反比例函数图像的对称性

合集下载

反比例函数的图象与性质定

反比例函数的图象与性质定

两者区别
幂函数图像根据n的正负而不同, 反比例函数图像为双曲线,两者 在坐标系中的位置和形状也不同。
感谢您的观看
THANKS
04
反比例函数的应用
在物理中的应用
电流与电阻的关系
在电路中,电流与电阻成反比关系,即当电阻增大时,电流减小;反之亦然。 这是反比例函数在物理中的一个重要应用。
声速与介质的关系
声速在固体、液体和气体中的传播速度与介质的密度和介质的性质有关,通常 呈现反比例关系。
在经济中的应用
供需关系
在经济学中,供需关系可以用反比例函数来表示。当供应量增加时,需求量可能 会减少,反之亦然。
定义域
反比例函数的定义域为$xneq0$,即除 了$x=0$以外的所有实数。
奇偶性分析
奇函数
反比例函数$f(x)=frac{k}{x}$是奇函数,因为对于任意实数$x$, 都有$f(-x)=-frac{k}{x}=-f(x)$。
偶函数
反比例函数不是偶函数,因为对于任意实数$x$,都有$f(x)neq f(x)$。
k 的影响
当 k > 0 时,图像位于第 一象限和第三象限;当 k < 0 时,图像位于第二象 限和第四象限。
渐近线
反比例函数的图像有两条 渐近线,分别是 x 轴和 y 轴。
反比例函数的性质
当 x > 0 时,y 随着 x 的增大而减小; 当 x < 0 时,y 随着 x 的增大而增大。
无界性:反比例函数的值域和定义域 都是无限的,但在实数范围内是有界 的。
反比例函数的图象与性 质
目录 CONTENT
• 反比例函数概述 • 反比例函数的图像特点 • 反比例函数的性质分析 • 反比例函数的应用 • 反比例函数与其他函数的比较

初三数学反比例函数知识点归纳-复习必备打印背熟

初三数学反比例函数知识点归纳-复习必备打印背熟

反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。

而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。

反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。

增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。

对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。

2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。

反比例函数反比例函数的图象与性质

反比例函数反比例函数的图象与性质
反比例函数反比例函数的图 象与性质
2023-11-06
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数概述
反比例函数的定义
反比例函数定义
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数 。
反比例函数的积分特性
反比例函数在区间(-∞,0)和(0,+∞) 上的积分等于常数k。
VS
反比例函数在区间(-∞,x)和(x,+∞)上 的积分等于常数k乘以x。
04
反比例函数的应用
用反比例函数解决实际问题
电力分布
在电力分布问题中,常常 需要使用反比例函数来计 算电力的分布情况,以便 合理规划电力设施。
反比例函数的定义域和值域
定义域为{x|x≠0},值域为{y|y≠0}。
反比例函数的单调性
在区间(-∞,0)和(0,∞)上单调递减。
反比例函数的基本形式
反比例函数的基本形式
01
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。Biblioteka 反比例函数的解析式02
反比例函数通常被表示为y = k / x的形式,其中k是常数且不
热传导
在热传导中,可以使用反比例函数 来描述热量在介质中的传导规律。
在几何中的应用
圆的面积
在计算圆的面积时,可以使用 反比例函数来描述圆的面积与
半径之间的关系。
球的体积
在计算球的体积时,可以使用 反比例函数来描述球的体积与
半径之间的关系。
光线反射
在光线反射问题中,可以使用 反比例函数来描述光线反射的

反比例函数关于直线对称

反比例函数关于直线对称

反比例函数关于直线对称反比例函数是一种特殊的函数类型,又称为倒数函数。

它的定义域为实数集,但其值域则不包含0。

反比例函数的图像为一个双曲线。

对于任意反比例函数f(x),设其表达式为f(x)=k/x,其中k为常数且不等于0。

设一条直线为y=a(a为常数)。

若f(x)对称于直线y=a,则有:f(x)-a=-[f(2a-x)-a]由此可以推导出:整理得到:x=(k/a+2a-k/x)/2通过移项和通分,得到:化简得到:更进一步,得到:由此,我们得到了关于反比例函数关于直线y=a的对称公式。

这个公式可以帮助我们求出反比例函数在对称轴y=a处的对称点坐标,具有实际的应用价值。

需要注意的是,在反比例函数定义域内,函数值随着自变量的增大而减小。

对于不同的对称轴y=a,反比例函数的图像在对称轴左侧和右侧的形态并不相同。

通过对反比例函数和直线的对称性进行分析,我们可以得到反比例函数关于直线对称的公式,并进一步应用到具体实践当中。

这对于理解和解决相关问题具有重要意义。

反比例函数在实际应用中具有广泛的应用。

在电学中,电路中电阻与电流的关系、电动势与电流的关系都可以表示为反比例函数。

再在经济学中,多种经济指标之间的关系也可以表示为反比例函数。

反比例函数对于经济学和环境学的研究尤为重要。

在资源分配和环境治理方面,反比例函数经常被用来研究经济增长与环境保护之间的关系。

在这个领域中,反比例函数表示了经济增长和环境破坏之间的关系,通过调节其参数可以平衡经济发展与环境保护之间的矛盾。

反比例函数还可以解决诸如汽车保险费用计算、员工工资计算等与相对大小相关的问题。

在这些问题中,反比例函数可以表达出各因素间的等比关系,帮助我们快速准确地计算出相应的数值。

在高中数学教学中,反比例函数也占有重要地位。

反比例函数的图像为双曲线,这对于学生的直观理解十分重要。

反比例函数的定义、性质和应用也是高中数学课程的重要内容之一。

在教学实践中,借助于反比例函数的对称性,可以对学生进行练习和测试,提高学生的数学分析能力。

反比例函数的性质

反比例函数的性质

反比例函数定义一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。

k大于0时,图像在一、三象限。

k小于0时,图像在二、四象限.k 的绝对值表示的是x与y的坐标形成的矩形的面积。

反比例函数图像及性质反比例函数图像:1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x≠0,函数值y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2.反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近x轴、y轴,但不会与坐标轴相交(y≠0)。

反比例函数性质:1.[增减性]当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y轴相交。

4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x (即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B 两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

反比例函数的性质

反比例函数的性质

反比例函数定义一般的,如果两个变量 x,y 之间的关系可以表示成 y=k/x(k 为常数, k≠0),其中 k 叫做反比例系数, x 是自变量,y 是自变量 x 的函数,x 的取值范围是不等于 0 的一切实数 ,且y 也不能等于 0。

k 大于 0 时,图像在一、三象限。

k 小于 0 时,图像在二、四象限 .k 的绝对值表示的是 x 与 y 的坐标形成的矩形的面积。

反比例函数图像及性质反比例函数图像:1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量 x≠0,函数值 y≠0,所以,它的图像与 x 轴、 y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2. 反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近 x 轴、 y 轴,但不会与坐标轴相交( y≠ 0)。

反比例函数性质:1.[ 增减性 ] 当 k>0 时,图象分别位于第一、三象限,同一个象限内, y 随 x 的增大而减小;当 k<0 时,图象分别位于二、四象限,同一个象限内,y 随 x 的增大而增大。

2.k>0 时,函数在 x<0 上同为减函数、在x>0 上同为减函数; k<0 时,函数在 x<0 上为增函数、在 x>0 上同为增函数。

定义域为x≠0;值域为y≠ 0。

3.因为在 y=k/x(k ≠ 0) 中, x 不能为 0, y 也不能为 0,所以反比例函数的图象不可能与x 轴相交,也不可能与 y 轴相交。

4.在一个反比例函数图象上任取两点 P,Q,过点 P,Q分别作 x 轴, y 轴的平行线,与坐标轴围成的矩形面积为 S1, S2 则 S1=S2=|K|5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x (即第一三,二四象限角平分线),对称中心是坐标原点。

利用反比例函数图像对称性巧解题

利用反比例函数图像对称性巧解题

利用反比例函数图像对称性巧解题林艺彬(福建省漳州市第三中学㊀363000)摘㊀要:反比例函数图像应用的最突出性质就是对称性ꎬ运用函数图像的对称性能够解决大量的数学问题.本文基于反比例函数对称性的描述ꎬ谈利用反比例函数图像对称性进行解题的具体方法.关键词:函数ꎻ图像ꎻ对称性ꎻ解题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2022)35-0023-03收稿日期:2022-09-15作者简介:林艺彬(1982.10-)ꎬ女ꎬ福建省漳州人ꎬ本科ꎬ中学一级教师ꎬ从事中学数学教学研究.㊀㊀反比例函数是初中数学课程中的重要组成部分ꎬ同时对学生而言也是一个学习难点ꎬ其知识内容呈现出较为复杂抽象的特征.学习反比例函数的前提便是画好函数图像ꎬ在此基础上对函数图像的对称性进行研究ꎬ引导学生就函数图像对称性做到综合运用ꎬ对培养学生的数学思维与解题能力有着十分重要的作用.如今ꎬ伴随新课改的持续推行ꎬ针对反比例函数对称性解题的教学方法层出不穷ꎬ总体上都是向细致化与科学化发展ꎬ对教学实践起到了显著的促进作用.在此ꎬ笔者基于个人教学经验ꎬ同时借鉴一些成熟的教学案例ꎬ提出利用反比例函数图像对称性进行解题的具体方法ꎬ仅供参考.1反比例函数图像的对称性要想让学生学好反比例函数ꎬ前提便是能够让学生正确作图.函数作图主要包括三个步骤ꎬ分别是列表㊁描点及连线.反比例函数图像是一个中心对称图形ꎬ其坐标原点即是图形的对称中心ꎬ同时反比例函数也是一个轴对称图形ꎬ对称轴是直线y=x或y=-x.在实际解题过程中ꎬ反比例函数的对称性性质有着十分广泛的应用ꎬ如对于 图形面积的求解 或是 存在性 等相关问题ꎬ便可采用该性质来进行解决.对于反比例函数y=5xꎬ其中说法正确的是?①此函数图像属于轴对称图形ꎻ②此函数图像属于中心对称图形ꎻ③点(5ꎬ-1)是图像上一点ꎻ④在x的正半轴ꎬy随x减小而增大.通过反比例图像可以得出ꎬ反比例既是中心对称ꎬ也是轴对称图形ꎬ在每个象限内ꎬy随x减小而增大.由此可见ꎬ利用反比例函数图像的对称性解决相关类型的题目ꎬ能够实现复杂问题的简单化处理ꎬ有利于提升学生的解题效率.2利用反比例函数图像对称性进行解题的具体方法㊀㊀反比例函数的表达式为y=kx(kʂ0)ꎬ图像是双曲线ꎬ其不仅为轴对称图形ꎬ同时也属于中心对称图形.在平面直角坐标系当中利用反比例函数图像的对称性ꎬ可以帮助学生巧妙地解决相关题目.而关于反比例函数图像的对称性问题ꎬ可主要分成下面的这三种情形.2.1图象为中心对称图形ꎬ对称中心是坐标原点例1㊀如图1ꎬ双曲线y=kx与直线y=mx相交32于A㊁B两点ꎬB点坐标为(-2ꎬ-3)ꎬA点坐标为(㊀㊀).A.(-2ꎬ-3)㊀㊀㊀㊀B.(2ꎬ3)C(-2ꎬ3)D.(2.-3)图1解析㊀由于已知条件双曲线y=kx与直线y=mx相交于A㊁B两点ꎬ可以画出关于原点(0ꎬ0)对称的中心对称图形ꎬ当得知B点坐标为(-2ꎬ-3)ꎬ通过利用中心对称图形的横纵坐标互为相反数的定理ꎬ得到A点坐标为(2ꎬ3).结论1㊀双曲线y=kx与直线y=mx相交于A㊁B两点ꎬ则A㊁B两点关于原点成中心对称ꎬ基于中心对称图形的横纵坐标互为相反数ꎬA点坐标为(aꎬb)ꎬB点坐标则为(-aꎬ-b).2.2图象为轴对称图形ꎬ对称轴为直线y=x或y=-x例2㊀如图3ꎬ点A㊁B在反比例函数y=kx(x>0)的图象上ꎬ点A与点B关于直线y=x对称ꎬ若点A(1ꎬ2)ꎬ则B的坐标为.图3解析㊀基于点A与点B关于直线y=x对称的已知条件ꎬ可互换横纵坐标ꎬ即(aꎬb)变换为(bꎬa).已知点A的坐标为(1ꎬ2)ꎬ那么点B的坐标为(2ꎬ1).结论2㊀反比例函数图象关于直线y=x对称ꎬ其对称点为A(aꎬb)㊁B(bꎬa)ꎬ呈现出横纵坐标互换的点坐标特征.例3㊀如图4ꎬ圆A和圆B的圆心在反比例函数y=1x上ꎬ且圆A和圆B都与x轴和y轴相切ꎬ求阴影部分的面积?图4解析㊀由圆A和圆B的圆心在反比例函数y=1x上ꎬ且都与x轴和y轴相切可以得出两个圆的半径为1ꎬ由反比例函数对称性得出ꎬ阴影部分面积可以转化为圆A或圆B的面积ꎬ问题就有效解决.结论3㊀反比例函数图象关于直线y=-x对称ꎬ其对称点为A(aꎬb)㊁B(-bꎬ-a)ꎬ呈现出横纵坐标互换且互为相反数的点坐标特征.3反比例函数与几何综合题的方法分析反比例函数与几何综合有着密不可分的关系ꎬ针对于这种类型的题目ꎬ教师可引导学生从以下几种思路来进行处理:一是就关键点处入手ꎬ基于关键点坐标及线段长度的相互转化ꎬ将函数特征和几何特征相结合而展开研究ꎻ二是围绕函数特征与几何特征进行组合㊁转化及列方程求解ꎬ如果能够有效利用反比例函数的模型ꎬ便可快速实现将函数特征向几何特征转化的目的.例4㊀已知矩形ABCD的四个顶点均在反比例函数y=1x的图象上ꎬ且点A的横坐标是2ꎬ则矩形ABCD的面积为.解析㊀关于这道题的解答ꎬ首先需要进行图象的绘制(见图5)ꎬ通过分析可知矩形既是轴对称图形同时也是中心对称图形ꎬ那么关于直线y=x轴对称ꎬ需要实现横纵坐标的互换ꎬ而基于原点对称ꎬ便是横纵坐标互为相反数ꎬ已知的A的横坐标2ꎬ便可得到A㊁B㊁C㊁D的坐标ꎬ之后用到两点间的距离公式42A(x1y1)B(x2y2)ꎬAB=(x1-x2)2+(y1-y2)2ꎬAD=(x1+x2)2+(y1+y2)2ꎬ再结合S矩形=AB AD的面积公式ꎬ便可求出具体的图形面积.方法一㊀以上为一种最基本的算法ꎬ具体计算过程为AB=(2-12)2+(12-2)2=322ꎬAD=(2+12)2+(12+2)2=522ꎬS矩形=AB AD=322 522=152.图5㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图6方法二㊀如图6ꎬ得到SΔAOB=S梯形ABEF=158ꎬS矩形=4ˑ158=152.4反比例函数图像对称性解题的教学方法4.1加入实例ꎬ增强学生反比例函数概念认知在实际教学中ꎬ我们发现许多学生的记忆力都是很好的ꎬ可将教师在课堂上讲解的概念内容及时地记忆下来ꎬ但之后由于未能掌握相关学习方法且不愿意动脑ꎬ对数学学习便逐渐丧失了兴趣.数学教育并非是以单纯引导学生记忆数学概念与公式为主要目的ꎬ教师要通过教学让学生感到数学学习是一种乐趣㊁一种享受.如此ꎬ教师便要致力于激活学生的思维能力ꎬ调动学生学习兴趣ꎬ将难懂的反比例函数概念与实例相结合ꎬ帮助学生更好地理解与分析ꎬ减轻知识学习难度.以实际事例展开教学可丰富课堂内容与增强课堂教学的趣味性ꎬ而学生在不断地数学学习中也会实现数学思想的有效掌握ꎬ有利于其综合素养的培养.4.2引导积累ꎬ提升学生学习主观能动性反比例函数对称性的相关理论知识的抽象性与复杂性极强ꎬ并不是仅凭几节课或是一段时间就能让学生完全领悟的ꎬ甚至于到了知识综合应用的解题环节ꎬ更是需要学生拥有较高的知识储备与应用能力.如此ꎬ教师便要引导学生去不断积累知识ꎬ同时做到长时间的坚持不懈ꎬ依照实际教学情境将反比例函数对称性的相关知识很好地融合起来ꎬ不断提升其个人认知ꎬ获知反比例函数对称性的实际价值与意义ꎬ这样一来ꎬ便能很好地提升学生学习的主观能动性.具体教学中ꎬ教师需要为学生提供一个自由㊁独立的学习空间ꎬ鼓励学生进行自主学习ꎬ而方法㊁教师都是其学习中的引导者ꎬ要为其发展提供关键力量.如可采用课题研究的教学模式ꎬ要求学生就反比例函数对称性的问题进行思考与探讨ꎬ将自身的想法与经验表达出来ꎬ同时吸收他人的宝贵意见ꎬ营造出一种团队合作与竞争的氛围.最后ꎬ还要把各个小组的劳动成果进行展示ꎬ先让学生进行自我点评ꎬ然后老师进行引导ꎬ这样不但突出了学生的主体地位ꎬ还实现了教师的引导作用.总之ꎬ反比例函数图象的对称性是学生解题中一个重要的性质ꎬ若灵活运用此性质ꎬ必然能够及时㊁正确地解决题目ꎬ进而为反比例函数相关知识的学习提供很大的方便.对此ꎬ教师应在充分把握反比例函数图象对称性这一性质的基础上ꎬ通过结合实际例题与运用合适的教学方法ꎬ帮助学生更好地理解㊁掌握反比例函数图像的对称性性质ꎬ培养其解题思维ꎬ切实促进初中生数学核心素养的发展.参考文献:[1]刘国强.用反比例函数图象的对称性解题[J].数理天地(初中版)ꎬ2021(4):2.[2]陈天宇.利用对称性求解反比例函数图象问题[J].初中数学教与学ꎬ2018(10X):3.[3]刘国强.反比例函数图象的对称性在解题中的运用[J].初中数学教与学ꎬ2021(1):3.[4]李志英.例说函数对称性在高考数学解题中的运用[J].高中数理化ꎬ2018(20):2.[责任编辑:李㊀璟]52。

(最新整理)反比例函数对称性

(最新整理)反比例函数对称性

⑴求一次函数的解析式; ⑵求△AOB的面积。
A N
MD
CO
x
B
2021/7/26
11
回顾复习
1.反比例函数
y
2 x
的图象在第__二__、__四___象限内.
2.反比例函数 y 4 经过点(m,2),则m的值___2___.
x
3.反比例函数 y k 的图象经过点(2,-3), 则它的表
达式为__y_____6_x __x_____.
a的


2
,






y
=
1 x
2.反比例函数y=(m+1)/x经过点
A(x1,y1),B(x2,y2),当x1<0<x2时,有
y1>y2,则m的取值范围是 m<-1 ________ 3.若A(a,b),B(a-2,c)两点均在函数 大y 小 关1x系的_图__像b_<_上c__,且_ a<0,则b知点A(-2,y1),B(-1,y2),C(3,y3)都在反比
例函数 y
4 x
的图象上,比较y1、 y2 、y3的大
小关系。
解:∵k=4>0
∴图象在第一、三象限内,每一象限内y随x的增大而减小
∵x1<x2<0 , x3=3>0, ∴点A(-2,y1),点B(-1,y2)在第三象限 点C(3,y3)在第一象限。 ∴y3>0, y2 <y1<0 即y2 < y1 < 0< y3
2021/7/26
18
4.如图所示:比较k1,k2,k3,k4的大小.
y=k4/x
y=k1/x

反比例函数的图象和性质

反比例函数的图象和性质

反比例函数的图象和性质在数学的世界里,函数就像是一座神秘的城堡,每一种函数都有着独特的特征和规律。

今天,咱们就一起来探索反比例函数这座城堡,深入了解一下反比例函数的图象和性质。

首先,咱们得知道啥是反比例函数。

一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是x 的反比例函数。

接下来,咱们重点聊聊反比例函数的图象。

反比例函数的图象是双曲线,它有两条分支。

这两条分支要么在一、三象限,要么在二、四象限,具体在哪个象限,得看常数 k 的正负。

当 k>0 时,双曲线的两支分别位于第一、第三象限。

在第一象限内,y 随 x 的增大而减小;在第三象限内,y 也随 x 的增大而减小。

打个比方,就好像你跑步的速度越快,所用的时间就越短。

这里的速度和时间就是成反比例关系,当速度快(k 大)的时候,时间就短(y 小),而且速度越来越快(x 增大),时间就越来越短(y 减小)。

当 k<0 时,双曲线的两支分别位于第二、第四象限。

在第二象限内,y 随 x 的增大而增大;在第四象限内,y 也随 x 的增大而增大。

比如说,你背的东西越重,走得就越慢。

这里的重量和速度成反比例关系,重量越重(k 小),速度越慢(y 大),而且重量越来越重(x 增大),速度就越来越慢(y 增大)。

再来说说反比例函数图象的对称性。

这双曲线可神奇了,它既是轴对称图形,又是中心对称图形。

对称轴有两条,分别是直线 y = x 和直线 y = x 。

对称中心呢,就是坐标原点(0,0)。

咱们再看看反比例函数的性质。

从增减性来说,刚才已经提到了,就不再啰嗦。

还有一点很重要,就是反比例函数的图象永远不会与坐标轴相交。

为啥呢?因为当 x = 0 时,这个函数就没有意义啦,分母不能为 0 嘛。

那知道了反比例函数的图象和性质有啥用呢?用处可大啦!比如说在实际生活中,我们计算工程的进度、计算电阻和电流的关系等等,都可能用到反比例函数。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成\(y =\frac{k}{x}\)(k 为常数,\(k ≠ 0\))的形式,那么称 y 是 x 的反比例函数。

其中,x 是自变量,y 是函数,k 称为比例系数。

例如,当速度 v 一定时,路程 s 与时间 t 的关系可以表示为\(s =vt\),如果时间 t 与路程 s 成反比例关系,那么可以表示为\(t =\frac{s}{v}\)(其中 v 是常数),此时 t 就是 s 的反比例函数。

需要注意的是,反比例函数中自变量 x 的取值范围是\(x ≠ 0\),因为在分式中分母不能为 0。

二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、\(y =\frac{k}{x}\)(k 为常数,\(k ≠ 0\)),这是反比例函数的基本形式。

2、\(y = kx^{-1}\)(k 为常数,\(k ≠ 0\)),将\(\frac{k}{x}\)变形可得。

3、\(xy = k\)(k 为常数,\(k ≠ 0\)),通过\(y =\frac{k}{x}\)两边同时乘以 x 得到。

三、反比例函数的图像反比例函数的图像是双曲线。

当\(k > 0\)时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小;当\(k < 0\)时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。

例如,函数\(y =\frac{2}{x}\),因为\(k = 2 > 0\),所以图像在第一、三象限,且在每个象限内,y 随 x 的增大而减小。

绘制反比例函数图像的一般步骤:1、列表:在自变量取值范围内选取一些值,算出对应的函数值,列成表格。

2、描点:以表中对应值为坐标,在平面直角坐标系中描出相应的点。

3、连线:按照自变量由小到大的顺序,用平滑的曲线将所描的点依次连接起来。

四、反比例函数的性质1、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。

函数及其图象反比例函数反比例函数的图象和性质

函数及其图象反比例函数反比例函数的图象和性质

反比例函数图像的变换规律
伸缩变换
当k值变化时,反比例函数的图像 会沿着x轴或y轴方向伸缩。当k增 大时,图像会向原点靠近;当k减 小时,图像会远离原点。
平移变换
当反比例函数沿x轴或y轴平移时 ,其图像也会相应地沿x轴或y轴 方向移动。
03
反比例函数的性质
反比例函数的单调性
递减性
当$k > 0$时,反比例函数在$(\infty,0)$和$(0,+\infty)$上单调递 减。
溶质溶解度
在溶质溶解度中,溶解度 与温度也成反比关系,即 温度越高,溶解度越低。
反比例函数在经济问题中的应用
供需关系
在市场经济中,供需关系 呈反比关系,即供应量越 大,需求量越小;反之亦 然。
货币流通速度
在货币流通中,货币流通 速度与货币供应量也成反 比关系,即货币供应量越 大,货币流通速度越慢。
热力学中的气体定律
在热力学中,气体的压强与体积也成反比关系,即压强越大,体积 越小。
反比例函数在化学问题中的应用
01
02
03
化学反应速率
在化学反应中,反应速率 与反应物的浓度成反比关 系,即浓度越高,反应速 率越快。
化学平衡
在化学平衡中,反应物的 转化率与反应温度成反比 关系,即温度越高,转化 率越低。
04
反比例函数的图像是双 曲线。
反比例函数的应用场景
在物理学中,反比例函数可以用来描述一些物理量之间的关系,例如电 流与电阻之间的关系可以表示为 $I = \frac{V}{R}$。
在化学中,反比例函数可以用来描述一些化学反应速率与反应物浓度之 间的关系。
在经济学中,反比例函数可以用来描述一些经济现象之间的关系,例如 需求与价格之间的关系可以表示为 $D = \frac{N \times P}{M}$。

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像
工程设计和优化
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。

关于反比例函数中心对称的两个点的距离-定义说明解析

关于反比例函数中心对称的两个点的距离-定义说明解析

关于反比例函数中心对称的两个点的距离-概述说明以及解释1.引言1.1 概述反比例函数是数学中常见的一种函数类型,其特点是当自变量增大时,函数值减小或增大的速度比例呈反比例关系。

在反比例函数中心对称的情况下,存在两个点关于中心对称。

本文将探讨关于反比例函数中心对称的两个点的距离的相关概念和性质。

首先会介绍反比例函数的定义和中心对称的概念,其次会推导出两个点的距离公式,并进行性质总结和实际应用的探讨。

最后展望未来研究方向,希望通过本文的研究深化对反比例函数中心对称性质的理解,为相关领域的进一步研究提供参考和借鉴。

1.2 文章结构文章结构部分的内容:本文主要分为引言、正文和结论三个部分。

引言部分概括介绍了本文要探讨的主题,即关于反比例函数中心对称的两个点的距离。

其中包括对反比例函数和中心对称的概念进行简要说明,并阐明本文的目的和意义。

正文部分将从反比例函数的定义入手,介绍其数学表达式及特点,然后引入中心对称的概念并进行解释。

在这个基础上,将推导出两个点的距离公式,并详细阐述其推导过程。

结论部分将对本文的研究内容进行总结,概括归纳反比例函数中心对称的重要性和作用。

同时,讨论了相关理论在实际应用中的意义,并展望了未来可能的研究方向。

通过这样的文章结构,读者可以清晰地了解本文的目的和内容安排,有助于更好地理解和理解文章的主题和观点。

1.3 目的本文旨在探讨反比例函数中心对称的性质,特别是着重讨论关于反比例函数中心对称的两个点的距离问题。

通过深入研究反比例函数和中心对称的概念,我们旨在推导出两个点的距离公式,进一步总结反比例函数中心对称的性质。

同时,我们也将探讨反比例函数中心对称的实际应用,并展望未来的研究方向,以期为相关领域的学术研究和实际问题的解决提供新的思路和方法。

通过本文的研究,我们希望可以深化对反比例函数中心对称性质的理解,为相关学科领域的研究与应用提供有效的理论支持和指导。

2.正文2.1 反比例函数的定义反比例函数是一种特殊的函数,其定义域为实数集合中除去零的部分,即x ≠0。

第8讲反比例函数的图像与性质

第8讲反比例函数的图像与性质

第8讲反比例函数的图像与性质1、反比例函数的解析式:2、反比例函数的图像:3、反比例函数的性质:4、反比例函数图像的对称性:反比例函数的图像是中心对称图形,反比例函数与正比例函数图像的两个交点一定关于原点对称。

精选题:1.如果反比例函数的图象经过点(﹣3,﹣4),那么函数的图象在第象限.2.在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是.3.点A(2,1)在反比例函数y=的图象上,当y<2时,x的取值范围是.4.已知双曲线在第二、四象限内,则m的取值范围是.5.下列关于反比例函数y=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y随x的增大而减小;③它的图象在二、四象限内.其中正确的是.6.函数y=的图象不经过第象限.7.如果反比例函数的图象过点(﹣1,2),那么它在每个象限内y随x的增大而.8.已知双曲线分别位于第二、四象限,那么点P(a2,a﹣1)一定在第象限.9.如图,是反比例函数y=的图象的一个分支,对于给出的下列说法:①常数k的取值范围是k>2;②另一个分支在第三象限;③在函数图象上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;④在函数图象的某一个分支上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;其中正确的是(在横线上填出正确的序号)(第9题)(第10题)(第11题)10.一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的方程kx+b=的解为.11.我们知道,比较两个数的大小有很多方法,其中的图象法也非常巧妙,比如,通过图中的信息,我们可以得出x>的解是.12.一次函数y=﹣x+1与反比例函数,x与y的对应值如下表:x ﹣3 ﹣2 ﹣1 1 2 3y=﹣x+1 4 3 2 0 ﹣1 ﹣21 2 ﹣2 ﹣1﹣不等式﹣x+1>﹣的解为.13.如图,过点A(1,0)的直线与y轴平行,且分别与正比例函数y=k1x,y=k2x和反比例在第一象限相交,则k1、k2、k3的大小关系是.14.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为.15.如图反比例函数y=的图象经过A(2,1),若y≤1,则x的取值范围.(第13题)(第14题)(第15题)16.若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是.17.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为.(第17题)(第18题)(第19题)(第20题)18.如图,有反比例函数、的图象和一个以原点为圆心,2为半径的圆,则S阴影=.19.如图正比例函数y=mx(m≠0)与反比例函数y=的图象交于A、B两点,若点A的坐标为(1,2),则点B的坐标是.20.如图,过原点O的直线与反比例函数y=的图象相交于点A(1,3)、B(x,y),则点B的坐标为.21.如图在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(2a,a)是反比例函数y=的图象与正方形的一个交点,则图中阴影部分的面积是.(第21题) (第23题) (第24题)22.正比例函数y=kx与反比例函数y=的图象相交于A、B两点,已知点A的横坐标为1,点B的纵坐标为﹣3,则A、B两点的坐标分别为.23.小明画了函数y=﹣1的图象如图,则关于x的分式方程﹣1=2的解估计是.24.已知反比例函数的图象如图,则m的取值范围是.25.如图一次函数y1=x﹣1与反比例函数的图象交于点A(2,1)、B(﹣1,﹣2),则使y1>y2的x的取值范围是.26.如图一次函数y1=kx+b与反比例函数y2=交于A,B两点,且A,B两点的横坐标分别为﹣1,3,则满足y2<y1的x的取值范围是.(第25题) (第26题) (第27题) (第28题)27.如图,已知反比例函数图象A,B,C对应各自反比例函数系数k1,k2,k3;则k1,k2,k3的大小关系.28.已知正比例函数y1=x,反比例函数,由y1,y2构造一个新函数y=x+其图象如图所示.(因其图象似双钩,我们称之为“双钩函数”).给出下列几个命题:①该函数的图象是中心对称图形;②当x<0时,该函数在x=﹣1时取得最大值﹣2;③y的值不可能为1;④在每个象限内,函数值y随自变量x的增大而增大.其中正确的命题是.(请写出所有正确的命题的序号)29.若直线y=kx(k>0)与双曲线的交点为(x1,y1)、(x2,y2),则2x1y2﹣5x2y1的值为.。

反比例函数的概念与性质

反比例函数的概念与性质

反比例函数的概念与性质反比例函数是数学中一种常见的函数形式,它的特点是当自变量增大时,因变量会相应地减小,而当自变量减小时,因变量会相应地增大。

本文将介绍反比例函数的概念与性质,并探讨它在数学中的应用。

一、概念反比例函数是指一个函数,其形式为f(x) = k/x,其中k是常数且不为零。

该函数的定义域是除了x=0之外的所有实数集,因为当x等于0时,由于分母为零,函数值无定义。

二、性质1. 变量关系:反比例函数的自变量和因变量之间是一种反比关系,即当自变量增大时,因变量会相应地减小,反之亦然。

这种反比关系反映了一种数量之间的对立关系,也是反比例函数的主要特点。

2. 对称性:反比例函数具有对称性,即当自变量x1与x2满足x1*x2=k时,函数值f(x1)与f(x2)相等。

这是因为在反比例函数中,当自变量的乘积等于常数k时,因变量的取值是相等的,体现了函数图像关于y轴的对称性。

3. 零点与极限:反比例函数的零点是x=0,因为当自变量为零时,函数值为无穷大或无穷小。

同时,在反比例函数中,当自变量趋近于正无穷大或负无穷小时,函数值趋近于零。

这一特性可以用极限的概念来描述,即lim(x→±∞) f(x) = 0。

4. 图像特征:反比例函数的图像是一条开口向下或开口向上的双曲线。

当k大于零时,图像开口向下,称为负比例函数;当k小于零时,图像开口向上,称为正比例函数。

反比例函数的图像在随着x的变化而越来越接近x轴和y轴,但永远不会触及它们。

三、应用反比例函数在实际生活和科学研究中有着广泛的应用。

以下是一些常见的应用场景:1. 电阻与电流关系:在电学中,欧姆定律描述了电流和电阻的关系,其形式可以表示为I = V/R,其中I是电流,V是电压,R是电阻。

根据欧姆定律,当电阻增大时,电流会减小,二者呈反比关系。

2. 物体的速度与时间关系:在物理学中,当一个物体以匀速运动时,其位移与时间的关系可以表示为s = vt或v = s/t,其中s是位移,v是速度,t是时间。

专题. 反比例函数(对称性问题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)

专题. 反比例函数(对称性问题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练(苏科版)

专题11.23反比例函数(对称性问题)(基础篇)(专项练习)反比例函数图象是中心对称图形,同时也是轴对称图形,其对称中心是坐标原点,其对称轴是y=x 和y=-x ,近些年,此知识点成了中考中的热点,更是压轴题的常考点,这些题型不仅利用双曲线的对称性,还综合了关于某直线对称和特殊四边形的对称性问题,为此,本专题精选部分有代表性的题型供师生选择使用。

一、单选题1.已知点()13A -,关于y 轴的对称点A '在反比例函数ky x=的图象上,则实数k 的值为()A .3B .13C .﹣3D .﹣132.如图,A ,B 是函数y =mx(m >0)的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则()A .S m =B .2S m =C .2m S m <<D .2S m>3.若点()32A --,关于x 轴的对称点A '恰好在反比例函数()0ky k x=≠的图象上,则k 的值为()A .6B .1-C .5-D .6-4.如图,1l 是反比例函数ky x=在第一象限内的图象,且经过点A (1,2).1l 关于x 轴对称的图象为2l ,那么2l 的函数解析式为()A .()40y x x =<B .()20y x x =<C .4(0)y x x =->D .2(0)y x x=->5.设A ,B 是反比例函数32y x=-的图象上关于原点对称的两点,AD 平行于y 轴交x 轴于D ,BC 平行于x 轴交y 轴于C ,设四边形ABCD 的面积S ,则()A .32s =B .34s =C .94s =D .6s =6.已知点()1,P a 在反比例函数3y x=的图象上,则点P 关于原点对称的点的坐标是()A .()1,3B .()1,3-C .()3,1-D .()1,3--7.如图,在平面直角坐标系中,点O 为坐标原点,点A (﹣3,0)和点B (0,2)都在坐标轴上,若反比例函数y =kx的图象经过矩形AOBC 的对称中心,则k 的值为()A .3B .﹣3C .1.5D .﹣1.58.如图,边长为8的正方形ABCD 的对称中心是坐标原点O ,AB //x 轴,BC //y 轴,反比例函数8y x =与8y x=-的图象均与正方形ABCD 的边相交,则图中阴影部分的面积之和是()A .8B .16C .32D .649.如图,在平面直角坐标系中,O 为ABCD Y 的对称中心,5AD =,//AD x 轴交y 轴于点E ,点A 的坐标点为()2,2-,反比例函数ky x=的图像经过点D .将ABCD Y 沿y 轴向上平移,使点C 的对应点C '落在反比例函数的图像上,则平移过程中线段AC 扫过的面积为()A .6B .8C .24D .2010.已知一个函数中,两个变量x 与y 的部分对应值如下表:x …﹣2﹣3…﹣2+3…2﹣1…2+1…y…﹣2+3…﹣2﹣3…2+1…2﹣1…A .x 轴B .y 轴C .直线x =1D .直线y =x二、填空题11.在平面直角坐标系中,若点()1,2P a +与点()1,1Q b -关于原点对称,则经过(),a b 的反比例函数解析式是______.12.如图,点D 是矩形AOBC 的对称中心,()0,6A ,()8,0B ,若反比例函数ky x=的图象经过点D ,交AC 于点M ,则点M 的坐标为______.13.已知点()112,P y 、点()22,3P x 是同一个反比例函数()22220my m x-=-≠图象上的两点.若点1P 与2P关于原点对称,则m 的值为______.14.如图,点A 、C 是反比例函数图象上的点,且关于原点对称.过点A 作AB x ⊥轴于点B ,若ABC 的面积为7,则反比例函数的表达式为__________.15.如图,点D 是矩形ABCO 的对称中心,点()6,0A ,()0,4C ,经过点D 的反比例函数的图象交AB 于点P ,则点P 的坐标为______.16.已知点A (−2,m )在一个反比例函数的图象上,点A ′与点A 关于y 轴对称.若点A ′在正比例函数12y x =的图象上,则这个反比例函数的表达式为_______.17.已知A 、B 两点分别在反比例函数2(0)m y m x=≠和611(6m y m x -=≠的图像上,若点A 与点B 关于x 轴对称,则m 的值为______.18.如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数()0ky x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y =x 的对称点C '的坐标为(1,n )(n ≠1),若△OAB 的面积为3,则k 的值为_______三、解答题19.如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图像与反比例函数4y x=-的图像相交于(),1A m ,()1,B n -两点.(1)求一次函数的解析式,并在网格中画出一次函数的图像;(2)结合图像,请直接写出不等式4kx b x-≤+的解集;(3)点C 与点B 关于原点对称,求ABC 的面积.20.如图,反比例函数()1110,0k y k x x=>>与正比例函数22y k x =交于点A ,点A 是点B 关于y 轴的对称点,点B 的坐标为()1,2-.(1)求1k 的值;(2)若将正比例函数22y k x =的图象向下平移2个单位长度得到函数33y k x b =+,求此函数的表达式.21.如图,在平面直角坐标系中,已知点(0,4)A ,(3,0)B -,(2,0)C ,点D 为点B 关于AC 所在直线的对称点,反比例函数(k 0,x 0)ky x=≠>的图像经过点D .(1)求证:四边形ABCD 为菱形;(2)求反比例函数的表达式.22.在平面直角坐标系中,设函数:11k y x=(1k 是常数,10k >,0x >)与函数,22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .若点B 的坐标为()1,2-.(1)求1k ,2k 的值;(2)当12y y ≤时,直接写出x 的取值范围.23.如图,反比例函数4y x=与一次函数()0y ax b a =+≠交于()()4,,,2A m B n -两点.(1)求一次函数的解析式,并在网格中画出一次函数的图象;(2)根据函数图象,直接写出关于x 的不等式4xax b ≤+的解集;(3)若点A 关于x 轴的对称点为点D ,求ABD △的面积.24.探究函数性质时,我们经历了列表、描点、连线画出函数图像,观察分析图像特征,概括函数性质的过程.结合已有的学习经验,请画出函数262y x =-+的图像并探究该函数的性质.x (4)-3-2-1-01234…y…13-a 1-2-b2-1-611-13-…(1)列表,写出表中a ,b 的值:=a __________,b =_________;描点、连线,在所给的平面直角坐标系中画出该函数的图像;(2)观察函数图像,判断下列关于函数性质的结论是否正确,请把正确结论的序号填在横线上.正确的结论是__________.①函数262y x =-+的图像关于y 轴对称;②当0x =时,函数262y x =-+有最小值,最小值是3-;③在自变量x 的取值范围内,函数y 的值随自变量x 的增大而增大;④函数262y x =-+与x 轴必有两个交点;(3)已知函数1533y x =--的图像如图所示,结合所画的函数图像,直接写出不等式2615233x x -<--+的解集.参考答案1.A【分析】根据对称的性质得到点()13A '--,,代入解析式即可求出k .解:∵点A '与点()13A -,关于y 轴的对称,∴点()13A '--,,∵点()13A '--,在反比例函数()0ky k x=≠的图象上,∴()()133k =-⨯-=,故选:A .【点拨】此题考查了关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标相等,利用待定系数法求反比例函数的解析式.2.B【分析】根据A 、B 两点在曲线上可设A 、B 两点的坐标,再根据三角形面积公式列出方程,即可得到答案.解:设点A (x ,y ),则点B (-x ,-y ),∴xy =m ,∴AC =2y ,BC =2x ,∴11222222ABC S AC BC y x xy m ==== ,故选:B .【点拨】本题考查反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数关系式得到所求三角形的两直角边的积.3.D【分析】根据对称性求出点A '的坐标,把点A '的坐标代入反比例函数()0ky k x=≠可求出k 的值.解:∵点A '与点()32A --,关于x 轴对称,∴点()32A '-,,又∵点()32A '-,在反比例函数()0ky k x=≠的图象上,∴()326k =-⨯=-,故选:D .【点拨】本题考查轴对称的坐标变化,反比例函数图象上点的坐标特征,求出点的坐标是解决问题的关键.4.D【分析】写出点A (1,2)关于x 轴对称的点的坐标(1,-2),求出经过这点的反比例函数的解析式.解:点A (1,2)关于x 轴对称的点的坐标为(1,-2),设2l 的解析式为'k y x=,则'21k -=,'2k =-,∴2y x=-(x >0).故选D .【点拨】本题考查了关于x 轴对称点的坐标和反比例函数,熟练掌握关于x 轴对称的点的坐标特征,用待定系数法求反比例函数解析式,是解决此类问题的关键.5.C【分析】根据反比例函数y =kx中k 的几何意义,图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系S =12|k|即可解答.解:设点A 的坐标为(x ,y ),点A 在反比例函数解析式上,∴点B 的坐标为(-x ,-y ),k =xy =(-x )(-y )=-32,∵AD 平行于y 轴,BC 平行于x 轴,∴OD =|x |,AD =|y |,OC =|y |,BC =|x |,∴S =△ADO +S △DOC +S △BCO =12|xy |+12|xy |+12|xy |=12×32+12×32+12×32=94.故选:C .【点拨】此题主要考查反比例函数的比例系数的意义;用到的知识点为:关于原点对称的点的横坐标互为相反数,纵坐标互为相反数;在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.6.D【分析】将点的坐标代入求解,根据坐标关于原点的对称规律直接求解即可.解:将()1,P a 代入3y x=,则331a ==,那么()1,3P ,则点()1,3P 关于原点对称的点的坐标()1,3--故选:D【点拨】此题考查反比例函数上的点的坐标,解题关键是明确关于原点对称的点的坐标规律.7.D【分析】先求出矩形的中心点,然后根据待定系数法即可求得.解:∵点A (-3,0)和点B (0,2)都在坐标轴上,∴矩形AOBC的中心点为(32-,1),∵反比例函数y=kx的图象经过矩形AOBC的对称中心,∴k=33122-⨯=-,故选:D.【点拨】本题考查了待定系数法求反比例函数的解析式,求得矩形的中心点是解题的关键.8.C【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,而正方形面积为64,由此可以求出阴影部分的面积.解:根据题意:观察图形可得,图中以B、D为顶点的小阴影部分,绕点O旋转90度,正好和以A、C为顶点的小空白部分重合,所以阴影的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,反比例函数8yx=与8yx=-的图象均与正方形ABCD的边相交,而边长为8的正方形面积为64,所以图中的阴影部分的面积是32.故选:C.【点拨】本题主要通过橄榄形面积的计算来考查反比例函数图象的应用,关键是要分析出其图象特点,再结合性质作答.9.D【分析】根据O为▱ABCD的对称中心,AD=5,AD∥x轴交y轴于点E,点A的坐标为(-2,2),可求点C、D的坐标,进而求出反比例函数的关系式,由平移可求出点'C的坐标,知道平移的距离,即平行四边形的底,再根据面积公式求出结果.解:∵AD=5,AD∥x轴交y轴于点E,点A的坐标为(-2,2),∴DE=5-2=3,OE=2,∴D(3,2),把(3,2)D代入反比例函数的关系式得,k=2×3=6,∵O为▱ABCD的对称中心,点A的坐标为(-2,2),∴点C的坐标为(2,-2),当x=2时,y=63 2=,∴点'C(2,3)∴C'C=CF+F'C=2+3=5,'CC上的高是是4,∴平行四边形AC 'C N 的面积为5420,⨯=∴平移过程中线段AC 扫过的面积为20.故选:D .【点拨】考查反比例函数的图象和性质,平行四边形的性质及面积,将点的坐标转化为线段的长是常用的方法,将AC 平移后扫过的面积就是平行四边形AC 'C N 的面积是关键.10.D【分析】根据题意可得y 与x 的函数关系式,进一步即可进行判断.解:由表格中的数据可得y 与x 的函数关系式为:1y x=,其图象是双曲线,是轴对称图形,对称轴是直线:y =x 和y =-x .故选:D.【点拨】本题考查了反比例函数的图象与性质以及函数解析式的确定,解题的关键是正确求得反比例函数的解析式、熟练掌握反比例函数的图象与性质.11.2y x =【分析】根据关于原点对称的坐标特点列式求出a 、b 的值,然后利用待定系数法求反比例函数解析式即可.解:∵点()1,2P a +与点()1,1Q b -关于原点对称,∴11a +=-,12b -=-,解得2a =-,1b =-,∴(),a b 即()2,1--,设()0k y k x=≠,∴()()212k =-⨯-=,∴反比例函数解析式是2y x=.故选:2y x =.【点拨】本题考查了关于原点对称的坐标特点和利用待定系数法求反比例函数解析式,熟练掌握关于原点对称的坐标特点和待定系数法是解题的关键.12.()2,6【分析】根据矩形的性质得到()4,3,6D OA =,OB AC ,将()4,3D 代入k y x =,求出反比例函数的解析式,再计算6y =时的x 值即可得到点M 的坐标.解:∵点D 是矩形AOBC 的对称中心,()0,6A ,()8,0B ,∴()4,3,6D OA =,OB AC ,将()4,3D 代入k y x =,得4312k =⨯=,∴12y x=,当6y =时,126x =,解得2x =,∴M 的坐标为()2,6,故答案为:()2,6.【点拨】此题考查了矩形的性质,待定系数法求反比例函数的解析式,正确理解矩形的性质得到点()4,3D 的坐标是解题的关键.13.±【分析】关于原点对称的两个点,其横坐标互为相反数,纵坐标也互为相反数,由此求解.解: 11(2,)P y 与22(,3)P x 关于原点对称,∴22x =-,13y =-,∴1(2,3)P -,2(2,3)P -,点1(2,3)P -在反比例函数22m y x-=的图象上,∴22(3)2m ⨯-=-,解得m =±故答案为:±.【点拨】本题考查了待定系数法求反比例函数解析式,坐标与中心对称的性质,熟练掌握相关性质是解题的关键.14.7y x=【分析】设反比例函数的表达式为k y x =,点A 的坐标为k a a ⎛⎫ ⎪⎝⎭,,即可表示出点B 和点C 的坐标,那么ABC 的面积就可以表示为122k a a⋅⋅,即可求解.解:设反比例函数的表达式为k y x =,点A 的坐标为k a a ⎛⎫ ⎪⎝⎭,,则点C 的坐标为k a a ⎛⎫-- ⎪⎝⎭,,点B 的坐标为()0a ,,∴ABC 的面积可以表示为122k a a⋅⋅,∵ABC 的面积为7,即1272k a a⋅⋅=,解得 7k =,∴反比例函数的表达式为7y x=,故答案为:7y x =.【点拨】本题考查反比例函数的图象与性质,掌握反比例函数的中心对称性,表示出点C 的坐标,是解决本题的关键.15.()6,1【分析】先求得D 点的坐标,然后根据待定系数法求得反比例函数的解析式,把6x =代入解析式即可求得点P 的坐标.解: 点D 是矩形ABCO 的对称中心,∴点D 是矩形OABC 的对角线AC 的中点,又()6,0A ,()0,4C ,∴点D 的坐标为()3,2.反比例函数k y x=的图象经过点D ,326k ∴=⨯=,6y x∴=,把6x =代入得,616y ==,∴点P 的坐标为()6,1.故答案为:()6,1.【点拨】本题考查了反比例函数图象上点的坐标特征,矩形的性质,待定系数法求反比例函数的解析式,求得点D 的坐标是解题的关键.16.y =2x-【分析】根据点A 与点A ′关于y 轴对称,得到A ′(2,m ),由点A ′在正比例函数12y x =的图象上,求得m 的值,再利用待定系数法求解即可.解:∵点A 与点A ′关于y 轴对称,且A (−2,m ),∴A ′(2,m ),∵点A ′在正比例函数12y x =的图象上,∴m =12×2,解得:m =1,∴A (−2,1),设这个反比例函数的表达式为y =k x,∵A (−2,1)在这个反比例函数的图象上,∴k =-2×1=-2,∴这个反比例函数的表达式为y =2x-,故答案为:y =2x-.【点拨】本题考查反比例函数图象上点的坐标特征、关于x 轴、y 轴对称的点的坐标特征,解答本题的关键是明确题意,求出m 的值.17.18##0.125【分析】先设A 、B 的坐标,然后把A 、B 的坐标代入函数关系式,列出方程组,解方程组即可.解:根据题意设A (a ,b ),则B (a ,-b ),则有:261m b a m b a ⎧=⎪⎪⎨-⎪-=⎪⎩,所以261m m a+-=0,即8m -1=0,解得18m =.故答案为18.【点拨】本题考查了反比例函数图象上点的坐标特征,关于x 轴,y 轴对称的点的坐标.根据题意得261m m a+-=0,即8m -1=0是解题的关键.18.3【分析】连接OC ,由C 是线段AB 的中点,可得1322AOC OAB S S == ,然后根据比例系数k 的几何意义即可求得答案.解:如图,连接OC,∵C 是线段AB 的中点,∴1322AOC OAB S S == ,∵1322AOC k S ==△,0k >,∴3k =.故答案为:3.【点拨】本题主要反比例函数的比例系数k 的几何意义、与中线有关的三角形的面积关系,熟记反比例函数的比例系数k 的几何意义是解题的关键.19.(1)5y x =+,一次函数的图像见分析;(2)41x --≤≤或0x >;(3)15【分析】(1)将点(),1A m ,点()1,B n -代入4y x =-中得4141m n ⎧-=⎪⎪⎨⎪-=⎪-⎩解得,44m n =-⎧⎨=⎩,则点A 的坐标为:(4,1)-,点B 的坐标为(1,4)-,将点(4,1)A -和(1,4)B -代入()0y kx b k =+≠中得414k b k b -+=⎧⎨-+=⎩,解得,15k b =⎧⎨=⎩,即可得一次函数解析式为:5y x =+;(2)观察函数图像,即可得不等式4kx b x-≤+的解集是41x --≤≤或0x >;(3)根据点C 与点B 关于原点对称得点C 的坐标为(1,4)-,根据网格和勾股定理得AB ==,AC ==BC ==222AB AC BC +=,即ABC 是直角三角形,即可得.(1)解:将点(),1A m ,点()1,B n -代入4y x=-中,4141m n ⎧-=⎪⎪⎨⎪-=⎪-⎩解得,44m n =-⎧⎨=⎩,则点A 的坐标为:(4,1)-,点B 的坐标为(1,4)-,将点(4,1)A -和(1,4)B -代入()0y kx b k =+≠中,414k b k b -+=⎧⎨-+=⎩,解得,15k b =⎧⎨=⎩,即一次函数解析式为:5y x =+,函数图像如下:(2)解:观察函数图像,不等式4kx b x-≤+的解集是41x --≤≤或0x >;(3)解:∵点C 与点B 关于原点对称,∴点C 的坐标为(1,4)-,三角形ABC 如图所示,∵223318AB =+=,225550AC =+=222868BC =+=∴222AB AC BC +=,即ABC 是直角三角形,∴1111850325215222ABC S AB AC =⨯⨯==⨯=△.【点拨】本题考查了反比例函数,一次函数,函数与不等式,三角形的面积,勾股定理,关于原点对称,解题的关键是掌握反比例函数,一次函数,函数与不等式,勾股定理.20.(1)12k =;(2)322y x =-.【分析】(1)先求出()1,2A ,再将()1,2A 代入11k y x=,得1122k =⨯=;(2)求出正比例函数解析式为22y x =,再利用平移的规律解答即可.(1)解:∵点A 和点B 关于y 轴对称,()1,2B -,∴()1,2A ,把()1,2A 代入11k y x=,得1122k =⨯=.(2)解:把()1,2A 代入22y k x =,得22k =,∴直线的表达式为22y x =,∵33y k x b =+是由22y x =向下平移2个单位长度得到,∴322y x =-.【点拨】本题考查反比例函数和一次函数的综合,点关于y 轴对称的性质,一次函数的平移,解题的关键是掌握待定系数法求解析式,点关于y 轴对称的性质以及一次函数的平移.21.(1)证明见分析;(2)20y x=【分析】(1)根据(0,4)A ,(3,0)B -,(2,0)C 即可得5AB =,5BC =,根据D 点为B 点关于AC 所在直线的对称点得5AD AB ==,5CD CB ==,可得AB BC CD DA ===,即可得;(2)根据四边形ABCD 为菱形,得AD BC ∥,根据5AD =,(0,4)A 得(5,4)D ,把(5,4)D 代入k y x=得5420k =⨯=,即可得.解:(1)证明:∵(0,4)A ,(3,0)B -,(2,0)C ,∴5AB =,5BC =,∵D 点为B 点关于AC 所在直线的对称点,∴5AD AB ==,5CD CB ==,∴AB BC CD DA ===,∴四边形ABCD 为菱形;(2)解:∵四边形ABCD 为菱形,∴AD BC ∥,又∵5AD =,(0,4)A ,∴(5,4)D ,把(5,4)D 代入k y x=得5420k =⨯=,∴反比例函数的表达式为20y x=.【点拨】本题考查了勾股定理,菱形的判定与性质,反比例函数的性质,解题的关键是掌握这些知识点.22.(1)1k 的值为2,2k 的值为2;(2)1x ≥【分析】(1)求得A 的坐标,分别代入11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠),即可求得1k ,2k 的值;(2)根据图象即可求得.解:(1)∵点()1,2B -,∴点()1,2A ,把()1,2A 代入11k y x=得12k =,把()1,2A 代入22y k x =得22k =,∴1k 的值为2,2k 的值为2(2)由图象可知:1x ≥【点拨】本题考查一次函数与反比例函数的关系式,解题的关键是根据图象,求出点的坐标,进而求出关系式.23.(1)112y x =-;图象见分析;(2)20x -≤<或4x ≥;(3)6【分析】(1)利用待定系数法求出一次函数解析式,再利用两点法画出函数图象,即可求解;(2)由图象可知,关于x 的不等式4xax b ≤+的解集为20x -≤<或4x ≥,即可;(3)根据点A 关于x 轴的对称点为点D ,可得2AD =,再由三角形的面积公式,即可求解.(1)解:∵点()()4,,,2A m B n -在反比例函数4y x=的图象上,∴414m ==,42n -=∴2n =-,∴()()4,1,2,2A B --.把A 、B 的坐标代入()0y ax b a =+≠得∶4122a b a b +=⎧⎨-+=-⎩,解得121a b ⎧=⎪⎨⎪=-⎩,∴一次函数表达式为112y x =-,在网格中画出一次函数的图象如图:(2)解:由图象可知,关于x 的不等式4xax b ≤+的解集为20x -≤<或4x ≥;(3)解:∵()4,1A ,∴()4,1D -,∴2AD =,∴()124262ABD S ⨯=⨯+= .【点拨】本题是反比例函数与一次函数的交点问题,考查反比例函数图象上点的坐标特征以及待定系数法求函数解析式,三角形的面积,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.24.(1)611-;3-;图见分析;(2)①②;(3)<4x -或2<<1x -【分析】(1)已知解析式,代入x 的值,即可算出对应的y 值,即可得出答案;(2)结合图像即可分析函数的对称性、增减性、最值、交点问题;(3)结合图像分析不等式与函数的关系,即可得出结论.(1)函数262y x =-+,令3x =-,可得611y =-,故611a =-;令0x =,可得=3y -,故3b =-,故答案为:611-;3-.描点、连线,在画出该函数的图像如下:(2)由函数的图像可得:①函数262y x =-+的图像关于y 轴对称,①正确;②当0x =时,函数262y x =-+有最小值,最小值是3-,②正确;③自变量0x >时,函数y 的值随自变量x 的增大而增大;自变量0x <时,函数y 的值随自变量x 的增大而减小,③错误;④由于2602y x =-+<恒成立,故函数的图像与x 轴不可能有交点,④错误,故答案为:①②.(3)不等式2615233x y x --+<-表现在图像上,即函数262y x =-+的图像比函数1533y x =--的图像低,因此观察图像可得到2615233x y x --+<-的解集为:<4x -或2<<1x -.【点拨】本题考查了新函数的研究方法,在学习一次函数,反比例函数以及二次函数时的通用方法是本题解题的关键.。

反比例函数图象的特征及性质

反比例函数图象的特征及性质
上。
性质
当x增大时,y值减小,但xy的乘积保持不变 ,等于比例系数。
对反比例函数应用的展望
01
拓展应用领域
反比例函数作为一种基本的函 数类型,在物理、化学、工程 等领域都有广泛的应用。未来 可以进一步探索其在更多领域 的应用可能性。
02
深化理论研究
虽然反比例函数的基本性质已 经比较清楚,但是关于其更深 层次的理论研究仍然有待加强 。例如,可以进一步探讨反比 例函数与其他函数类型的复合 、变换等问题。
感谢您的观看
THANKS
性质的比较
反比例函数性质
反比例函数在其定义域内是连续的,且当x趋近于0时,y趋近于无穷大或无穷小。此外,反比例函数在其定义域 内具有单调性,即当k>0时,在每个象限内随着x的增大,y值逐渐减小;当k<0时,则相反。
一次函数性质
一次函数在其定义域内是连续的,且当x趋近于无穷大或无穷小时,y也趋近于无穷大或无穷小。此外,一次函 数的斜率决定了函数的增减性,即当斜率大于0时,函数为增函数;当斜率小于0时,函数为减函数。
反比例函数的一般形式
反比例函数的一般形式为 y = k/x(k ≠ 0),其中 k 是比例系数。
当 k > 0 时,反比例函数的图象位于 第一象限和第三象限;当 k < 0 时, 反比例函数的图象位于第二象限和第 四象限。
比例系数 k 决定了反比例函数的图象 特征和性质。
02
反比例函数的图象
图象的形状
反比例函数的图象是由两支分别位于第一、三象限和第二、四象限的双曲线组成。
当$k > 0$时,两支曲线分别位于第一、三象限内;当$k < 0$时,两支曲线分别位 于第二、四象限内。
在每个象限内,随着$x$的增大,$y$值逐渐减小,曲线从坐标轴附近向无限远处延 伸。

知识点196--反比例函数图象的对称性(填空题)

知识点196--反比例函数图象的对称性(填空题)

一、填空题(共50小题)1、(2011•西宁)反比例函数的图象的对称轴有 2 条.考点:反比例函数图象的对称性。

分析:任意一个反比例函数的图象都是轴对称图形,且对称轴有且只有两条.解答:解:沿直线y=x或y=﹣x折叠,直线两旁的部分都能够完全重合,所以对称轴有2条.故答案为:2.点评:此题考查了反比例函数图象的对称性.沿某条直线折叠,直线两旁的部分能够完全重合,这个图形是轴对称图形,关键是找到相应的对称轴.2、(2011•乌鲁木齐)正比例函数y=kx的图象反比例函数y=的图象有一个交点的坐标是(﹣1,﹣2),则另一个交点的坐标是 (1,2) .考点:反比例函数图象的对称性。

专题:探究型。

分析:根据正比例函数与反比例函数的交点关于原点对称进行解答即可.解答:解:∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称,∵一个交点的坐标是(﹣1,﹣2),∴另一个交点的坐标是(1,2).故答案为:(1,2).点评:本题考查的是比例函数与反比例函数的交点问题,熟知正比例函数与反比例函数的交点关于原点对称的知识是解答此题的关键.3、(2011•黔南州)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于 π (结果保留π).考点:反比例函数图象的对称性。

专题:计算题。

分析:根据两函数的对称性和圆的对称性,将阴影部分面积转化为一个圆的面积来解.解答:解:由题意得,图中阴影部分的面积即为一个圆的面积.⊙A和x轴y轴相切,因而A到两轴的距离相等,即横纵坐标相等,设A的坐标是(a,a),点A在函数y=的图象上,因而a=1.故阴影部分的面积等于π.故答案为:π.点评:能够观察到阴影部分的面积是圆面积,是解决本题的关键.4、(2010•泰安)如图,一次函数y=ax(a为常数)与反比例函数(k为常数)的图象相交于A、B两点,若A点的坐标为(﹣2,3),则B点的坐标为 (2,﹣3) .考点:反比例函数图象的对称性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学实验:反比例函数图像的对称性
教学背景:
《反比例函数》是苏科版数学八年级下学期的重要内容之一,对于反比例函数图像对称性的学习,学生往往局限于初步的感性认识,对称性结论的了解,缺乏推理证明和深入的思考,一方面是教材中没有对应的教学内容,可以不花过多精力学习;另一方面证明有一定的难度,需要一定的教学时间,所以教学时往往是一带而过。

这就导致学生对反比例函数图像的对称性只能停留在了解的层面上,遇到问题很难与对称性相结合,快速简便的解决问题。

数学实验的意义:
数学实验是计算机技术和数学、软件引入教学后出现的新事物。

数学实验的目的是提高学生学习数学的积极性,提高学生对数学的应用意识并培养学生用所
学的数学知识和计算机技术去认识问题和解决实际问题的能力。

借助于计算机的技术和数学软件包的应用,为数学的思想与方法注入了更多、更广泛的内容,使学生摆脱了繁重的乏味的数学演算和数值计算,促进了数学同其他学科之间的结合,从而使学生有时间去做更多的创造性工作。

教学目标:
借助于透明纸片和几何画板软件,验证反比例函数图像的对称性,发展几何直观。

教学重点难点:
借助于几何画板软件和平面直角坐标系内对称点的坐标的特点证明反比例
函数图像的对称性。

教学用具:
透明纸片、大头针(或图钉)、剪刀、几何画板软件的多媒体教学一体机、
苏科版八年级数学《实验手册》.
教学过程:
1.提出问题:反比例函数图像具有对称性吗?
2.数学实验:苏科版八年级数学《实验手册》P39
(1)验证反比例函数图像的中心对称图形;
(2)验证反比例函数图像是轴对称图形.
3.几何画板验证中心对称性:
4.推理证明:
(1)为什么反比例函数的图像是中心对称图形?
(2)为什么反比例函数的图像是轴对称图形?
5.结论:
反比例函数既是中心对称图形,又是中心对称图形.
6.实验感受:
遇到问题时,要敢于提出问题,经历大胆猜想,操作验证,理论证明等探
索过程,最终解决问题.
7.典型应用
例题1:求点的坐标
如图,直线与双曲线的一个交点A是(3,2),则它们的另一个交点B的坐标是.
例题2:求面积
如图,正比例函数和反比例函数的图像相交于A、B两点.分别以A、B为圆心紧挨着x轴画圆,点A的坐标为(2,1),求图中两个阴影部分面积的和是.
例题3:代数式求值
如图,直线y=kx(k>0)与双曲线y=(2/x)交于A、B两点,若A、B两点的坐标分别为A(x[1],y[1]),B(x[2],y[2]),则x[1]y[2]+x[2]y[1]的值.
【点评:反比例函数图像中心对称性的应用】
延伸拓展:
如图,已知直线y=x+4分别与x轴、y轴相交于点A、B,与双曲线y=(k/x)(k<0)交于C、D两点,且AB=2CD,求△COD的面积.
【辅助线】
【点评:反比例函数图像轴对称性的应用】。

相关文档
最新文档