动点问题中的最值二

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题中的最值二

一、填空题

1、(2016•内江)如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是________.

2、(2016•舟山)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运

动,如果PQ= ,那么当点P运动一周时,点Q运动的总路程为________.

3、(2016•沈阳)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________

4、(2016•龙东)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为________.

5、(2016•日照)如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是________.

二、选择题

6、(2016•龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A、1 B、2 C、3 D、4

(6)(7)(10)

7、(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A、5个B、4个C、3个D、2个

8、(2016•荆门)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()

A、B、C、D、

9、(2016•鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()

A、B、C、D、

10、(2016•西宁)如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s 的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A、18cm2 B、12cm2 C、9cm2 D、3cm2

11、(2016•西宁)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()

A、B、C、D、

12、(2016•济南)如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ 的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()

A、B、C、D、

动点问题中的最值二答案

1、10 解:如图,点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),

连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,

△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″= =10.

分析:点C关于OA的对称点C′(﹣1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.本题考查轴对称﹣最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,属于中考常考题型.

2、4 解:在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO= = ,①当点P从O→B时,

如图1、图2所示,点Q运动的路程为,

②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°

∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°= ∴AQ= =2 ∴OQ=2﹣1=1

则点Q运动的路程为QO=1,

③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,

④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4

分析:本题主要是应用三角函数定义来解直角三角形,此题的解题关键是理解题意,正确画出图形;线段的两个端点看成是两个动点,将线段移动问题转化为点移动问题.

3、或

解:如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,

∵DE是△ABC中位线,∴DE∥BC,DE= BC=10,

∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,

DE=FN′=10,

∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,

∴= ,∴= ,∴DO′= .

当∠MON=90°时,∵△DOE∽△EFM,∴= ,∵EM= =13,∴DO= ,

分析:分两种情形讨论即可①∠MN′O′=90°,根据= 计算即可②∠MON=90°,利用△DOE∽△EFM,

相关文档
最新文档