象。
因为作用于其上的各力在垂直于梁轴方向的投影之和一般不为零,为使左段梁在垂直方向平衡,则在横截面上必然存在一个切于该横截面的合力Q (或F s),称为剪力。
它是与横截面相切的分布内力系的合力;同时左段梁上各力对截面形心O之矩的代数和一般不为零,为使该段梁不发生转动,在横截面上一定存在一个位于荷载平面内的内力偶,其力偶矩用M表示,称为弯矩。
它是与横截面垂直的分布内力偶系的合力偶的力偶矩。
由此可知,梁弯曲时横截面上一般存在两种内力。
如图( b)。
由7丫=0 R A-R-Q=O解得Q =:R A - R由送m。
= 0 -R A X+ R(x—a)+m=0解得m = R A X— p (x —a )用截面法计算内力步骤是:1、计算支座反力2、用假象的截面将梁截成两段,任取某一端为研究对象。
梁的平面弯曲
3 VA右 YA qa 2 M A右 qa 2
例2
15
二简易法 梁的内力计算的两个规律: (1)梁横截面上的剪力V,在数值上等于该截 面一侧(左侧或右侧)所有外力在与截面平行方 向投影的代数和。即:
qa 2
B
q C a
Y 0 :
YB YA qa 0
3a M A 0 : YB a qa qa 2 0 2 3 YA 2 qa 5 YB qa 2
13
(2)计算各截面内力
A右截面
qa MA右
2
B左截面 A
qa
2
B右截面 MB左 B
F2
C
YA 外伸梁 YB
9
二、梁的内力(剪力和弯矩)
x m n M P 力平衡:V - P = 0 力矩平衡:M + P(l-x) = 0 l 剪力:V = P 是一集中力,作用 线过截面形心,与截面相切.
V
P
弯矩:M = - P(l-x) 是一内力 偶矩,作用面在纵向对称面内.
(按左半边梁,能算出V、M吗?)
l a 2 M C FA l a q
2
0
2q1 x 1.4 2 1.4 q 0 2 x 2
x 0.462m
21
18
FQC Fy FAy 2kN M c M O FAy 2m M e 2kN 2m 8kN m 4kN m
FQB 左 F FBy 2kN 4kN 2kN M B左 F 2m 2kN 2m 4kN m FQB 右 F 2kN M B右 F 2m 2kN 2m 4kN m
平面弯曲
•
有
EIz
1 M = M及 = ρ ρ EIz
式中,1/ρ表示中性层的曲率。反映梁产生弯曲变 形的程度;EIz表示梁抵抗弯曲变形的能力,称为 抗弯刚度。由式(4-44)可知,在指定截面上M为一 定值时,梁的抗弯刚度越大,曲率越小,梁的弯 曲变形也越小。 将 σ = E ⋅ ε = E y 代入得
ρ
My σ = Iz
式(4-45)是计算梁在纯弯曲时横截面上任意一点的 正应力公式。 式中,M——横截面上的弯矩; y——所求点到中性轴的距离; Iz——整个截面对中性轴的惯性矩。 正应力σ的正负号可根据变形判断,以中性轴为界 ,变形后凸边的纤维受拉,应力为正(拉 应力) ,凹边的纤维受压,应力为负(压应力)。
(2) 求梁的最大正应力值,及最大正应力值发生的 位置。该梁为等截面梁,在全梁范围内惯性矩为 一常数,任意截面的上下边缘至截面中性轴的距 离均相等。所以最大正应力发生在最大弯矩截面 的上下边缘处。 则最大正应力为
M max
ql 2 2 × 52 = = kN ⋅ m = 6.25kN ⋅ m 8 8 M max ymax M max h 6.25 × 106 × 200 = = = = 6.25N/mm 2 = 6.25MPa 8 IZ 2I Z 2 × 10
距中性轴y处的纵向纤维 a1a2的原长为,变形后 的长度,所以纤维的 伸长量为,相应的纵 向线应变为: ydφ y ε= = ρ dφ ρ 上式表明:各纤维的纵 向线应变与它到中性 层的距离成正比
距中性层最远的上、下 边缘处的线应变最大 ,而中性层上线应变 为零。
2. 物理方面 假设梁在纯弯曲时纵向 纤维之间无挤压作用 ,梁内各点处于单向 受力状态,材料在线 弹性范围内。则
力学基础-(八) 梁的弯曲
ql FQ (l ) 2
用两点式画出剪力图的斜直线。
x
4. 画弯矩图
M(0) 0
ql 2 M(l / 2)
8
M(l) 0
用三点坐标描出弯矩图的二次曲线。
13
任务八 梁的弯曲
弯曲剪力图和弯矩图
2.画剪力图和弯矩图的简便方法
(1)集中力作用处
剪力图有突变,突变幅值等于力 的大小,方向与力同向。
x
(4)集中力偶作用处 剪力图不变化。
弯矩图有突变,突变幅值等于力偶矩的大小,方向顺时针向上突变,反之 向下。
14
任务八 梁的弯曲
弯曲剪力图和弯矩图
应用举例
例 图示跨长为l的简支梁AB,中点C 作用集中力F,试用简便画法画
梁剪力图和弯矩图。
F
A
l/2 FA=F/ FQ 2 F/
C l/2
B FB=F/
MA
A FA
x
l
FQ
F
F B
x
M
Fl
x
从上例可以得出
结论1:无荷载作用的梁段上 剪力图为常量; 弯矩图为斜直线。
确定直线两点的坐标,A点的临近截 面A+的弯矩值
MA+=-Fl
B点的临近截面B -的弯矩值 MB-=-F·=0
12
任务八 梁的弯曲
弯曲剪力图和弯矩图
应用举例
例 图示的简支梁AB,作用均布荷载q,建立剪力、弯矩方程,画梁的
MA
A FA
x
l
FQ
F
M
-Fl
F
B
xC
FA
x
FQ
ql/
2
xM
l/2
ql/
梁的平面弯曲及微分方程公式
第九章 梁的平面弯曲与杆的拉压、轴的扭转一样,弯曲是又一种形式的基本变形。
承受弯曲作用的杆,称之为梁。
本章研究梁的应力和变形。
工程中最常见的梁,可以分为三类,即简支梁、外伸梁和悬臂梁。
由一端为固定铰,另一端为滚动铰链支承的梁,称为简支梁;若固定铰、滚动铰支承位置不在梁的端点,则称为外伸梁(可以是一端外伸,也可以是二端外伸);一端为固定端,另一端自由的梁,则称为悬臂梁。
分别如图9.1(a )、(b)、(c)所示。
在平面力系的作用下,上述简支梁、外伸梁或悬臂梁的约束力均为三个,故约束力可以由静力平衡方程完全确定,均为静定梁。
工程中常见的梁,其横截面一般至少有一个对称轴,如图10.2(a )所示。
此对称轴与梁的轴线共同确定了梁的一个纵向对称平面,如图10.2(b)。
如果梁上的载荷全部作用于此纵向对称面内,则称平面弯曲梁。
平面弯曲梁变形后,梁的轴线将(a ) 简支梁(b) 外伸梁(c) 悬臂梁图9.1 梁的分类在此纵向对称面平面内弯曲成一条曲线,此曲线称为平面弯曲梁的挠曲线。
这种梁的弯曲平面(即由梁弯曲前的轴线与弯曲后的挠曲线所确定的平面)与载荷平面(即梁上载荷所在的平面)重合的弯曲,称为平面弯曲。
平面弯曲是最基本的弯曲问题,本章仅限于讨论平面弯曲。
与前面研究拉压、扭转问题一样,先研究梁的内力,再由平衡条件、变形几何关系及力与变形间的物理关系研究梁横截面上的应力,进而研究梁的变形,最后讨论梁的强度与刚度。
§9.1 用截面法作梁的内力图如第四章所述,用截面法求构件各截面内力的一般步骤是:先求出约束力,再用截面法将构件截开,取其一部分作为研究对象,画出该研究对象的受力图;截面上的内力按正向假设,由平衡方程求解。
在第四章中不仅已经讨论了用截面法求构件内力的一般方法,还给出了构件横截面上内力的符号规定。
下面将通过若干例题,进一步讨论如何利用截面法确定平面弯曲梁横截面上的内力。
例9.1 悬臂梁受力如图9.3(a )所示,求各截面内力并作内力图。
第九章 梁的平面弯曲
x
左顺右逆,M为正
M
FQ
M
内力 右截面正向 左截面正向 FQ M
微段变形(正)
顺时针错动 向上凹
内力图
剪力图—以杆件轴线为基线,Q为纵坐标,作出的反映Q沿
杆件轴线的变化规律的曲线
弯矩图—以杆件轴线为基线,M为纵坐标,作出的反映M 沿杆件轴线的变化规律的曲线
内力图作法:
以坐标x表示横截面的位置,通过平衡方程求出内力与x 的关系,称为内力方程,根据内力方程作图
FAy q M0 M3
0 x3 B C c FQ3
Fy=FAy-4q-FQ2=0 FQ2=13kN
Mc(F )=M2+4q(x2-2)-FAyx2=0 M2=13x2+72(kN•m)
CD段: 6mx3<8m FQ3=13kN; M3=13x3+24(kN•m)
FAy q M0 F M4 DE段: 8mx4<12m
内力与外力的相依关系
某一截面上的内力与作用在该截 面一侧局部杆件上的外力相平衡;
在载荷无突变的一段杆的各截 面上内力按相同的规律变化;
控制截面的概念: 外力规律发生变化的截面—集中力、集中力偶作用点、分 布载荷的起点和终点处的横截面,支座
。
截面法,确定各段Q、M 分布规律,以此列出各 段的内力方程(剪力方程、弯矩方程)。以此 作出剪力图和弯矩图。
q
A
FA
FQ qa
2a
B
2L
FB
qa
q(L-a) q(L-a)
M
qLa-qL2/2
q(L-a)2/2
根据给定的剪力图和弯矩图能否确定梁的受
力,能否确定梁的支承性质与支承位置?由给
第13讲第7章-直梁的弯曲-
主要内容:
1.直梁平面弯曲的概念 2.梁的类型及计算简图 3.梁弯曲时的内力(剪力和弯矩) 4.梁纯弯曲时的强度条件 5.梁弯曲时的变形和刚度条件梁纯弯曲源自的强度条件1.梁纯弯曲的概念
剪力弯曲 平面弯曲
纯弯曲
剪力FQ≠0 弯矩M ≠ 0
剪力FQ=0 弯矩M ≠ 0
在梁的纵向对称面内,两端施加等值、反 向的一对力偶。在梁的横截面上只有弯矩 而没有剪力,且弯矩为一常数,这种弯曲 为纯弯曲 。
2.梁纯弯曲时横截面上的正应力
1)变形特点 :
横向线仍为直线,只是 相对变形前转过了一个 角度,但仍与纵向线正 交。纵向线弯曲成弧线, 且靠近凹边的线缩短了, 靠近凸边的线伸长了, 而位于中间的一条纵向 线既不缩短,也不伸长。
平面假设:梁弯曲变形后,其横截面仍为平面,并垂 直于梁的轴线,只是绕截面上的某轴转动了一个角度。
由平面假设可知,纯弯 曲时梁横截面上只有正 应力而无切应力。由于 梁横截面保持平面,所 以沿横截面高度方向纵 向纤维从缩短到伸长是 线性变化的,因此横截 面上的正应力沿横截面 高度方向也是线性分布 的。以中性轴为界,凹 边是压应力,使梁缩短, 凸边是拉应力,使梁伸 长,横截面上同一高度 各点的正应力相等,距 中性轴最远点有最大拉 应力和最大压应力,中 性轴上各点正应力为零。
弯矩图的规律
1.梁受集中力或集中力偶作用时,弯矩图 为直线,并且在集中力作用处,弯矩发生转 折;在集中力偶作用处,弯矩发生突变,突 变量为集中力偶的大小。
2.梁受到均布载荷作用时,弯矩图为抛物 线,且抛物线的开口方向与均布载荷的方向 一致。
3.梁的两端点若无集中力偶作用,则端点 处的弯矩为0;若有集中力偶作用时,则弯 矩为集中力偶的大小。
平面弯曲梁的变形计算公式
平面弯曲梁的变形计算公式梁是工程结构中常见的构件,用于承担横向载荷和弯矩。
在实际工程中,梁的变形是一个重要的问题,因为变形会影响结构的稳定性和使用性能。
平面弯曲梁是一种常见的梁结构,其变形计算公式是工程设计和分析中的重要内容。
本文将介绍平面弯曲梁的变形计算公式及其应用。
平面弯曲梁的变形是由横向载荷和弯矩引起的。
在计算平面弯曲梁的变形时,需要考虑梁的截面形状、材料性质和受力情况。
根据梁的几何形状和材料性质,可以得到平面弯曲梁的变形计算公式。
下面将介绍平面弯曲梁的变形计算公式及其推导过程。
首先,考虑一根长度为L的平面弯曲梁,在横向载荷和弯矩的作用下发生弯曲变形。
假设梁的截面形状为矩形,材料为弹性材料,横向载荷为P,弯矩为M。
根据弹性力学理论,可以得到平面弯曲梁的变形计算公式如下:1. 梁的挠度计算公式。
梁的挠度是描述梁在弯曲变形下的位移情况的参数。
挠度计算公式可以通过梁的受力分析和材料力学理论推导得到。
对于矩形截面的平面弯曲梁,其挠度计算公式为:δ = (PL^3)/(3EI) + (ML^2)/(2EI)。
其中,δ为梁的挠度,P为横向载荷,L为梁的长度,E为弹性模量,I为梁的惯性矩,M为弯矩。
2. 梁的曲率计算公式。
梁的曲率是描述梁在弯曲变形下曲线形状的参数。
曲率计算公式可以通过挠度计算公式求导得到。
对于矩形截面的平面弯曲梁,其曲率计算公式为:κ = d²δ/dx² = M/(EI)。
其中,κ为梁的曲率,δ为梁的挠度,x为横向坐标,M为弯矩,E为弹性模量,I为梁的惯性矩。
3. 梁的最大挠度计算公式。
梁的最大挠度是描述梁在弯曲变形下最大位移情况的参数。
最大挠度计算公式可以通过挠度计算公式和曲率计算公式求解得到。
对于矩形截面的平面弯曲梁,其最大挠度计算公式为:δmax = (5PL^4)/(384EI) + (3ML^3)/(64EI)。
其中,δmax为梁的最大挠度,P为横向载荷,L为梁的长度,E为弹性模量,I为梁的惯性矩,M为弯矩。
材料力学梁的弯曲问题
F2 M
F1
A
B
●工程实例
建筑工程中的各类梁、火车轴、水压作用下的水 槽壁等。
火车轴
厂房吊车梁
●对称(平面)弯曲 (Planar bending)
对称平面 F2
F1
(b)
F2
F1
(a)
A
B
(c)
平面弯曲:梁的轴线在变形后仍保持在同一平面( 荷载作用面)内,即梁的轴线成为一条平面曲线。
梁的荷载和支座反力
1.5m
FRB
3m
15.3 内力图──剪力图和弯矩图
为了形象地看到内力的变化规律,通常将剪力、弯 矩沿梁长的变化情况用图形表示出来,这种表示剪力 和弯矩变化规律的图形分别称为剪力图和弯矩图。
具体作法是:
剪力方程: FQFQx 函数图形 弯矩方程: MMx
例4 求作图示受均布荷载作用的简支梁的剪力图和
FQ2FRAF1F2
FQ2 FRB
M O
0
M 2 F R A 2 F 1 1 . 5 F 2 0 . 5 0 M 2 7 k N m
M 2 F R A 2 F 1 1 .5 F 2 0 .5
FQ2FRAF1F2
FQ
F1
M 2 F R A 2 F 1 1 .5 F 2 0 .5
当变形为微小时,可采用变
形前尺寸进行计算。
MB
1、叠加原理:当梁在各项
A
荷载作用下某一横截面上
的弯矩等于各荷载单独作
用下同一横截面上的弯矩
的代数和。
2、区段叠加法作弯矩图:
设简支梁同时承受跨间荷
MB
载q与端部力矩MA、MB的作用 。其弯矩图可由简支梁受端部
力矩作用下的直线弯矩图与跨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§
一、概念
杆件受到垂直于其轴线的外力或位于其轴线所在平面内的力偶作用时,杆轴线由直线变为曲线的变形称为弯曲(图6-1)。以弯曲变形为主要变形的杆件称为梁。
图6-1
工程中常见的梁,其横截面往往有一根对称轴,这根对称轴与梁轴线所组成的平面,称为纵向对称平面。当作用在梁上(包括荷载和支座反力)的外力和外力偶都位于纵向对称平面内时,梁的轴线将在此纵向对称平面内弯曲,如图6-2所示。这种梁的弯曲平面与外力作用平面相重合的弯曲,称为平面弯曲。它是工程中的一种最简单、最常见的弯曲变形,本章将主要讨论等截面直梁的平面弯曲问题。
图6-2
二、梁的类型
根据梁的支座反力能否用静力平衡条件完全确定。可将梁分为静定梁和超静定梁两类。工程中对于单跨静定梁按其支座情况分为下列三种形式:
1、简支梁:梁的一端-3a
2、外伸梁:梁身一端或两端伸出支座的简支梁(图6-3b)。
图6-3b
3、悬臂梁:梁的一端为固定端,另一端为自由端(图6-3c)。