九年级下册数学28.2.2利用仰俯角解直角三角形教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.2.2 应用举例
第2课时 利用仰俯角解直角三角形
1.使学生掌握仰角、俯角的意义,并学会正确地判断;(重点)
2.初步掌握将实际问题转化为解直角三角形问题的能力.(难点)
一、情境导入
在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.今天我们就学习和仰角、俯角有关的应用性问题.
二、合作探究
探究点:利用仰(俯)角解决实际问题
【类型一】 利用仰角求高度
星期天,身高均为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一
座塔的高度.如图,小红站在A 处测得她看塔顶C 的仰角α为45°,小涛站在B 处测得塔顶C 的仰角β为30°,他们又测出A 、B 两点的距离为41.5m ,假设他们的眼睛离头顶都是10cm ,求塔高(结果保留根号).
解析:设塔高为x m ,利用锐角三角函数关系得出PM 的长,再利用CP PN
=tan30°,求出x 的值即可.
解:设塔底面中心为O ,塔高x m ,MN ∥AB 与塔中轴线相交于点P ,得到△CPM 、△CPN
是直角三角形,则x -(1.6-0.1)PM
=tan45°,∵tan45°=1,∴PM =CP =x -1.5.在Rt △CPN
中,CP PN =tan30°,即x -1.5x -1.5+41.5=33
,解得x =833+894. 答:塔高为833+894
m. 方法总结:解决此类问题要了解角与角之间的关系,找到与已知和未知相关联的直角三角形.当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
变式训练:见《课堂内外》本课时练习“课堂达标训练” 第7题
【类型二】 利用俯角求高度
如图,在两建筑物之间有一旗杆EG ,高15米,从A 点经过旗杆顶部E 点恰好看
到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°.若旗杆底部G 点为BC 的中点,求矮建筑物的高CD .
解析:根据点G 是BC 的中点,可判断EG 是△ABC 的中位线,求出AB .在Rt △ABC 和Rt △AFD 中,利用特殊角的三角函数值分别求出BC 、DF ,继而可求出CD 的长度.
解:过点D 作DF ⊥AF 于点F ,∵点G 是BC 的中点,EG ∥AB ,∴EG 是△ABC 的中位线,∴AB =2EG =30m.在Rt △ABC 中,∵∠CAB =30°,∴BC =AB tan ∠BAC =30×33=103m.在Rt △AFD 中,∵AF =BC =103m ,∴FD =AF ·tan β=103×
33
=10m ,∴CD =AB -FD =30-10=20m.
答:矮建筑物的高为20m.
方法总结:本题考查了利用俯角求高度,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
变式训练:见《课堂内外》本课时练习“课堂达标训练”第6题
【类型三】 利用俯角求不可到达的两点之间的距离
如图,为了测量河的宽度AB ,测量人员在高21m 的建筑物CD 的顶端D 处测得
河岸B 处的俯角为45°,测得河对岸A 处的俯角为30°(A 、B 、C 在同一条直线上),则河的宽度AB 约是多少m(精确到0.1m ,参考数据:2≈1.41,3≈1.73)?
解析:在Rt △ACD 中,根据已知条件求出AC 的值,再在Rt △BCD 中,根据∠EDB =45°,求出BC =CD =21m ,最后根据AB =AC -BC ,代值计算即可.
解:∵在Rt △ACD 中,CD =21m ,∠DAC =30°,∴AC =CD tan30°=213
3
=213m.∵在Rt △BCD 中,∠EDB =45°,∴∠DBC =45°,∴BC =CD =21m ,∴AB =AC -BC =213-21≈15.3(m).则河的宽度AB 约是15.3m.
方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,把实际问题化归为直角三角形中边角关系问题加以解决.
变式训练:见《课堂内外》本课时练习“课后巩固提升” 第3题
【类型四】 仰角和俯角的综合
某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来
到与建筑物AB 在同一平地且相距12m 的建筑物CD 上的C 处观察,测得此建筑物顶部A 的仰角为30°、底部B 的俯角为45°.求建筑物AB 的高(精确到1m ,可供选用的数据:2≈1.4,3≈1.7).
解析:过点C 作AB 的垂线CE ,垂足为E ,根据题意可得出四边形CDBE 是正方形,再由BD =12m 可知BE =CE =12m ,由AE =CE ·tan30°得出AE 的长,进而可得出结论.
解:过点C 作AB 的垂线,垂足为E ,∵CD ⊥BD ,AB ⊥BD ,∠ECB =45°,∴四边形CDBE 是正方形.∵BD =12m ,∴BE =CE =12m ,∴AE =CE ·tan30°=12×
33
=43(m),∴AB =43+12≈19(m).
答:建筑物AB 的高为19m.
方法总结:本题考查的是解直角三角形的应用中仰角、俯角问题,根据题意作出辅助线,
构造出直角三角形是解答此题的关键.
变式训练:见《课堂内外》本课时练习“课后巩固提升”第7题
三、板书设计
1.仰角和俯角的概念;
2.利用仰角和俯角求高度;
3.利用仰角和俯角求不可到达两点之间的距离;
4.仰角和俯角的综合.
备课时尽可能站在学生的角度上思考问题,设计好教学过程中的每一个细节.上课前多揣摩,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角.使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步.只有这样,才能真正提高课堂教学效率.