八年级数学下册课时优化

合集下载

八年级下册数学优化设计答案

八年级下册数学优化设计答案

八年级下册数学优化设计答案一、优化问题一题目描述某小区的篮球场上有一个矩形的标准篮球场地,场地的长度为L米,宽度为W米。

为了保障场地的安全和美观,规定标准篮球场地的长度L必须大于等于5米,宽度W必须大于等于3米。

现在,小区的篮球场地需要重新设计,你作为设计师负责设计场地的尺寸,使得场地的面积最大。

请你利用数学方法,计算出最大的篮球场地面积,并给出相应的设计。

问题分析这是一个优化问题,我们需要确定篮球场地的尺寸,使得场地的面积最大。

设篮球场地的长度为L米,宽度为W米,则场地的面积为S=L×W。

由题目要求可知,L≥5,W≥3。

因此,对于L和W,存在以下限制条件:• 5 ≤ L ≤ ∞• 3 ≤ W ≤ ∞我们需要先解决限制条件的问题,然后再进行优化。

问题解决1. 确定限制条件针对L的限制条件:5 ≤ L ≤ ∞我们可以发现,L的取值范围是从5开始一直到正无穷大。

这意味着L可以取任意大的正数。

针对W的限制条件:3 ≤ W ≤ ∞同样地,W的取值范围也是从3开始一直到正无穷大,W可以取任意大的正数。

综上,场地的尺寸可以取无限大,我们需要利用数学方法计算出篮球场地面积的最大值。

2. 计算最大面积由题目要求,场地的面积S=L×W,我们要最大化S的值。

我们可以使用微积分的知识来求解面积的最大值。

设场地的长度为L,宽度为W,面积为S。

根据题设,我们有以下关系:•约束条件:5 ≤ L ≤ ∞,3 ≤ W ≤ ∞•面积公式:S = L × W我们需要求解S的最大值。

由于S是L和W的乘积,我们可以考虑对L和W分别求导,并解方程组来求解。

首先,我们对L求导:dS/dL = d(L × W)/dL = W然后,我们对W求导:dS/dW = d(L × W)/dW = L接着,我们将上述两个方程组合起来求解:W = L (由 dS/dL = W 得到) L = W (由 dS/dW = L 得到)将L = W 代入 S = L × W 中,可以得到:S = W^2由此可见,当L = W 时,场地的面积S达到最大值。

2022年苏科版八年级数学下册课时同步练习(全册)

2022年苏科版八年级数学下册课时同步练习(全册)

2022年苏科版八年级数学下册课时同步练习(全册)第七单元第1课时普查与抽样调查一、选择题1.下列调查中,最适合采用普查方式的是( )A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查2.下列调查中,适合用普查方式的是( )A.了解一批炮弹的杀伤半径B.了解湘潭市每天的流动人口数C.了解一本100页书稿的错别字个数D.了解石家庄市居民的日平均用水量3.以下问题,不适合用普查的是( )A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解某班学生的课外活动时间D.了解一批灯泡的使用寿命4.下列调查适合用抽样调查的是( )A.审查书稿有哪些科学性错误B.了解一个打字训练班学员的训练成绩是否都达到了预定训练目标C.要考察一个班级的学生对建立班级生物角的看法D.要考察人们对保护海洋的意识5.下列情况,适合用抽样调查的是( )A.了解某校飞行学员视力的达标率B.了解某校考生的中考录取率C.了解某班40名同学的身高情况D.了解一批种子的成活率6.对于范围较大的调查对象可以采用抽样调查的方法,下列适合用抽样调查的是( ) A.调查本班学生的近视率B.调查某校学生的男女比例C.了解全国七年级学生的平均身高D.人口普查7.下列调查中,适合用抽样调查方式的是( )A.了解全班学生某次考试的情况B.调查某一品牌5万袋包装鲜奶是否符合卫生标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班学生100 m短跑的成绩8.要了解自来水厂的水中所含矿物质情况,所采用调查方法是( )A.普查B.抽样调查C.普查或抽样调查D.以上答案都不对9.下列采用的调查方式中,不合适的是( )A.为了了解全国中学生的身高状况,采用抽样调查的方式B.对载人航天器“神舟”六号零部件的检查,采用普查的方式C.医生要了解某病人体内含有病毒的情况,需抽血进行化验,采用普查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式二、填空题10.为了检测某型号导线的抗拉强度,现随机抽取几段进行检测,在这次检测中,采用的调查方式是________.11.为了了解一批白炽灯的使用寿命,只能采用抽样调查方式进行,这是由于______________________.12.为了获得较为准确的调查结果,抽样调查时要注意所选取的样本要具有__________________.13.在下列问题中为了得到数据是采用普查还是抽样调查?(1)为了买校服,了解每个学生衣服的尺寸;(2)某养鱼专业户欲了解鱼塘中鱼的平均质量;(3)商检人员在某超市检查出售的饮料的合格率;(4)某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查.第七单元第2课时统计图、统计表的选用一、选择题1.扇形统计图中,所有扇形表示的百分比之和为 ( )A.大于1B.小于1C.等于1D.不确定2.如图是某班学生最喜欢的球类活动情况的统计图,则下列说法不正确的是( )A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为53.某校学生来自甲、乙、丙三个社区,其人数比例为3∶4∶5,如图所示的扇形统计图表示上述分布情况,那么表示乙社区的扇形的圆心角度数为 ( )A.100°B.110°C.120°D.135°4.某校图书管理员整理阅览室的书籍时,将其中甲、乙、丙三类书籍的数量信息制成如图所示的不完整的统计图,已知甲类书有45本,则丙类书有______本.5.某校学生参加体育兴趣小组情况的统计图如图所示.若参加人数最少的小组有25人,则参加人数最多的小组有 ( )A.25人B.35人C.40人D.100人6.7.从如图所示的两个统计图中,可看出女生人数较多的是()A.七年级(1)班B.七年级(2)班C.两班一样多D.不能确定二、解答题1.近年来,随着创建“生态文明城市”活动的开展,某市的社会知名度越来越高,吸引了很多外地游客.某旅行社对5月份本社接待外地游客来该市各景点旅游的人数做了一次抽样调查,并将调查结果绘制成如图所示的不完整的统计表和统计图.(1)此次共调查_____人,并补全条形统计图;(2)根据上表提供的数据制作扇形统计图.2.七年级(1)班的两名学生对本班的一次数学成绩(分数取整数,满分为100分)进行了初步统计,看到80分以上(含80分)的有17人,但没有满分,也没有低于30分的学生.为更清楚地了解本班的数学成绩,他们分别用频数直方图和扇形统计图进行了统计分析,如图1和图2所示.请根据图中提供的信息解答下列问题.(1)该班共有多少学生参加了这次数学考试?(2)补全频数直方图中空缺的两处,并将扇形统计图中一处未填的百分比填上.(3)数学成绩在85~90分的学生有多少人?第七单元第3课时频数和频率一、选择题1.在画频数直方图时,一组数据的最小值为149,最大值为172.若确定组距为3,则分成的组数是 ( )A.8B.7C.6D.52.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是 ( )A.2~4 hB.4~6 hC.6~8 hD.8~10 h3.某班有64名学生,在一次外语测试中,分数只取整数,统计其成绩,并绘制出如图所示的频数直方图,从左到右小长方形的高度之比是1∶3∶6∶4∶2,则分数在70.5到80.5之间的学生有_____名.4.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~70 71~80 81~90 91~100人数(人) 1 19 22 18A.35% B.30% C.20% D.10%5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25二、填空题6.已知某组数据的频数为25,样本容量为100,则这组数据的频率是.7.某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为.8.一组数据共分5组,第一、二、三组共有250个频数,第三、四、五组共有230个频数,若第三组的频率为0.25,则这组数据的总频数为个.9.一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有人.10.将一批数据分成5组,列出频率分布表,其中第一组与第五组的频率之和是0.27,第二与第四组的频率之和是0.54,那么第三组的频率是.11.一个样本最大值为143,最小值为50,取组距为10,则可以分成组.三、解答题12.中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(第17题图)(1)此次抽样调查中,共调查了名中学生家长;(2)先求出C类型的人数,然后将图1中的折线图补充完整;(3)根据抽样调查结果,请你估计该市区6000名中学生家长中有多少名家长持反对态度?13.某校学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.第七单元第4课时频数分布表与频数分布直方图一.选择题1.一个容量为40的样本最大值为35,最小值为12,取组距为4,则可以分为()A.4组B.5组C.6组D.7组2.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.33.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是()A.0.2 B.0.17 C.0.33 D.0.145.某校随机抽查了八年级的30名女生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界,不含后一个边界),则次数不低于42个的有()A.6人B.8个C.14个D.23个6.在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为()A.60,1 B.60,60 C.1,60 D.1,17.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6二.填空题8.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是.9.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.10.在1000个数据中,用适当的方法抽取50个作为样本进行统计.在频数分布表中,54.5~57.5这一组的频率为0.12,那么这1000个数据中落在54.5~57.5之间的数据约有个.三.解答题11.如图所示,某校七年级有学生400人,现抽取部分学生做引体向上的测试,成绩进行整理后分成五组,并画出频数分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:(1)第五小组频率是多少?(2)参加本次测试的学生总数是多少?(3)如果做20次以上为及格(含20次),估计全校七年级有多少名学生合格?12.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 a1.39~1.49 10(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.第八单元第1课时确定事件与随机事件一、选择题1. 下列说法正确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2. 一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球3.下列说法正确的是( )A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4. 在不透明的袋中装有除颜色外,其余均相同的红球和黑球各一个,从中摸出一个球恰为红球的概率与一枚均匀硬币抛起后落地时正面朝上的概率的大小关系是( )A.摸出红球的概率大于硬币正面朝上的概率B.摸出红球的概率小于硬币正面朝上的概率C.相等D.不能确定5.下列说法正确的是( )A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B.“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面.6. 下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在 6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在 6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A.1个 B.2个 C.3个 D.4个7. 掷一枚均匀的骰子,2点向上的概率是_______,7点向上的概率是_______.8. 下面4个说法中,正确的个数为_______.(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大.(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红没有把握,所以小张说:“从袋中取出一只红球的概率是50%”.(3)小李说“这次考试我得90分以上的概率是200%”.(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小.9. 如图是小明和小颖共同设计的自由转动的十等分转盘,上面写有10个有理数.(1)求转得正数的概率.(2)求转得偶数的概率.(3)求转得绝对值小于6的数的概率.10. 一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现在再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为,求n的值.第八单元第2课时可能性大小一、单选题1.气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是( )A. 本市明天将有30%的地区水B. 本市明天将有30%的时间降水C. 本市明天有可能降水D. 本市明天肯定不降水2.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是()A. 点数为3的倍数B. 点数为奇数C. 点数不小于4D. 点数不大于43.一个布袋里装有3个红球,4个黑球,5个白球,它们除颜色外都相同,从中任意摸出一个球,则下列事件中,发生可能性最大的是( )A. 摸出的是红球B. 摸出的是黑球C. 摸出的是绿球D. 摸出的是白球4.一个不透明的盒子中装有2个红球、3个白球和2个黄球,它们除颜色外都相同.若从中任意摸出一个球,摸到哪种颜色的球的可能性最大()A. 红色B. 白色C. 黄色D. 红色和黄色5.袋子中有黑球3个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A. 2个B. 不足3个C. 3个D. 4个或4个以上6.一个质地均匀的小正方体的六个面上分别标有数字1,2,3,4,5,6.如果任意抛掷小正方体两次,那么下列说法正确的是( ).A. 得到的数字和必然是4B. 得到的数字和可能是3C. 得到的数字和不可能是2D. 得到的数字和有可能是17.下列说法中,完全正确的是()A. 打开电视机,正在转播足球比赛B. 抛掷一枚均匀的硬币,正面一定朝上C. 三条任意长的线段都可以组成一个三角形D. 从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大8.投掷一枚普通的正方体骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2,这些事件发生的可能性由大到小排列正确的是( ).A. ①②③④B. ④③②①C. ③④②①D.②③①④9.下列有四种说法:①了解某一天出入扬州市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件。

数学八年级下册课时提优计划作业本答案

数学八年级下册课时提优计划作业本答案

数学八年级下册课时提优计划作业本答案全文共5篇示例,供读者参考数学八年级下册课时提优计划作业本答案篇1一、指导思想坚持党的十七大教育方针,结合《初中数学新课程标准》,根据学生实际情况,积极开展课堂教学改革,提高课堂教学效率。

一方面巩固学生的基础知识,另一方面提高学生运用知识的能力。

特别是训练学生的探究思维能力,和发散式思维模式,提高学生知识运用的能力。

并通过本学期的课堂教学,完成八年级下册的数学教学任务。

二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

我们班的学生基础比较差,问题较严重,有少数学生不上进,思维不紧跟老师。

要在本学期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教学目标知识技能目标:掌握分式的基本性质及其相关的运算;学习反比例函数图像、性质;掌握勾股定理及其逆定理;探究平行四边形、特殊四边形及梯形、等腰梯形性质与判定;会分析数据并从中获取总体信息。

过程方法目标:发展学生推理能力;建立函数建模的思维方式;理解勾股定理的意义与内涵;提高几何说理能力及统计意识。

态度情感目标:丰富学生数学经验,增加逻辑推理能力,感受数学与生活的关联。

四、教材分析第十六章、分式本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。

本点重点:运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。

教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。

第十七章、反比例函数本章主要学习反比例函数的概念、图象及其性质,学习反比例函数在实际问题中的应用。

教学重点:反比例函数图象及其性质;运用反比例函数解决实际问题。

教学难点:逐步形成用函数观点处理实际问题的意识;建立反比例函数在解决实际问题时的思维模式。

第十八章、勾股定理本章主要探索直角三角形的三边关系,学习勾股定理及勾股定理的逆定理,学会利用三边关系判断一个三角形是否为直角三角形。

2018年初二数学八年级下册全册课时作业同步练习含答案(人教版)编辑版

2018年初二数学八年级下册全册课时作业同步练习含答案(人教版)编辑版

人教版八年级数学下册全册课时作业目录第十六章二次根式 (1)16.1 二次根式 (1)第1课时二次根式的概念 (1)第2课时二次根式的性质 (4)16.2 二次根式的乘除 (8)第1课时二次根式的乘法 (8)第2课时二次根式的除法 (12)16.3 二次根式的加减 (17)第1课时二次根式的加减 (17)第2课时二次根式的混合运算 (21)小专题(一) 二次根式的运算 (25)章末复习(一) 二次根式 (29)第十七章勾股定理 (33)17.1 勾股定理 (33)第1课时勾股定理 (33)第2课时勾股定理的应用 (37)第3课时利用勾股定理作图 (42)小专题(二) 巧用勾股定理解决折叠与展开问题 (45)17.2 勾股定理的逆定理 (48)章末复习(二) 勾股定理 (53)第十八章平行四边形 (57)18.1 平行四边形 (57)18.1.1 平行四边形的性质 (57)18.1.2 平行四边形的判定 (65)小专题(三) 平行四边形的证明思路 (75)周周练(18.1) (80)18.2 特殊的平行四边形 (85)18.2.1 矩形 (85)18.2.2 菱形 (94)18.2.3 正方形 (104)小专题(四) 特殊平行四边形的性质与判定 (109)小专题(五) 四边形中的折叠问题 (114)小专题(六) 四边形中的动点问题 (117)章末复习(三) 平行四边形 (120)第十九章一次函数 (125)19.1 函数 (125)19.1.1 变量与函数 (125)19.1.2 函数的图象 (129)19.2 一次函数 (141)19.2.1 正比例函数 (141)周周练(19.1~19.2.1) (146)19.2.2 一次函数 (150)19.2.3 一次函数与方程、不等式 (166)小专题(七) 一次函数与坐标轴围成的三角形 (171)小专题(八) 一次函数与方程、不等式的综合应用 (176)周周练(19.2.2~19.2.3) (180)19.3 课题学习选择方案 (185)章末复习(四) 一次函数 (189)第二十章数据的分析 (194)20.1 数据的集中趋势 (194)20.1.1 平均数 (194)20.1.2 中位数和众数 (202)20.2 数据的波动程度 (210)20.3 课题学习体质健康测试中的数据分析 (214)章末复习(五) 数据的分析 (218)第十六章二次根式16.1二次根式第1课时二次根式的概念01基础题知识点1二次根式的定义1.下列式子不是二次根式的是( B )A. 5B.3-πC.0.5D.1 32.下列各式中,一定是二次根式的是( C )A.-7B.3mC.1+x2D.2x3.已知a是二次根式,则a的值可以是( C )A.-2 B.-1C.2 D.-54.若-3x是二次根式,则x的值可以为答案不唯一,如:-1(写出一个即可).知识点2二次根式有意义的条件5.x取下列各数中的哪个数时,二次根式x-3有意义(D)A.-2 B.0C.2 D.46.(2017·广安)要使二次根式2x-4在实数范围内有意义,则x的取值范围是(B)A.x>2 B.x≥2C.x<2 D.x=27.当x是怎样的实数时,下列各式在实数范围内有意义?(1)-x;解:由-x≥0,得x≤0.(2)2x+6;解:由2x+6≥0,得x≥-3.(3)x2;解:由x2≥0,得x为全体实数.(4)14-3x; 解:由4-3x>0,得x<43.(5) x -4x -3. 解:由⎩⎪⎨⎪⎧x -4≥0,x -3≠0得x ≥4.知识点3 二次根式的实际应用8.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为(B)A .1 dm B. 2 dmC. 6 dm D .3 dm9.若一个长方形的面积为10 cm 2,它的长与宽的比为5∶1,则它的长为,02 中档题 10.下列各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有(A ) A .1个B .2个C .3个D .4个 11.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)A .x ≥12B .x ≤12C .x =12D .x ≠12 12.使式子1x +3+4-3x 在实数范围内有意义的整数x 有(C ) A .5个B .3个C .4个D .2个13.如果式子a +1ab有意义,那么在平面直角坐标系中点A(a ,b)的位置在(A) A .第一象限B .第二象限C .第三象限D .第四象限 14.使式子-(x -5)2有意义的未知数x 的值有1个.15.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.16.要使二次根式2-3x 有意义,则x 的最大值是23. 17.当x 是怎样的实数时,下列各式在实数范围内有意义? (1)32x -1; 解:x>12.(2)21-x; 解:x ≥0且x ≠1.(3)1-|x|;解:-1≤x ≤1.(4)x -3+4-x.解:3≤x ≤4.03 综合题18.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足b =4+3a -6+32-a ,求此三角形的周长.解:∵3a -6≥0,2-a ≥0,∴a =2,b =4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.∴此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 a ≥0(a ≥0)1.(2017·荆门)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为3.2.当x =2__017时,式子2 018-x -2 017有最大值,且最大值为2__018.知识点2 (a )2=a (a ≥0)3.把下列非负数写成一个非负数的平方的形式:(1)5 (2)3.4(3)16= (4)x ≥0). 4.计算:( 2 018)2=2__018.5.计算:(1)(0.8)2;解:原式=0.8.(2)(-34)2; 解:原式=34.(3)(52)2;解:原式=25×2=50.(4)(-26)2.解:原式=4×6=24.知识点3 a 2=a (a ≥0)6.计算(-5)2的结果是(B )A .-5B .5C .-25D .257.已知二次根式x 2的值为3,那么x 的值是(D)A .3B .9C .-3D .3或-38.当a ≥0时,化简:9a 2=3a .9.计算: (1)49;解:原式=7.(2)(-5)2;解:原式=5.(3)(-13)2; 解:原式=13.(4)6-2. 解:原式=16.知识点4 代数式10.下列式子不是代数式的是(C )A .3xB .3xC .x>3D .x -311.下列式子中属于代数式的有(A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个02 中档题12.下列运算正确的是(A ) A .-(-6)2=-6B .(-3)2=9C .(-16)2=±16D .-(-5)2=-2513.若a <1,化简(a -1)2-1的结果是(D )A .a -2B .2-aC .aD .-a14.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是(A )A .-2a +bB .2a -bC .-bD .b15.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是(A)A .m >6B .m <6C .m >-6D .m <-616.化简:(2-5)217.在实数范围内分解因式:x 2-5 18.若等式(x -2)2=(x -2)2成立,则x 的取值范围是x ≥2.19.若a 2=3,b =2,且ab <0,则a -b =-7.20.计算:(1)-2(-18)2; 解:原式=-2×18=-14.(2)4×10-4;解:原式=2×10-2.(3)(23)2-(42)2;解:原式=12-32=-20.(4)(213)2+(-213)2. 解:原式=213+213=423.21.比较211与35的大小.解:∵(211)2=22×(11)2=44, (35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.03 综合题23.有如下一串二次根式: ①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式; (3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.解:(1)①原式=9=3.②原式=225=15.③原式= 1 225=35. ④原式= 3 969=63. (2)第⑤个二次根式为1012-202=99.(3)第个二次根式为(4n 2+1)2-(4n )2.化简:(4n 2+1)2-(4n )2=(4n 2-4n +1)(4n 2+4n +1)=(2n -1)2(2n +1)2=(2n -1)(2n +1).16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 a·b =ab (a ≥0,b ≥0)1.计算2×3的结果是(B )A . 5B . 6C .2 3D .3 22.下列各等式成立的是(D ) A .45×25=8 5 B .53×42=20 5C .43×32=7 5D .53×42=20 63.下列二次根式中,与2的积为无理数的是(B )A .12B .12C .18D .32 4.计算:8×12=2. 5.计算:26×(-36)=-36.6.一个直角三角形的两条直角边分别为a =2 3 cm ,b =3 6 cm ,那么这个直角三角形的面积为2.7.计算下列各题:(1)3×5; (2)125×15; 解:原式=15. 解:原式=25=5.(3)(-32)×27; (4)3xy·1y. 解:原式=-62×7 解:原式=3x.=-614.知识点2 ab =a·b (a ≥0,b ≥0)8.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9B .16+94=16×94C .449=4×49D .4×9=4×99.(2017·益阳)下列各式化简后的结果是32的结果是( C )A. 6B.12C.18D.3610.化简(-2)2×8×3的结果是(D)A.224 B.-224C.-4 6 D.4 611.化简:(1)100×36=60;(2)2y312.化简:(1)4×225;解:原式=4×225=2×15=30.(2)300;解:原式=10 3.(3)16y;解:原式=4y.(4)9x2y5z.解:原式=3xy2yz.13.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.02中档题14.50·a的值是一个整数,则正整数a的最小值是(B)A.1 B.2 C.3 D.515.已知m=(-33)×(-221),则有(A)A.5<m<6 B.4<m<5C.-5<m<-4 D.-6<m<-516.若点P(a,b)在第三象限内,化简a2b2的结果是ab.17.计算:(1) 75×20×12;解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);解:原式=14×112=2×72×42=2×72×42=28 2.(3) -32×45×2;解:原式=-3×16×2 2=-96 2.(4)200a5b4c3(a>0,c>0).解:原式=2×102·(a2)2·a·(b2)2·c2·c=10a2b2c2ac.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦因数,在某次交通事故调查中,测得d=20 m,f=1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km/h)解:当d=20 m,f=1.2时,v=16df=16×20×1.2=1624=326≈78.38.答:肇事汽车的车速大约是78.38 km/h.19.一个底面为30 cm ×30 cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm ,铁桶的底面边长是多少厘米?解:设铁桶的底面边长为x cm ,则x 2×10=30×30×20,x 2=30×30×2,x =30×30×2=30 2.答:铁桶的底面边长是30 2 cm.03 综合题20. (教材P 16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为a 、b 、c.记:p =a +b +c 2,则三角形的面积S =p (p -a )(p -b )(p -c ),此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得AB =7 m ,AC =5 m ,BC =8 m ,你能求出李大爷这块菜地的面积吗?试试看.解:∵AB =7 m ,AC =5 m ,BC =8 m ,∴p =a +b +c 2=7+5+82=10. ∴S =p (p -a )(p -b )(p -c )=10×(10-7)×(10-5)×(10-8)=10×3×5×2=10 3.∴李大爷这块菜地的面积为10 3 m 2.第2课时 二次根式的除法01 基础题知识点1 a b =a b (a ≥0,b >0)1.计算:10÷2=(A ) A . 5B .5C .52D .102 2.计算23÷32的结果是(B ) A .1B .23C .32D .以上答案都不对 3.下列运算正确的是(D )A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 4.计算:123=2. 5.计算:(1)40÷5; (2)322; 解:原式=8=2 2. 解:原式=4.(3)45÷215; (4)2a 3b ab(a>0). 解:原式= 6. 解:原式=2a.知识点2a b =a b(a ≥0,b >0) 6.下列各式成立的是(A ) A .-3-5=35=35 B .-7-6=-7-6C .2-9=2-9D .9+14=9+14=3127.实数0.5的算术平方根等于(C ) A .2 B . 2 C .22 D .12 8.如果(x -1x -2)2=x -1x -2,那么x 的取值范围是(D ) A .1≤x ≤2 B .1<x ≤2C .x ≥2D .x >2或x ≤19.化简:(1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式10.(2017·荆州)下列根式是最简二次根式的是(C )A .13B .0.3C . 3D .2011.把下列二次根式化为最简二次根式:(1) 2.5;解:原式=52=102.(2)85; 解:原式=2510.(3)122; 解:原式=232= 3.(4)2340. 解:原式=232×20=13×20 =13×25 =530.02 中档题12.下列各式计算正确的是(C )A .483=16B .311÷323=1C .3663=22D .54a 2b 6a =9ab 13.计算113÷213÷125的结果是(A ) A .27 5B .27C . 2D .27 14.在①14;②a 2+b 2;③27;④m 2+1中,最简二次根式有3个.15.如果一个三角形的面积为15,一边长为3,那么这边上的高为16.不等式22x -6>0的解集是x >2 17.化简或计算:(1)0.9×121100×0.36; 解:原式=9×12136×10=32×11262×10=336110 =336×1010=111020.(2) 12÷27×(-18); 解:原式=-12×1827 =-4×3×2×93×9=-2 2.(3)27×123; 解:原式=3×9×123 =3×2 3=6 3.(4)12x÷25y. 解:原式=(1÷25)12x÷y =5212xy y 2 =53xy y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长. 解:∵S △ABC =12AC·BC =12AB·CD ,∴AC =2S △ABC BC =2183=26(cm ), CD =2S △ABC AB =21833=236(cm ).03 综合题19.阅读下面的解题过程,根据要求回答下列问题. 化简:a b -a b 3-2ab 2+a 2b a(b<a<0). 解:原式=a b -ab (b -a )2a ① =a (b -a )b -a b a② =a·1aab ③ =ab.④(1)上述解答过程从哪一步开始出现错误?请写出代号②;(2)错误的原因是什么?(3)请你写出正确的解法.解:(2)∵b<a ,∴b -a<0.∴(b -a)2的算术平方根为a -b.(3)原式=a b -ab (b -a )2a =a b -a ·(a -b)b a=-a·(-1aab) =ab.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.(2016·巴中)下列二次根式中,与3可以合并的是(B )A .18B .13C .24D .0.32.下列各个运算中,能合并成一个根式的是(B ) A .12- 2B .18-8C .8a 2+2aD .x 2y +xy 23.若最简二次根式2x +1和4x -3能合并,则x 的值为(C )A .-12B .34C .2D .54.若m 与18可以合并,则m 的最小正整数值是(D )A .18B .8C .4D .2知识点2 二次根式的加减5.(2016·桂林)计算35-25的结果是(A )A . 5B .2 5C .3 5D .6 6.下列计算正确的是(A )A .12-3= 3B .2+3= 5C .43-33=1D .3+22=5 2 7.计算27-1318-48的结果是(C ) A .1B .-1C .-3- 2D .2- 38.计算2+(2-1)的结果是(A)A .22-1B .2- 2C .1- 2D .2+ 29.长方形的一边长为8,另一边长为50,则长方形的周长为10.三角形的三边长分别为20 cm ,40 cm ,45 cm ,. 11.计算:(1)23-32; 解:原式=(2-12) 3 =332.(2)16x+64x;解:原式=4x+8x=(4+8)x=12x.(3) 125-25+45;解:原式=55-25+3 5 =6 5.(4)(2017·黄冈)27-6-1 3.解:原式=33-6-3 3=833- 6.02中档题12.若x与2可以合并,则x可以是(A) A.0.5 B.0.4C.0.2 D.0.1 13.计算|2-5|+|4-5|的值是(B) A.-2 B.2C.25-6 D.6-2 514.计算412+313-8的结果是(B)A.3+ 2B. 3C.33 D.3- 215.若a,b均为有理数,且8+18+18=a+b2,则a=0,b=214.16.已知等腰三角形的两边长分别为27和55,则此等腰三角形的周长为17.在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为18.计算: (1)18+12-8-27;解:原式=32+23-22-3 3=(32-22)+(23-33) =2- 3.(2) b 12b 3+b 248b ;解:原式=2b 23b +4b 23b=6b 23b.(3)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(4) 34(2-27)-12(3-2). 解:原式=342-943-123+122 =(34+12)2-(94+12) 3 =542-114 3.19.已知3≈1.732,求(1327-413)-2(34-12)的近似值(结果保留小数点后两位). 解:原式=3-433-3+4 3 =833 ≈83×1.732≈4.62.03综合题20.若a,b都是正整数,且a<b,a与b是可以合并的二次根式,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b是可以合并的二次根式,a+b=75,∴a+b=75=5 3.∵a<b,∴当a=3,则b=48;当a=12,则b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算1.化简2(2+2)的结果是(A )A .2+2 2B .2+ 2C .4D .3 22.计算(12-3)÷3的结果是(D )A .-1B .- 3C . 3D .13.(2017·南京)计算:12+8×64.(2017·青岛)计算:(24+16)×6=13.5.计算:40+55 6.计算: (1)3(5-2);解:原式=15- 6.(2)(24+18)÷2;解:原式=23+3.(3)(2+3)(2+2);解:原式=8+5 2.(4)(m +2n)(m -3n).解:原式=m -mn -6n.知识点2 二次根式与乘法公式 7.(2017·天津)计算:(4+7)(4-7)的结果等于9.8.(2016·包头)计算:613-(3+1)2=-4. 9.计算:(1)(2-12)2; 解:原式=12.(2)(2+3)(2-3);解:原式=-1.(3)(5+32)2.解:原式=23+610.10.(2016·盐城)计算:(3-7)(3+7)+2(2-2).解:原式=9-7+22-2 =2 2.02 中档题11.已知a =5+2,b =2-5,则a 2 018b 2 017的值为(B ) A .5+2B .-5-2C .1D .-112.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是(C )A .14B .16C .8+5 2D .14+ 213.计算: (1)(1-22)(22+1);解:原式=-7.(2)12÷(34+233); 解:原式=12÷(3312+8312) =12÷11312=23×12113=2411. (3)(46-412+38)÷22; 解:原式=(46-22+62)÷2 2=(46+42)÷2 2=23+2.(4)24×13-4×18×(1-2)0. 解:原式=26×33-4×24×1 =22- 2= 2.14.计算: (1)(1-5)(5+1)+(5-1)2;解:原式=1-5+5+1-2 5=2-2 5.(2)(3+2-1)(3-2+1).解:原式=(3)2-(2-1)2=3-(2+1-22)=3-2-1+2 2=2 2.15. 已知a =7+2,b =7-2,求下列代数式的值:(1)ab 2+ba 2;(2)a 2-2ab +b 2;(3)a 2-b 2. 解:由题意得a +b =(7+2)+(7-2)=27,a -b =(7+2)-(7-2)=4,ab =(7+2)(7-2)=(7)2-22=7-4=3.(1)原式=ab(b +a)=3×27=67.(2)原式=(a —b)2=42=16.(3)原式=(a+b)(a—b)=27×4=87.03综合题16.观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中你发现的规律计算:(12+1+13+2+14+3+…+12 017+ 2 016+12 018+ 2 017)×( 2 018+1).解:(1)1n+1+n=n+1-n(n≥0).(2)原式=(2-1+3-2+4-3+…+ 2 017- 2 016+ 2 018-2 017)×( 2 018+1)=(-1+ 2 018)( 2 018+1)=2 017.小专题(一) 二次根式的运算类型1 与二次根式有关的计算1.计算: (1)62×136; 解:原式=(6×13)2×6=212=4 3.(2)(-45)÷5145;解:原式=-45÷(5×355)=-45÷3 5=-43.(3)72-322+218;解:原式=62-322+6 2=122-32 2=212 2.(4)(25+3)×(25-3).解:原式=(25)2-(3)2=20-3=17.2.计算:(1)334÷(-12123);解:原式=[3÷(-12)]34÷53=-6920=-69×520×5=-955.(2)(6+10×15)×3;解:原式=32+56× 3=32+15 2=18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115 =-348÷765=-3748×56 =-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2=3+ 2.(5)(32-6)2-(-32-6)2.解:原式=(32-6)2-(32+6)2=18+6-123-(18+6+123)=-24 3.3.计算:(1)(2 018-3)0+|3-12|-63; 解:原式=1+23-3-2 3=-2.(2)(2017·呼和浩特)|2-5|-2×(18-102)+32.解:原式=5-2-12+5+32=25-1.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.解:原式=a 2b -ab 2=ab(a -b).当a =3+22,b =3-22时, 原式=(3+22)(3-22)(3+22-3+22)=4 2.5.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值.解:由题意,得2★3= 3. ∴7★(2★3)=7★3=7-3=2.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.解:当x =2+3时, 原式=(7-43)×(2+3)2+(2-3)×(2+3)+ 3=(7-43)×(7+43)+4-3+ 3=49-48+1+ 3=2+ 3.7.(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2.解:原式= 2x(x +y )(x -y )·y(x +y)=2xyx -y. 当x =5+2,y =5-2时, 原式=2(5+2)(5-2)5+2-5+2=12.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a ,b ,m ,n 均为正整数),则有a +b 2=m 2+2n 2+22mn , ∴a =m 2+2n 2,b =2mn. 这样小明就找到了一种把a +b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn.∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2. ∴a =7或13.章末复习(一) 二次根式01 基础题知识点1 二次根式的概念及性质1.(2016·黄冈)在函数y =x +4x中,自变量x 的取值范围是(C) A .x >0 B .x ≥-4C .x ≥-4且x ≠0D .x >0且x ≠-4 2.(2016·自贡)下列根式中,不是最简二次根式的是(B) A.10 B.8C. 6D. 23.若xy <0,则x 2y 化简后的结果是(D )A .x yB .x -yC .-x -yD .-x y知识点2 二次根式的运算4.与-5可以合并的二次根式的是(C ) A .10 B .15 C .20 D .25 5.(2017·十堰)下列运算正确的是(C )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=36.计算5÷5×15所得的结果是1.7.计算:(1)(2017·湖州)2×(1-2)+8; 解:原式=2-22+2 2 =2.(2)(43+36)÷23; 解:原式=43÷23+36÷2 3 =2+32 2.(3)1232-275+0.5-3127; 解:原式=22-103+22-33=(2+12)×2+(-10-13)× 3=522-3133.(4)(32-23)(32+23). 解:原式=(32)2-(23)2 =9×2-4×3 =6.知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)解:d =50.243.14-25.123.14=16-8=4-2 2 ≈1.17.答:圆环的宽度d 约为1.17.02 中档题 9.把-a-1a中根号外面的因式移到根号内的结果是(A ) A .-aB .- aC .--aD . a10.已知x +1x =7,则x -1x的值为(C)A. 3B .±2C .± 3D.711.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为3.12.(2016·青岛)计算:32-82=2.13.计算:(3+2)3×(3-2)3=-1. 14.已知x =5-12,则x 2+x +1=2. 15.已知16-n 是整数,则自然数n 所有可能的值为0,7,12,15,16. 16.计算:(1)(3+1)(3-1)-16+(12)-1;解:原式=3-1-4+2 =0.(2)(3+2-6)2-(2-3+6)2.解:原式=(3+2-6+2-3+6)×(3+2-6-2+3-6) =22×(23-26) =46-8 3.17.已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.解:当x =3+7,y =3-7时, 3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy =3(x -y)2+xy=3(3+7-3+7)2+(3+7)×(3-7) =3×28-4 =80.18.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm 2,另一张面积为450 cm 2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m 长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数)解:正方形壁画的边长分别为800 cm ,450 cm .镶壁画所用的金彩带长为4×(800+450)=4×(202+152)=1402≈197.96(cm). 因为1.2 m =120 cm <197.96 cm ,所以小明的金彩带不够用,197.96-120=77.96≈78(cm). 故还需买约78 cm 长的金彩带.03 综合题19.已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得a-8=0,b-5=0,c-18=0,即a=22,b=5,c=3 2.(2)∵22+32=52>5,∴以a,b,c为边能构成三角形.三角形的周长为22+32+5=52+5.第十七章 勾股定理17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.4个全等的直角三角形的直角边分别为a ,b ,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为 c 2+2×12ab =c 2+ab ,也可以表示为a 2+b 2+2×12ab =a 2+b 2+ab ,∴c 2+ab =a 2+b 2+ab. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 24.已知在Rt △ABC 中,∠C =90°,AC =2,BC =3,则AB 的长为(C )A .4B . 5C .13D .55.已知直角三角形中30°角所对的直角的边长是2 3 cm ,则另一条直角边的长是(C )A .4 cmB .4 3 cmC .6 cmD .6 3 cm6.(2016·阿坝)直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为6.7.在△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)a=7,b=24,求c;(2)a=4,c=7,求b.解:(1)∵∠C=90°,∴△ABC是直角三角形.∴a2+b2=c2.∴72+242=c2.∴c2=49+576=625.∴c=25.(2)∵∠C=90°,∴△ABC是直角三角形.∴a2+b2=c2.∴42+b2=72.∴b2=72-42=49-16=33.∴b=33.8.如图,在△ABC中,AD⊥BC,垂足为点D,∠B=60°,∠C=45°.(1)求∠BAC的度数;(2)若AC=2,求AD的长.解:(1)∠BAC=180°-60°-45°=75°.(2)∵AD⊥BC,∴△ADC是直角三角形.∵∠C=45°,∴∠DAC=45°.∴AD=CD.根据勾股定理,得AD= 2.02中档题9.(2016·荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD =3,则BC的长为(C)A.5 B.6 C.8 D.10第9题图第10题图10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C)A.48 B.60 C.76 D.8011.(2017·陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为(A)A.3 3 B.6 C.3 2 D.21第11题图第14题图12.(2016·东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于(C)A.10 B.8C.6或10 D.8或1013.若一直角三角形两边长分别为12和5,则第三边长为14.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=3.15.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是76.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15.(1)求AB的长;(2)求CD的长.解:(1)∵在Rt△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=AC2+BC2=202+152=25.(2)∵S△ABC=12AC·BC=12AB·CD,∴AC·BC=AB·CD.∴20×15=25CD.∴CD=12.17.(2016·益阳)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于点D,设BD=x,用含x的代数式表示CD.→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD的长,再计算三角形面积.解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x.由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2. ∴152-x2=132-(14-x)2.解得x=9.∴AD=12.∴S△ABC=12BC·AD=12×14×12=84.03综合题18.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2 017第2课时勾股定理的应用01基础题知识点1勾股定理在平面图形中的应用1.如图,一根垂直于地面的旗杆在离地面5 m处折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是(D)A.5 m B.12 m C.13 m D.18 m第1题图第2题图2.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.3.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:①测得BD的长度为15米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.6米.求风筝的高度CE.解:在Rt△CDB中,由勾股定理,得CD=CB2-BD2=252-152=20(米).∴CE=CD+DE=20+1.6=21.6(米).答:风筝的高度CE为21.6米.4.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h后相距30海里,问乙船每小时航行多少海里?解:设码头所在的位置为C,1.5 h后甲船所在位置为A,乙船所在位置为B,则AC与正北方向的夹角为45°,BC与正北方向的夹角为45°,∴∠ACB =90°.在Rt △ABC 中,∵AC =16×32=24(海里),AB =30海里.由勾股定理,得 BC 2=AB 2-AC 2=302-242=324.解得BC =18. ∴18÷32=12(海里/小时).答:乙船每小时航行12海里.知识点2 勾股定理与方程的应用5.印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意可知AC =0.5,AB =2,OB =OC. 设OA =x ,则OB =OA +AC =x +0.5. 在Rt △OAB 中,OA 2+AB 2=OB 2,∴x 2+22=(x +0.5)2. 解得x =3.75. ∴水深3.75尺.6.如图,在一棵树(AD)的10 m 高处(B )有两只猴子,其中一只爬下树走向离树20 m(C )的池塘,而另一只则爬到树顶(D )后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?解:B 为猴子的初始位置,则AB =10 m ,C 为池塘,则AC =20 m. 设BD =x m ,则树高AD =(10+x )m.由题意知BD +CD =AB +AC ,∴x +CD =20+10. ∴CD =(30-x )m.在Rt △ACD 中,∠A =90°, 由勾股定理得AC 2+AD 2=CD 2, ∴202+(10+x )2=(30-x )2.∴x =5. ∴AD =10+5=15(m). 故这棵树有15 m 高.知识点3 两次勾股定理的应用7.(2017·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C)A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A 下滑0.5米.02中档题9.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1 m),却踩伤了花草(D) A.4 B.6 C.7 D.8第9题图第10题图10.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D)A.4米B.8米C.9米D.7米11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm 到点D,则橡皮筋被拉长了2cm.第11题图第12题图12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是7≤h≤16.13.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=220-150=70(cm).∴彩旗下垂时的最低处离地面的最小高度h为70 cm.14.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO =60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?解:在Rt△APO中,∠APO=60°,则∠PAO=30°.∴AP=2OP=200 m,AO=AP2-OP2=2002-1002=1003(m).在Rt△BOP中,∠BPO=45°,则BO=OP=100 m.∴AB=AO-BO=1003-100≈73(m).∴从A到B小车行驶的速度为73÷3≈24.3(m/s)=87.48 km/h>80 km/h.∴此车超过每小时80千米的限制速度.03综合题15.如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.解:(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.∴BC=4 cm.(2)由题意,知BP=t cm,①当∠APB 为直角时,如图1,点P 与点C 重合,BP =BC =4 cm , ∴t =4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2=32+(t -4)2. 在Rt △BAP 中,AB 2+AP 2=BP 2, 即52+[32+(t -4)2]=t 2. 解得t =254.∴当△ABP 为直角三角形时,t =4或t =254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.在数轴上作出表示5的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数2.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则线段AB 的长度为(A )A .5B .6C .7D .25知识点3 等腰三角形中的勾股定理3.在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的边上的高与面积.解:过点A 作AD ⊥BC 于D , ∵AB =AC =13 cm , ∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52=12(cm).∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 4.(2017·南充)如图,等边△OAB 的边长为2,则点B 的坐标为(D )A .(1,1,)B .(3,1)C .(3,3)D .(1,3)5.(2017·成都)如图,数轴上点A第5题图 第6题图 6.(2017·乐山)点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 57.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8,DB =BE 2-DE 2=82-42=4 3.03 综合题8.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32;…求:(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n =(n -1)2+1=n ,S n =n2(n 为正整数). (2)OA 210=(9)2+1=10,∴OA 10=10.(3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 巧用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题解决折叠问题关键是抓住对称性.勾股定理的数学表达式是一个含有平方关系的等式,求线段的长时,可由此列出方程,运用方程思想分析问题和解决问题,以简化求解.【例1】 直角三角形纸片的两直角边AC =8,BC =6,现将△ABC 如图折叠,折痕为DE ,使点A 与点B 重合,则BE 的长为254.1.(2017·黔西南)如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是94cm .第1题图 第2题图2.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.类型2 利用勾股定理解决立体图形的展开问题立体图形中求表面距离最短时,需要将立体图形展开成平面图形,然后将条件集中于一个直角三角形,利用勾股定理求解.【例2】 (教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路径,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的AA ′剪开,得到如图所示的平面展开图,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.【解答】 如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根裾勾股定理得:AB 2=A ′A 2+A ′B 2=122+92=225.∴AB =15.∴需要爬行的最短路径是15 cm.3.如图是一个高为10 cm ,底面圆的半径为4 cm 的圆柱体.在AA 1上有一个蜘蛛Q ,QA =3 cm ;在BB 1上有一只苍蝇P ,PB 1=2 cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是16π+25cm.(结果用带π和根号的式子表示)第3题图 第4题图4.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m (精确到0.01 m ). 5.如图,长方体的高为5 cm ,底面长为4 cm ,宽为1 cm .(1)点A 1到点C 2之间的距离是多少?(2)若一只蚂蚁从点A 2爬到C 1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm ,底面长为4 cm ,宽为1 cm , ∴A 2C 2=42+12=17(cm ).∴A1C2=52+(17)2=42(cm).(2)如图1所示,A2C1=52+52=52(cm).如图2所示,A2C1=92+12=82(cm).如图3所示,A2C1=62+42=213(cm).∵52<213<82,∴一只蚂蚁从点A2爬到C1,爬行的最短路程是5 2 cm.。

八年级数学下册 4.2《一次函数》课时作业 湘教版(2021年整理)

八年级数学下册 4.2《一次函数》课时作业 湘教版(2021年整理)

八年级数学下册4.2《一次函数》课时作业(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册4.2《一次函数》课时作业(新版)湘教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册4.2《一次函数》课时作业(新版)湘教版的全部内容。

《一次函数》1.下列说法正确的是()A。

一次函数是正比例函数. B.正比例函数不是一次函数。

C.不是正比例函数就不是一次函数。

D。

正比例函数是一次函数2、下列语句中,具有正比例函数关系的是( )A。

长方形花坛的面积不变,长y与宽x之间的关系;B。

正方形的周长不变,边长x与面积S之间的关系;C.三角形一条边不变,这条边上的高h与面积S之间的关系;D。

圆的面积为S,半径为r,S与r之间的关系。

3、在函数(1)3yx,(2)5y x,(3)4y x,(4)223y x x,(5)2y x,(6)12yx中是一次函数的是 ,是正比例函数的是 .4、若函数(63)44y m x n是一次函数,则m、n应满足的条件是;若是正比例函数,则,m n应满足的条件是。

5、当k= 时,函数28(3)5ky k x是关于x的一次函数。

6、写出下列各题中x与y之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x(时)之间的关系.(2)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x个月后这棵树的高度为y(厘米),y与x之间的关系。

(4)A、B两地相距 200 km,一列火车从B 地出发沿BC 方向以 120 km/h 的速度行驶,在行驶过程中,这列火车离A 地的路程y(km)与行驶时间x (h)之间的函数关系.(5)某油箱的容积是60升,给油箱均匀加油,20分钟可以加满。

最新精编湘教版八年级数学下册全册配套课时练习课课练(全面详细)47课时

最新精编湘教版八年级数学下册全册配套课时练习课课练(全面详细)47课时

最新湘教版八年级数学下册全册配套课时练习课课练总目录:湘教版八年级数学下册第1章直角三角形全单元课时练习(10课时)精编最新湘教版八年级数学下册第2章四边形全单元课时练习(15课时)精编最新湘教版八年级数学下册第3章图形与坐标全单元课时练习同步练习(7课时)精编最新湘教版八年级数学下册第4章一次函数全单元课时练习同步练习(11课时)精编最新湘教版八年级数学下册第5章数据的频数分布全单元课时练习同步练习(4课时)湘教版八年级数学下册第1章直角三角形全单元课时练习目录1.1直角三角形的性质与判定Ⅰ课时练习含答案(2课时)1.2直角三角形的性质与判定Ⅱ课时练习含答案(3课时)1.3直角三角形全等的判定练习课课练含答案1.4角平分线的性质课时练习课课练含答案(2课时)第1章直角三角形专题训练一直角三角形与勾股定理的应用课时练习含答案第1章直角三角形本章中考演练练习含答案1.1直角三角形的性质与判定Ⅰ课时练习含答案(2课时)课时作业(一)[1.1 第1课时直角三角形的性质和判定]一、选择题1.在Rt△ABC中,∠C=90°,∠B=54°,则∠A的度数是链接听课例1归纳总结( )A.66° B.56° C.46° D.36°2.在直角三角形中,若斜边和斜边上的中线的长度之和为9,则斜边上的中线长为( )A.3 B.4.5 C.6 D.93.具备下列条件的△ABC中,不是直角三角形的是链接听课例2归纳总结( )A.∠A+∠B=∠CB.∠A-∠B=∠CC.∠A∶∠B∶∠C=1∶2∶3D.∠A=∠B=3∠C4.如图K-1-1,在△ABC中,AB=AC=8,BC=6,AD平分∠BAC交BC于点D,E为AC的中点,连接DE,则△CDE的周长为( )图K-1-1A.10 B.11 C.12 D.135.如图K-1-2,∠ABC=∠ADC=90°,E是AC的中点,则( )图K-1-2A.∠1>∠2B.∠1=∠2C.∠1<∠2D.无法确定∠1与∠2的大小关系6.如图K-1-3,在Rt△ABC中,∠ACB=90°,CD为AB边上的高.若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B 的度数是( )图K-1-3A.60° B.45° C.30° D.15°二、填空题7.如图K-1-4,在Rt△ABC中,∠ACB=90°,AB=10 cm,D 为AB的中点,则CD=________cm.图K-1-48.如图K-1-5,AD⊥BC,∠BAD=∠B,∠C=65°,则∠BAC 的度数为________.图K-1-59.在直角三角形中,若两个锐角的度数之比为2∶3,则它们中较大锐角的度数为________°.10.2017·常德如图K-1-6,已知Rt△ABE中,∠A=90°,∠B=60°,BE=10,D是线段AE上的一个动点,过点D作CD交BE 于点C,并使得∠CDE=30°,则CD长度的取值范围是____________.图K-1-6三、解答题11.如图K-1-7,在△ABC中,∠1=∠2,∠3=∠4.求证:△ABC是直角三角形.链接听课例2归纳总结图K-1-712.如图K-1-8,在四边形ABCD中,∠A=120°,∠C=60°,BD⊥DC,且BD平分∠ABC,那么AD与BC有什么位置关系?请说明理由.图K-1-813.如图K -1-9,在Rt △ABC 中,∠BAC =90°,BD 平分∠ABC ,AE ⊥BC 于点E ,交BD 于点F.求证:AF =AD.图K -1-914.如图K -1-10,在△ABC 中,AD 是BC 边上的高,CE 是AB 边上的中线,且DC =BE.求证:∠B =2∠BCE.图K -1-1015.如图K -1-11,在△ABC 中,点D 在AB 上,且CD =BC ,E 为BD 的中点,F 为AC 的中点,连接EF 交CD 于点M ,连接AM.(1)求证:EF =12AC ;(2)若∠BAC =45°,求线段AM ,DM ,BC 之间的数量关系.链接听课例3归纳总结图K-1-1116.如图K-1-12,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,M为AB边的中点,连接ME,MD,ED.求证:(1)△MED与△BMD都是等腰三角形;(2)∠EMD=2∠DAC.图K-1-12动点问题如图K-1-13,在Rt△ABC中,AB=AC,∠BAC=90°,D 为 BC边的中点.(1)写出点D到△ABC三个顶点 A,B,C的距离的关系(不要求证明);(2)如果点M ,N 分别在线段AB ,AC 上移动, 在移动过程中保持AN =BM ,请判断△DMN 的形状,并证明你的结论.图K -1-13详解详析课堂达标1.[解析] D ∵在Rt △ABC 中,∠C =90°,∠B =54°, ∴∠A =90°-∠B =90°-54°=36°.故选D.2.[解析] A 设该直角三角形斜边上的中线长为x ,则斜边长为2x ,则x +2x =9,解得x =3.故选A.3.[解析] D A 选项中,∠A +∠B =∠C ,即2∠C =180°,∠C =90°,所以△ABC 为直角三角形;同理,B ,C 选项均为直角三角形.D 选项中,∠A =∠B =3∠C ,即7∠C =180°,三个角中没有90°角,故不是直角三角形.故选D.4.[解析] B ∵AB =AC ,AD 平分∠BAC ,BC =6,∴AD ⊥BC ,CD =BD =12BC =3.∵E 为AC 的中点,∴DE =CE =12AC =4,∴△CDE 的周长=CD +DE +CE =3+4+4=11.故选B.5.[解析] B ∵∠ABC =∠ADC =90°,E 是AC 的中点,∴BE =12AC ,ED =12AC ,∴ED =BE ,∴∠1=∠2. 6.[解析] C在Rt △ABC 中,∠ACB =90°,E 是AB 的中点,∴EC =EA =12AB.根据对称,得EC =AC ,∴EC =AC =EA ,∴△ACE 是等边三角形,∴∠A =60°,∴∠B =90°-∠A =90°-60°=30°. 7.58.[答案] 70°[解析] ∵AD ⊥BC ,∴∠ADB =90°. 又∵∠BAD =∠B ,∴∠BAD =∠B =45°.在Rt △ADC 中,∠DAC =90°-∠C =90°-65°=25°, ∴∠BAC =∠BAD +∠DAC =45°+25°=70°. 9.[答案] 54[解析] 设直角三角形的两个锐角分别为α,β(α<β),则⎩⎪⎨⎪⎧α+β=90°,αβ=23,解得⎩⎪⎨⎪⎧α=36°,β=54°.所以两个锐角中较大的锐角为54°. 10.[答案] 0<CD ≤5[解析] 根据在直角三角形中,斜边上的中线等于斜边的一半,当点D运动至点A时,CD最长,为5.11.证明:∵∠1=∠2,∠3=∠4,∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,即∠ABC=90°,∴△ABC是直角三角形.12.解:AD∥BC.理由:∵BD⊥DC,∴∠BDC=90°.∵∠C=60°,∴∠DBC=30°.∵BD平分∠ABC,∴∠ABC=2∠DBC=60°.∵∠A=120°,∴∠A+∠ABC=180°,∴AD∥BC.13.证明:∵∠BAC=90°,∴∠ADF=90°-∠ABD.∵AE⊥BC于点E,∴∠AFD=∠BFE=90°-∠DBC.∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ADF=∠AFD,∴AF=AD.14.证明:如图,连接DE.∵AD 是BC 边上的高, ∴∠ADB =90°.在Rt △ADB 中,DE 是AB 边上的中线, ∴DE =12AB =BE ,∴∠B =∠EDB. ∵DC =BE , ∴DE =DC , ∴∠DEC =∠BCE.∵∠EDB =∠DEC +∠BCE =2∠BCE , ∴∠B =2∠BCE.15.解:(1)证明:∵CD =BC ,E 为BD 的中点, ∴CE ⊥BD.在Rt △ACE 中,∵F 为AC 的中点, ∴EF =12AC.(2)∵∠BAC =45°,CE ⊥BD , ∴△AEC 是等腰直角三角形. ∵F 为AC 的中点,∴EF 垂直平分AC ,∴AM =CM. ∵CD =CM +DM =AM +DM ,CD =BC , ∴BC =AM +DM.16.证明:(1)∵M 为AB 边的中点,AD ⊥BC ,BE ⊥AC ,∴ME =12AB ,MD =12AB ,∴ME =MD ,∴△MED 是等腰三角形. ∵M 为AB 边的中点,AD ⊥BC , ∴MD =MB =12AB ,∴△BMD 是等腰三角形. (2)∵ME =12AB =MA ,∴∠MAE =∠MEA ,∴∠BME =2∠MAE. 同理MD =12AB =MA ,∴∠MAD =∠MDA ,∴∠BMD =2∠MAD ,∴∠EMD =∠BME -∠BMD =2∠MAE -2∠MAD =2(∠MAE -∠MAD)=2∠DAC.素养提升解:(1)DC =DA =DB.(2)△DMN 是等腰直角三角形. 证明:连接AD.∵∠BAC =90°,D 为 BC 边的中点, ∴DC =DA =DB ,∴∠C =∠CAD ,∠B =∠DAB. 又∵AB =AC ,∴∠C =∠B , ∴∠CAD =∠B.在△AND和△BMD中,∵AN=BM,∠NAD=∠B,DA=DB,∴△AND≌△BMD,∴DN=DM,∠ADN=∠BDM,∵AB=AC,D为BC边的中点,∴AD⊥BC,∴∠ADB=∠ADM+∠BDM=90°,∴∠ADM+∠ADN=90°,即∠NDM=90°,∴△DMN是等腰直角三角形.课时作业(二)[1.1 第2课时含30 °角的直角三角形的性质及应用]一、选择题1.如图K-2-1,一棵大树在一次强台风中从距离地面5米处折断倒下,倒下部分与地面成30°角,则这棵大树在折断前的高度是( )图K-2-1A.10米 B.15米 C.25米 D.30米2.如图K-2-2,已知在△ABC中,∠ACB=90°,∠B=30°,D为斜边AB的中点,则图中与线段AC的长度相等的线段有( )图K -2-2A .0条B .1条C .2条D .3条3.如图K -2-3,在△ABC 中,∠ACB =90°,CD 是AB 边上的高,∠A =30°,AB =4,则BD 的值为( )图K -2-3A .3B .2C .1 D.124.已知三角形的三个内角度数之比为1∶2∶3,若这个三角形的最短边长为2,则它的最长边长为( )A .2B .2 2C .3D .3 25.如图K -2-4,AB ⊥BC 于点B ,AD ∥BC ,BE ⊥CD 于点E ,CE =12BC ,E 为CD 的中点,那么∠ADB 的度数为( )图K -2-4A .75°B .60°C .45°D .无法确定6.2018·郴州如图K -2-5,∠AOB =60°,以点O 为圆心,以任意长为半径作弧交OA ,OB 分别于点C ,D ;分别以点C ,D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 中截取OM =6,则点M 到OB 的距离为( )图K -2-5A .6B .2C .3D .3 37.如图K -2-6,已知∠1=∠2,AD =BD =4,CE ⊥AD 于点E ,2CE =AC ,那么CD 的长是( )图K -2-6A .2B .3C .1D .1.5 二、填空题8.若直角三角形的两个锐角的度数比是2∶1,斜边长为8,则这个直角三角形最短的边长为________.9.如图K -2-7,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D.若BC =12AB ,则∠DCB =________°.图K-2-710.如图K-2-8,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D.若CD=1,则BD=________.图K-2-811.如图K-2-9,在△ABC中,∠C=90°,DE垂直平分AB于点E,交AC于点D,AD=2BC,则∠A=________°.链接听课例2归纳总结图K-2-912.如图K-2-10,已知∠AOB=60°,点P在OA上,OP=8,点M,N在边OB上,PM=PN.若MN=2,则OM=________.图K-2-10三、解答题13.如图K-2-11,在Rt△ABC中,∠C=90°,∠A=30°,E 是边BC的中点,BF∥AC,EF∥AB,EF=4 cm.求:(1)∠F的度数;(2)AB的长.图K-2-1114.如图K-2-12,△ABC是等边三角形,D为BC边的中点,DE⊥AC于点E.试探索线段CE与线段AC之间的数量关系,并说明理由.图K-2-1215.如图K-2-13,在等边三角形ABC中,D,E分别是BC,AC 上的点,且CD=AE,AD与BE相交于点P.(1)求证:∠ABE=∠CAD;(2)若BH⊥AD于点H,求证:PB=2PH.图K-2-1316.如图K-2-14,∠AOP=∠BOP =15°,PC∥OA,PD⊥OA于点D.若PC=4,求PD的长.图K-2-141.分类讨论思想在△ABC中,AB=AC=10 cm,BD是高,且∠ABD =30°,求CD的长2.图形全等与变换如图K-2-15,在△ABC中,AC=BC,∠ACB =90°,D是AB上一点,∠ACD=15°,点B,E关于CD对称,连接BE交CD于点H,交AC于点G,连接DE交AC于点F.(1)求∠ADF的度数;(2)求证:AF =CG.图K -2-15详解详析课堂达标1.[解析] B 由“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”可知大树折断部分的高度是10米,则大树在折断前的高度是5+10=15(米).2.[解析] D 由“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”可知,AC =12AB =AD =BD.根据“直角三角形斜边上的中线等于斜边的一半”可知CD =12AB ,所以AC=AD =BD =CD.故选D.3.[解析] C ∵∠ACB =90°,∠A =30°,AB =4,∴CB =12AB=2,∠B =60°.∵CD 是AB 边上高,∴∠BDC =90°,∴∠BCD =30°, ∴BD =12BC =1.4.[解析] B 设三个内角的度数分别为x °,(2x)°,(3x)°,则x +2x +3x =180,解得x =30,∴三个内角分别为30°,60°,90°,∴这个三角形是直角三角形,30°角所对的直角边为最短边,斜边为最长边.∵最短边长为2,∴它的最长边为2 2.5.[解析] B 由BE ⊥CD ,CE =12BC ,根据“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°”得∠EBC =30°.又由BE 垂直平分CD 得△BCD 为等腰三角形,所以∠DBE =∠EBC =30°,根据“两直线平行,内错角相等”得到∠ADB =∠DBC =60°.故选B.6.[解析] C 由作图知,OP 是∠AOB 的平分线,点M 到OB 的距离即为垂线段的长,根据直角三角形中30°角所对的直角边等于斜边的一半,可得点M 到OB 的距离是3.7.[解析] A 在Rt △AEC 中,由CE AC =12,可以得到∠1=∠2=30°.又∵AD =BD =4,得到∠B =∠2=30°,从而求出∠ACD =90°,然后由直角三角形的性质求出CD 的长.8.4 9.[答案] 30[解析] ∵在Rt △ABC 中,∠ACB =90°,BC =12AB ,∴∠A =30°,∴∠B =60°.∵CD ⊥AB ,垂足为D ,∴∠CDB =90°,∴∠DCB =30°.10.[答案] 2[解析] ∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.∵AD 平分∠CAB ,∴∠CAD =∠BAD =12∠CAB =30°,∴∠BAD =∠B ,∴AD =BD.∵CD =1,∴AD =2CD =2,∴BD =AD =2. 11.[答案] 15[解析] 连接BD.∵DE 垂直平分AB 于点E ,∴AD =BD =2BC ,∴在Rt △BCD 中,∠BDC =30°.又∵BD =AD ,∴∠A =∠DBA =12∠BDC=15°.12.[答案] 3[解析] 如图,过点P 作PC ⊥MN 于点C.∵PM =PN ,∴C 为MN 的中点,即MC =NC =12MN =1.∵在Rt △OPC 中,∠AOB =60°,∴∠OPC=30°,∴OC =12OP =4,则OM =OC -MC =4-1=3.13.解:(1)∵∠C =90°,∠A =30°, ∴∠ABC =60°. ∵EF ∥AB ,∴∠BEF =∠ABC =60°. ∵BF ∥AC ,∴∠EBF =∠C =90°, ∴∠F =30°.(2)∵∠EBF =90°,∠F =30°,EF =4 cm , ∴BE =12EF =2 cm.∵E 是边BC 的中点,∴BC =4 cm. ∵∠C =90°,∠A =30°, ∴AB =2BC =8 cm. 14.解:CE =14AC.理由:∵△ABC 是等边三角形, ∴∠C =60°,BC =AC. ∵D 是△ABC 中BC 边的中点, ∴BD =CD.又∵∠C =60°,DE ⊥AC , ∴∠CDE =30°, ∴CE =12CD =14BC =14AC.即CE =14AC.15.证明:(1)∵△ABC 是等边三角形, ∴BA =AC ,∠CAB =∠C =60°. 又∵AE =CD , ∴△ABE ≌△CAD , ∴∠ABE =∠CAD.(2)∵∠BPH =∠BAD +∠ABP =∠BAD +∠CAD =60°,BH ⊥AD 于点H ,∴∠EBH =30°,∴在Rt △PBH 中,PB =2PH.16.解:过点P 作PQ ⊥OB 于点Q ,则∠PQO =∠PDO =90°. ∵∠DOP =∠QOP =15°,∠PDO =∠PQO =90°,OP =OP ,∴△OPD ≌△OPQ ,∴PD =PQ.∵PC ∥OA ,∴∠QCP =∠BOD =∠AOP +∠BOP =30°, ∴PQ =12PC =2.故PD =2.素养提升1.解:分两种情况讨论.(1)如图①,当△ABC 为锐角三角形时,在Rt △ABD 中,∠ABD =30°,则AD =12AB =5 cm ,∴CD =AC -AD =5 cm.(2)如图②,当△ABC 为钝角三角形时,在Rt △ABD 中,∵∠ABD =30°,∴AD =12AB =5 cm ,∴CD =AC +AD =15 cm.2.解:(1)∵在△ABC 中,AC =BC ,∠ACB =90°, ∴∠CAD =∠CBA =45°. ∵∠ACD =15°,∴∠CDB=∠ACD+∠CAD=60°.∵点B,E关于CD对称,∴∠EDC=∠CDB=60°,∴∠ADF=180°-60°-60°=60°.(2)证明:如图,过点A作AM⊥AC交ED的延长线于点M,则∠FAM=90°=∠GCB,∠MAD=90°-45°=45°=∠CAD.∵∠MAD=45°,∠ADF=60°,∴∠M=60°-45°=15°=∠ACD.∵点B,E关于CD对称,∴CD⊥BE,∴∠CHG=90°,∴∠CGB+∠ACD=90°.∵∠GCB=90°,∴∠CGB+∠CBG=90°,∴∠CBG=∠ACD=15°=∠M.在△ACD和△AMD中,∵∠CAD=∠MAD,∠ACD=∠M,AD=AD,∴△ACD≌△AMD,∴AC=AM.又∵AC=BC,∴AM=BC.在△FAM和△GCB中,∵∠M=∠CBG,AM=CB,∠FAM=∠GCB,∴△FAM≌△GCB,∴AF=CG.1.2直角三角形的性质与判定Ⅱ课时练习含答案(3课时)[1.2 第1课时勾股定理]一、选择题1.2018·滨州在直角三角形中,若勾为3,股为4,则弦为 ( ) A.5 B.6C.7 D.82.如图K-3-1,在边长为1个单位的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为( )图K-3-1A.5 B.6 C.7 D.253.如图K-3-2,在△ABC中,∠C=90°,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若CE=5,AC=12,则BE的长是( )A.5 B.10 C.12 D.134.如图K-3-3,长方形OABC的边OA的长为3,边AB的长为2,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是( )图K-3-3A.3.5 B.2 2 C. 5 D.135.2018·泸州“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图K-3-4所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为 ( )图K-3-4A.9 B.6C.4 D.36.2017·大连如图K-3-5,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E是AB的中点,CD=DE=a,则AB的长为( )A .2aB .2 2aC .3a D.4 33 a二、填空题7.若直角三角形的两直角边长分别为6和8,则斜边中线的长是__________.8.如图K -3-6,在△ABC 中,CD ⊥AB 于点D ,E 是AC 的中点.若AD =6,DE =5,则CD =________.图K -3-69.直角三角形斜边长是5,一条直角边的长是3,则此直角三角形的面积为________.10.如图K -3-7,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为________.链接听课例3归纳总结图K -3-711.2017·徐州如图K -3-8,已知OB =1,以OB 为直角边作等腰直角三角形A 1BO ,再以OA 1为直角边作等腰直角三角形A 2A 1O ……如此下去,则线段OA n 的长度为________.图K-3-812.2017·黑龙江在△ABC中,AB=12,AC=39,∠B=30°,则△ABC的面积是________.13.如图K-3-9,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,则△ABC的周长是________(结果保留根号).图K-3-9三、解答题14.如图K-3-10,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BC=6,AC=8,求AB与CD的长.链接听课例2归纳总结图K-3-1015.如图K-3-11所示,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE⊥AB于点E,且E为AB的中点,DE=1.(1)求∠A的度数;(2)求AB的长度.图K-3-1116.2017·徐州如图K-3-12,已知AC⊥BC,垂足为C,AC=4,BC=3 3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=________;(2)求线段DB的长度.图K-3-1217. 如图K-3-13,在Rt△ABC中,AC=8,BC=6,一个动点P 从点A出发,以每秒1个单位的速度向点C运动,同时另一个动点Q 从点B出发,以每秒2个单位的速度向点A运动,当一个动点到达终点时另一个动点也随之停止运动.设运动的时间为t秒.(1)用含t的代数式表示线段AQ和CP的长.(2)当t为何值时,AP=AQ?(3)是否存在某一个t值,使AP=BP?若存在,请求出t的值;若不存在,请说明理由.图K-3-13数形结合题在Rt△ABC中,∠ACB=90°,以三边为边分别向外作正方形,如图K-3-14所示,过点C作CH⊥AB于点H,延长CH交MN 于点I.(1)若AC=3 2,BC=2 3,试通过计算证明:四边形AHIN的面积等于正方形AEFC的面积;(2)请结合图形,证明勾股定理:AC2+BC2=AB2.链接听课例3归纳总结图K-3-14详解详析课堂达标1.[解析] A 根据勾股定理直接求得弦长为32+42=5.2.[解析] A 如图,AB=AC2+BC2=5.故选A.3.[解析] D 在Rt△CAE中,CE=5,AC=12,由勾股定理,得AE=CE2+AC2=52+122=13.又∵DE是AB的垂直平分线,∴BE=AE=13.4.[解析] D 由勾股定理可知OB =32+22=13,∴这个点表示的实数是13.5.[解析] D 设直角三角形斜边长为c ,根据勾股定理,得c 2=a 2+b 2.∵大正方形的面积为25,∴c 2=25,即a 2+b 2=25.∵ab =8,∴(a -b)2=a 2+b 2-2ab =25-2×8=9,即a -b =3,即小正方形的边长为3.6.[解析] B 因为CD ⊥AB ,CD =DE =a ,所以CE =CD 2+DE 2=a 2+a 2=2a.又△ABC 中,∠ACB =90°,E 是AB 的中点,所以AE =BE =CE ,所以AB =2CE =2 2a.7.[答案] 5[解析] 已知直角三角形的两直角边长分别为6,8,则斜边长为62+82=10,故斜边的中线长为12×10=5.故答案为5.8.[答案] 8[解析] 因为CD ⊥AB 于点D ,E 是AC 的中点,且DE =5,所以AC =10.在Rt △ADC 中,CD =AC 2-AD 2=102-62=8.9.[答案] 6[解析] ∵直角三角形的斜边长是5,一条直角边的长是3,∴另一条直角边的长为52-32=4,∴该直角三角形的面积S =12×3×4=6.10.[答案] 16[解析] ∵a ,b ,c 都是正方形,∴AC=CD,∠ACD=90°.∵∠ACB+∠DCE=∠ACB+∠CAB=90°,∴∠CAB=∠DCE.又∵∠ABC=∠CED=90°,AC=CD,∴△ACB≌△CDE,∴AB=CE,BC=ED.在Rt△ABC中,由勾股定理,得AC2=AB2+BC2=AB2+ED2,即S b=S a+S c=5+11=16.11.[答案] 2n[解析] ∵△OBA1为等腰直角三角形,OB=1,∴A1B=OB=1,OA1=2OB= 2.∵△OA1A2为等腰直角三角形,∴A1A2=OA1=2,OA2=2OA1=2.∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=2OA2=2 2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2 2,OA4=2OA3=4……∴OA n的长度为2n.12.21 3或15 313.[答案] 6+2 3[解析] ∵△ABD是等边三角形,∴∠B=60°.∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4.在Rt △ABC 中,由勾股定理,得AC =BC 2-AB 2=42-22=2 3,∴△ABC 的周长是AC +BC +AB =2 3+4+2=6+2 3.14.解:在Rt △ABC 中,BC =6,AC =8. ∵AB 2=BC 2+AC 2, ∴AB =10.∵S △ABC =12AB ·CD =12BC ·AC =12×6×8,∴CD =6×810=4.8.15.解:(1)由DE 垂直平分AB , 得AD =BD ,从而得∠A =∠DBE. 又∵BD 平分∠ABC , ∴∠DBE =∠DBC =∠A. 又∵∠C =90°, ∴∠A =30°.(2)∵DE =1,DE ⊥AB ,∠A =30°, ∴AD =2DE =2, ∴AE =AD 2-DE 2=3, ∴AB =2AE =2 3. 16.解:(1)4(2)过点D 作DE ⊥BC 于E. ∵AC =AD ,∠CAD =60°,∴△CAD 是等边三角形, ∴CD =AC =4,∠ACD =60°. ∵AC ⊥BC ,∠ACD =60°, ∴∠BCD =30°.在Rt △CDE 中,CD =4,∠BCD =30°, ∴DE =12CD =2,CE =23,∴BE = 3.在Rt △DEB 中,由勾股定理得DB =7.17.解:(1)∵在Rt △ABC 中,AC =8,BC =6, ∴AB =10,∴AQ =10-2t ,CP =8-t. (2)AP =t ,AQ =10-2t , 令t =10-2t ,解得t =103.故当t 为103时,AP =AQ.(3)不存在.理由:在Rt △PCB 中,∠PCB =90°, ∴CP 2+BC 2=BP 2.∵CP =8-t ,BC =6,BP =AP =t ,∴(8-t)2+62=t 2,解得t =254.∵254>10÷2=5, ∴不存在使AP =BP 成立的t 值. 素养提升证明:(1)∵在Rt △ABC 中,∠ACB =90°,AC =3 2,BC =2 3, ∴AB =AC 2+BC 2=(3 2)2+(2 3)2=30, ∴S △ABC =12AC ·BC =12AB ·CH ,即12×3 2×2 3=12×30CH , ∴CH =6 55,∴AH =AC 2-CH 2=3 305.∵四边形ABMN 为正方形, ∴AN =AB =30.∵S 四边形AHIN =AH ·AN =3 305×30=18,S 四边形AEFC =AC 2=(3 2)2=18,∴四边形AHIN 的面积等于正方形AEFC 的面积. (2)∵四边形AHIN 的面积等于正方形AEFC 的面积, ∴AC 2=AH ·AB , 同理可得BC 2=BH ·AB ,∴AC 2+BC 2=AH ·AB +BH ·AB =AB 2.课时作业(四)[1.2 第2课时勾股定理的应用]一、选择题1.如图K-4-1所示,一文物C被探明位于点A地下24 m处,由于点A地面下有障碍物,考古人员不能垂直下挖,他们从距离点A 10 m的B处斜着挖掘,那么要找到文物至少要挖( )链接听课例1归纳总结图K-4-1A.20 m B.24 m C.26 m D.34 m2.2017·绍兴如图K-4-2,小巷左右两侧是竖直的墙,一架梯子斜靠在左侧墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )图K-4-2A.0.7米 B.1.5米 C.2.2米 D.2.4米3.如图K-4-3,将一根长24 cm的筷子放入底面直径为5 cm,高为12 cm的圆柱形水桶中.设筷子露在水桶外面的长度为h cm,则h的最小值是( )图K-4-3A.13 cm B.12 cmC.11 cm D.9 cm4.自动门开启的联动装置如图K-4-4所示,∠AOB为直角,滑竿AB为定长100 cm,端点A,B可分别在OA,OB上滑动,当滑竿AB的位置如图所示时,OA=80 cm.若端点A向上滑动10 cm,则端点B滑动的距离( )图K-4-4A.大于10 cm B.等于10 cmC.小于10 cm D.不能确定二、填空题5.如图K-4-5,一条公路的两边AB∥CD,在AB上有两棵树M,N,在另一边CD上有一棵树P,测得M,N相距50 m,∠MPC=30°,∠NPD=75°,则公路的宽度为________m.图K-4-56.如图K-4-6是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为________米(结果精确到0.1米,参考数据:2≈1.41,3≈1.73).图K-4-67.2018·黄冈如图K-4-7,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的A处,则蚂蚁从外壁A处到内壁B处的最短距离为________cm(杯壁厚度不计).链接听课例2归纳总结图K-4-7三、解答题8.如图K-4-8,甲、乙两船同时从A港出发,甲船沿北偏东35°方向,以每小时12海里的速度向B岛驶去,乙船沿南偏东55°方向向C岛驶去,2小时后,两船同时到达目的地.若C,B两岛的距离为30海里,则乙船的航速是多少?图K-4-89.如图K-4-9,在长为12 cm,宽为10 cm的长方形零件上钻两个半径为1 cm的孔,孔心离零件边沿的距离都是2 cm,求两个孔心之间的距离.图K-4-910.如图K-4-10,∠AOB=90°,OA=45 cm,OB=15 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?图K-4-1011.如图K-4-11所示,一根长2.5米的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,此时OB的长为0.7米,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)如果木棍的顶端A沿墙下滑0.4米,那么木棍的底端B向外移动多少米?(2)请判断木棍滑动过程中,点P到点O的距离是否发生变化,并简述理由.(3)在木棍滑动过程中,当滑动到什么位置时,△AOB的面积最大?请简述理由,并求出面积的最大值.链接听课例1归纳总结图K-4-11构造法的应用如图K-4-12,公路MN和公路PQ在点P处交会,且∠QPN=30°,点A处有一所中学,AP=160 m,假设拖拉机行驶时,周围100 m以内会受到噪声的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由.若受影响,已知拖拉机的速度为18 km/h,则学校受噪声影响的时间为多少秒?图K-4-12详解详析课堂达标1.[解析] C 在Rt△ABC中,BC=AB2+AC2=102+242=26(m).2.[解析] C 如图,由题意,得AC=2.4米,BC=0.7米,在Rt△ABC中,AB= 2.42+0.72=2.5米,又因为AB=BD,所以在Rt △BDE中,BE=BD2-DE2= 2.52-22=1.5(米),则小巷的宽度为BC +BE=0.7+1.5=2.2(米).3.C4.[解析] A 如图,在Rt△AOB中,已知∠AOB=90°,AB=100 cm,OA=80 cm,根据勾股定理,得OB=60 cm.若端点A向上滑动10 cm,则OA′=90 cm.在Rt△OA′B′中,已知A′B′=100 cm,OA′=90 cm,则根据勾股定理,得OB′=1900 cm<50 cm,故BB′=OB-OB′>10 cm.5.[答案] 25[解析] 过点M作ME⊥CD于点E.∵∠MPC=30°,∠NPD=75°,∴∠MPN =75°.∵AB ∥CD ,∴∠MNP =∠NPD =75°,∴∠MPN =∠MNP ,∴MP =MN =50 m.在Rt △MPE 中,∵∠MPC =30°,∴ME =12MP =25 m. 故答案为25.6.[答案] 2.9[解析] ∵AM =4米,∠MAD =45°,∴DM =4米.∵AM =4米,AB =8米,∴MB =12米.∵在Rt △MBC 中,∠MBC =30°,∴BC =2MC ,∴MC 2+MB 2=(2MC)2,即MC 2+122=(2MC)2,∴MC =4 3,则DC =4 3-4≈2.9(米).7.[答案] 20[解析] 如图,将该圆柱的侧面展开,由题意得BC =32÷2=16,A ′C =14-5+3=12,在Rt △A ′BC 中,A ′B =162+122=20,则蚂蚁从外壁A处到内壁B处的最短距离为20 cm.8.解:根据题意,得AB=12×2=24(海里),BC=30海里,∠BAC=90°,∴AC2+AB2=BC2,∴AC2=BC2-AB2=302-242=324,∴AC=18海里.故乙船的航速为18÷2=9(海里/时).答:乙船的航速为9海里/时.9.解:如图,过圆心O作BC的平行线,过圆心E作CD的平行线,两线相交于点F,则OF⊥EF.∵长方形的长为12 cm,宽为10 cm,两圆的半径均为1 cm,孔心离零件边沿都是2 cm,∴EF=CD-2-2=12-2-2=8(cm),OF=BC-2-2=10-2-2=6(cm).在Rt△EOF中,OE=OF2+EF2=62+82=10(cm).答:两个孔心之间的距离为10 cm.10.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=AC.设AC=x cm,则BC=x cm,OC=(45-x)cm.由勾股定理可知OB2+OC2=BC2,即152+(45-x)2=x2,解得x=25.答:机器人行走的路程BC是25 cm.11.解:(1)如图①,设顶端A下滑至C处,顶端B向外移至D 处.在Rt△ABO中,已知AB=2.5米,OB=0.7米,则AO= 2.52-0.72=2.4(米).∵AO=AC+OC,AC=0.4米,∴OC=2米.∵在Rt△CDO中,CD=AB=2.5米,∴OD=CD2-OC2=1.5米,∴BD=OD-OB=1.5-0.7=0.8(米).答:木棍的底端B向外移动0.8米.(2)不变.理由:在直角三角形中,斜边上的中线等于斜边的一半.由于斜边AB的长度不变,故斜边上的中线OP的长度不变.(3)当△AOB的斜边上的高h等于中线OP时,△AOB的面积最大.如图②,若h与OP不相等,则总有h<OP,故根据三角形的面积公式,可知当h与OP相等时,△AOB的面积最大,此时S△AOB=12 AB·h=12×2.5×1.25=1.5625(米2). 故△AOB 的最大面积为1.5625米2.素养提升解: 如图所示,过点A 作AB ⊥MN ,B 为垂足.在Rt △ABP 中,∵∠APB =30°,AP =160 m ,∴AB =12AP =80 m. ∵点A 到直线MN 的距离小于100 m ,∴这所中学会受到噪声的影响.假设拖拉机在公路MN 上沿PN 方向行驶到点C 处时,学校开始受到噪声影响,那么AC =100 m.由勾股定理,得BC =60 m.同理,假设拖拉机行驶到点D 处时,学校开始脱离噪声影响,则AD =100 m ,∴BD =60 m ,∴CD =120 m.18 km/h =5 m/s ,120÷5=24(s).即学校受噪声影响的时间为24 s.课时作业(五)[1.2 第3课时勾股定理的逆定理]一、选择题1.下列四组线段中,能组成直角三角形的是( )A.a=1,b=2,c=2 B.a=2,b=3,c=4C.a=2,b=4,c=5 D.a=3,b=4,c=52.若△ABC的三边a,b,c满足(a-c)(a2+b2-c2)=0,则△ABC 是( )A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形3.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图K-5-1,其中正确的是 ( )图K-5-14.如图K-5-2,在正方形网格中有一个△ABC,若小方格的边长均为1,则△ABC是 ( )图K-5-2A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不正确5.2018·长沙我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里、12里、13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米二、填空题6.2017·益阳如图K-5-3,在△ABC中,AC=5,BC=12,AB =13,CD是AB边上的中线.则CD=________.图K-5-3。

北师版八年级下册数学第2章2.5.2方案优化的应用习题课件1

北师版八年级下册数学第2章2.5.2方案优化的应用习题课件1

(2)某公司准备组织34名职工从乐山赴成都参加业务培训, 拟单程租用商务车或轿车前往.在不超载的情况下,怎 样设计租车方案才能使所付租金最少?
解:①若只租用商务车,∵34÷6≈6(辆), ∴只租用商务车应租6辆,所付租金为300×6=1 800(元). ②若只租用轿车,∵34÷4≈9(辆), ∴只租用轿车应租9辆,所付租金为240×9=2 160(元). ③若租用两种车且没有空位,设租用商务车m辆,租用轿 车n辆,租金为W元.
解:设乙食材每千克进价为 a 元,则甲食材每千克进价为 2a 元. 由题意得820a-2a0=1. 此方程可化为4a0-2a0=1,即2a0=1,则 a=20. ∴2a=40. 答:甲食材每千克进价为 40 元,乙食材每千克进价为 20 元.
(2)该公司每日用18 000元购进甲、乙两种食材并恰好全部 用完. ①问每日购进甲、乙两种食材各多少千克? 解:设每日购进甲食材 x 千克,乙食材 y 千克. 由题意得4500xx+ +2100yy= =1482(00x0+,y),解得xy==140000., 答:每日购进甲食材 400 千克,乙食材 100 千克.
(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克,
甲计划两种产品共助销60千克,总成本不高于1 260元,
且花生的数量不高于茶叶数量的2倍,则花生、茶叶各
销售多少千克可获得最大利润?最大利润是多少?
解:设花生销售 m 千克,茶叶销售(60-m)千克,获得的
利润为 w 元.
由题意得6mm≤+2(366(0-60m-)m,)≤1
该团队每天可制作1个A类微课或者1.5个B类微课,且团队 每月制作的B类微课数不少于A类微课数的2倍(注:每月制 作的A,B两类微课的个数均为整数).假设团队每月有22天 制作微课,其中制作A类微课a天,制作A,B两类微课的月 利润为w元.

八年级数学下册 (16.3分式方程) 课时同步优化习题(含答案)

八年级数学下册 (16.3分式方程) 课时同步优化习题(含答案)

16.3 分式方程5分钟训练(预习类训练,可用于课前)1.下列各式中,分式方程有________________个.( ) ①53232x x +=-+ ②113-=-x x x ③122-=+y ④x x =+π15 ⑤nm n m m x -=-+2(x 是未知数) A.2 B.3 C.4 D.5答案:B2.(2010浙江模拟,15)分式方程121+=x x 的解是x=___________________. 答案:13.若分式方程332+=++x m x x 有增根,则增根是_______________,此时m=_____________. 解析:方程两边同乘以(x+3),得x+2=m.解这个方程,得x=m-2,因为分式方程有增根,所以增根是x=-3.所以-3=m-2,解得m=-1.所以增根是x=-3,此时m=-1.答案:x=-3 -14.解方程:xx x --=--31232. 解:方程两边同乘以x-3,得x-2=2(x-3)+1.解这个方程,得x=3.检验:当x=3时,x-3=3-3=0,所以x=3是原方程的增根,原方程无解.10分钟训练(强化类训练,可用于课中)1.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ) A.x x 70580=- B.57080+=x x C.x x 70580=+ D.57080-=x x 解析:等量关系是:甲班植80棵树所用的天数=乙班植70棵树所用的天数,若设甲班每天植树x 棵,则根据题意列出的方程是57080-=x x . 答案:D 2.用换元法解方程(x x 1-)2-x 3+3x-6=0时,若设y xx =-1,则原方程变形为关于y 的方程是_________________________. 解析:先将原方程变形:(x x 1-)2+3(x x 1-)+6=0,此方程换元后为y 2+3y-6=0. 答案:y 2+3y-6=03.某市为治理污水,需要铺设一段全长为3 000 m 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的功效比原计划增加25%,结果提前30天完成这一任务,实际每天铺设多长管道?(1)如设原计划每天铺设管道x m,可列方程为__________________.(2)题意同上,问题改为:实际铺设管道完成需用多少天?设实际铺设管道完成需x 天,可列方程为__________________.解析:此题是一题多变,(1)根据提前30天完成任务这一等量关系可列方程:设原计划每天铺设管道x m,实际每天铺设管道(1+25%)x m,根据题意,得xx %)251(30003000+-=30. (2)根据实际施工时,每天的功效比原计划增加25%这一等量关系,可列方程:设实际铺设管道完成用x 天,则原计划用(x+30)天,根据题意,得3030003000+=x x ×(1+25%). 答案:(1)xx %)251(30003000+-=30 (2)3030003000+=x x ×(1+25%) 4.在解方程23132--=--x x x 时,小亮的解法如下: 解:方程两边都乘以x-3,得2-x=-1-2(x-3).解这个方程,得x=3.你认为x=3是原方程的根吗?解:按照解分式方程的步骤,上面的解法没有检验根.将x=3代入原方程中出现了分母为零,所以,x=3是原方程的增根,原方程无解.5.解分式方程:91831332-=+--x x x . 解:先求出3个分母的最简公分母(x+3)(x-3),用它去乘方程的两边,去掉分母,把分式方程转化为整式方程再去解.两边同乘以(x+3)(x-3),得3(x+3)-(x-3)=18, 3x-x=18-3-9,2x=6,x=3.检验:把x=3代入原方程,左边分母(x-3)=3-3=0,∴x=3为原方程的增根.∴原方程无解.6.解方程:1315+=-x x . 解:1315+=-x x , 5(x+1)=3(x-1),5x+5=3x-3,2x=-8,x=-4.检验:将x=-4代入原方程,左边=右边=-1,所以x=-4是原方程的根.7.k 为何值时,方程343-=--x k x x 会产生增根? 解:此例同解分式方程,但不同的是有待定系数k,k 的值决定未知数x 的值,故可用k 的代数式表示x,结合增根产生于最简公分母x-3=0,可建立新的方程求解.去分母,得x-4(x-3)=k,∴x=312k -. 当x=3时,方程会产生增根, ∴312k -=3.∴k=3. 30分钟训练(巩固类训练,可用于课后) 1.一根蜡烛经凸透镜成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式f v u 111++.若u=12 cm ,f=3 cm ,则v 的值为( )A.8 cmB.6 cmC.4 cmD.2 cm解析:将u=12,f=3代入原方程即可.答案:C2.若方程11)1)(1(6=---+x m x x 有增根,则它的增根是( ) A.0 B.1 C.-1 D.1和-1解析:根据增根的意义,使分母为0的根是原方程的增根.故令(x+1)(x-1)=0,解得x=-1或x=1.答案:D3.下列方程中,无解的是( ) A.112-=+x x x x B.112+=-x x x x C.11-=+x x x x D.1111-=+x x 解析:分别去分母解方程,D 中出现x-1=x+1,-1=1的情况,所以D 无解.答案:D4.(2010江苏南通模拟,17)用换元法解方程4112=-+-x x x x ,若设y x x =-1,则可得关于y 的整式方程:_______________.解析:原方程变形为2×xx x x 11-+-=4. 设1-x x =y,原方程可变形为2y+y 1=4. 整理得2y 2-4y+1=0.答案:2y 2-4y+1=05.有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9 000千克和15 000千克.已知第一块试验田每公顷的产量比第二块的少3 000千克,分别求这两块试验田每公顷的产量.你能找出这一问题中的所有等量关系吗?如果设第一块试验田每公顷的产量为x 千克,那么第二块试验田每公顷的产量是___________千克.根据题意,可得方程______________________________.解析:等量关系包括:第一块试验田每公顷的产量+3 000千克=第二块试验田每公顷的产量,每公顷的产量=土地面积总产量,第一块试验田的面积=第二块实验田的面积.第二块试验田每公顷的产量是(x+3 000)千克; 方程为3000150009000+=x x . 答案:(x+3 000) 3000150009000+=x x 6.从甲地到乙地有两条公路:一条是全长为600千米的普通公路,另一条是全长为480千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上快45千米/时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为x 小时,那么它由普通公路从甲地到乙地所需的时间为_______________小时.根据题意可得方程:______________________________.解析:等量关系包括:600千米=客车在普通公路上行驶的平均速度×客车由普通公路从甲地到乙地的时间,480千米=客车在高速公路上行驶的平均速度×客车由高速公路从甲地到乙地的时间,客车在高速公路上行驶的平均速度-客车在普通公路上行驶的平均速度=45千米/时,由高速公路从甲地到乙地的时间=21×由普通公路从甲地到乙地的时间. 答案:2x xx 2600480-=45 7.解方程65879854--+--=--+--x x x x x x x x . 解:原方程可变形为(511-+x )+(911-+x )=(811-+x )+(611-+x ), 即51618191---=---x x x x , 左右两边分别通分得)5)(6(1)8)(9(1--=--x x x x , 从而得到(x-9)(x-8)=(x-6)(x-5),解得x=7.经检验x=7是原方程的根.∴x=7.8.某班组织学生参观科技馆,科技馆为支持学校开展的科普活动,决定按最低标准对学生进行一次性收费,全班共计200元,开展活动时有10名学生因故未能参加,结果平均每人比原计划多支出1元钱,问该班原计划有多少学生参加?解:设原计划有x 名学生参加活动, 则xx 20010200--=1, 解得x 1=50,x 2=-40.经检验,x=50是原方程的根,x=-40不合题意,舍去.答:原计划有50人参加活动.9.你能设法求方程3000150009000+=x x 的解吗? 解:方程两边都乘以x(x+3 000),得9 000(x+3 000)=15 000x.解这个方程,得x=4 500.10.为响应承办“绿色奥运”的号召,某中学初三(2)班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵树,问实际有多少人参加了这次植树活动?解:设原计划有x 人参加植树活动,则实际有1.5x 人参加植树活动. 由题意得xx 5.1180180 =2. 去分母,整理得3x=90,x=30.经检验,x=30是原方程的解.1.5x=1.5×30=45.答:实际有45人参加了植树活动.。

2020--2021学年北师大版数学八年级下册1.2《直角三角形》课时练习(含答案)

2020--2021学年北师大版数学八年级下册1.2《直角三角形》课时练习(含答案)

北师大版数学八年级下册1.2《直角三角形》课时练习一、选择题1.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD2.已知在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF3.在下列条件中,不能判定两个直角三角形全等的是( )A.两条直角边对应相等B.两个锐角对应相等C.一个锐角和它所对的直角边对应相等D.一条斜边和一条直角边对应相等4.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等.其中能判断两直角三角形全等的是()A.①B.②C.③D.①②5.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是()A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°6.下列判定两个直角三角形全等的方法中,不正确的是( )A.两条直角边分别对应相等B.斜边和一锐角分别对应相等C.斜边和一条直角边分别对应相等D.两个三角形的面积相等7.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣ B.1﹣ C.﹣ D.﹣1+8.已知Rt△ABC中,∠C=90°,AC=3,BC=4,AD平分∠BAC,则点B到AD的距离是()A.1.5B.2C.D.9.若等腰三角形的腰长为5cm,底长为8cm,那么腰上的高为( )A.12cmB.10cmC.4.8cmD.6cm10.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6B.4C.4.8D.5二、填空题11.已知:如图,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF,∠D=60°,则∠A=__________.12.如图,已知AB⊥BD,垂足为B,ED⊥BD,垂足为D,AB=CD,BC=DE,则∠ACE= 度.13.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点M在AB上,且∠ACM=∠BAC,则CM的长为_______.14.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为.三、解答题15.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:AD平分∠BAC.16.如图,在△ABC中,CD⊥AB于点D,若AC=,CD=5,BC=13,求△ABC的面积.参考答案1.B2.B3.D4.D5.B;6.D;7.A.8.C.9.C10.D11.答案为:30°。

八年级数学下册 (17.1.2反比例函数的图象和性质数) 课时同步优化习题(含答案)

八年级数学下册 (17.1.2反比例函数的图象和性质数) 课时同步优化习题(含答案)

17.1.2 反比例函数的图象和性质5分钟训练(预习类训练,可用于课前) 1.什么是反比例函数? 答案:一般地,形如y=xk(k 是常数,k≠0)的函数叫做反比例函数. 2.判断下面哪些式子表示y 是x 的反比例函数?为什么?(1)xy=31-; (2)y=5-x ; (3)y=x52-; (4)y=x a 2(a 为常数且a≠0). 答案:(1)(3)(4)是反比例函数,因为(1)(3)(4)是形如y=xk(k 是常数,k≠0)的函数;(2)不是反比例函数,因为(2)不是形如y=xk(k 是常数,k≠0)的函数.3.已知反比例函数y=xk的图象经过点(2,3),则在每一象限内,y 随x 的增大而__________.答案:减小4.画出反比例函数y=x 6和y=x6-的图象. 解析:(1)列表: 1 (2)描点.(3)连线,图象如图.10分钟训练(强化类训练,可用于课中)1.如果反比例函数y=xk的图象经过点(-3,4),那么k 的值是( ) A.-12 B.12 C.34- D.43-解析:将(-3,4)的坐标代入y=xk,得k=-12.答案:A2.如图,某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.右图表示的是该电路中电流I 与电阻R 之间关系的图象,则用电阻R 表示电流I 的函数关系式为( )A.I=R 2B.I=R 3C.I=R6D.I =R 6-解析:设I=Rk,将(3,2)代入即得k=6.答案:C3.(2010深圳模拟,5)函数y=xk(k≠0)的图象如图所示,那么函数y=kx-k 的图象大致是( )解:y=xk在二、四象限,所以k <0,则y=kx-k 向左倾斜,与y 轴交于正半轴. 答案:C4.下图给出了反比例函数y=x32和y=x 32-的图象,你知道哪一个是y=x 32-的图象吗?____.解析:反比例函数y=x32的图象在第一、三象限,而反比例函数y=x 32-的图象在第二、四象限.答案:(2)5.已知反比例函数y=xm 23-,当m_____________时,其图象的两个分支在第一、三象限内;当m_____________时,其图象在每个象限内y 随x 的增大而增大.解析:若使反比例函数y=x m 23-的图象的两个分支在第一、三象限内,需使3m-2>0,即32>m ;若使反比例函数y=x m 23-的图象在每个象限内y 随x 的增大而增大,需使3m-2<0,即32<m .答案: 32>32< 6.直线y=2x 与双曲线y=xk的一个交点坐标为(2,4),则它们的另一个交点坐标是__________. 解析:因为点(2,4)在双曲线y=x k 上,所以4=2k ,得k=8,则它与y=2x 组成方程组,,28⎪⎩⎪⎨⎧==x y x y 解得⎩⎨⎧==4y 2,x 或⎩⎨⎧==-4,y -2,x 所以另一个交点坐标是(-2,-4).答案:(-2,-4)30分钟训练(巩固类训练,可用于课后) 1.若点(-2,y 1)、(1,y 2)、(2,y 3)都在反比例函数y=x1-的图象上,则有( ) A.y 1>y 2>y 3 B.y 1>y 3>y 2 C.y 3>y 1>y 2 D.y 2>y 1>y 3 解析:因为y=x1-在第四象限内随x 的增大y 增大,又知道1<2,所以y 2<y 3.而(-2,y 1)在第二象限,故y 1>0,所以y 1>y 3>y 2. 答案:B2.已知一个矩形的面积为24 cm 2,其长为y cm ,宽为x cm ,则y 与x 之间的函数关系的图象大致是()解析:根据矩形面积公式得y=x24,其中k=24>0,x >0,所以函数关系的图象大致是答案D 的图象. 答案:D 3.已知函数y=xk的图象过点A(6,-1),则下列点中不在该函数图象上的点是( ) A.(-2,3) B.(-1,-6) C.(1,-6) D.(2,-3) 解析:将点A(6,-1)代入y=xk,得k=-6,再将四个选择项点坐标代入解析式验证,两坐标之积不为-6的即不在图象上. 答案:B4.已知k >0,则函数y=kx 、y=xk-的图象大致是下图中的()解析:当k >0时正比例函数y=kx 的图象经过原点和一、三象限,而反比例函数y=-xk的图象在二、四象限,所以选C.选项A 的正比例函数y=kx 的图象经过原点和二、四象限,则k <0.选项B 的反比例函数y=-xk的图象在一、三象限,则-k >0,即k <0.选项D 的错误和选项A 、B 的错误一样. 答案:C 5.反比例函数y=xk(k >0)在第一象限的图象如图所示,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( )A.1B.2C.3D.4解析:△MOP 的面积等于21OP×PM=1,如果设点M 的坐标为(x 1,y 1),因为反比例函数y=xk (k >0)的图象在第一象限,所以OP=|x 1|=x 1,PM=|y 1|=y 1,即21×OP×PM=21x 1y 1=1.所以k=x 1y 1=2.答案:B6.已知反比例函数的图象一定经过点(-3,4),则这个函数解析式是_____________. 解析:设反比例函数解析式为y=x k ,当x=-3时,y=3-k =4,解得k=-12,所以这个函数解析式是y=x12-. 答案:y=x12-7.请你写出一个反比例函数,使它的图象在第二、四象限:_____________. 解析:在二、四象限的反比例函数所具有的性质是k <0.答案:y=x1-(不唯一,k <0即可) 8.已知反比例函数y=xk的图象与直线y=2x 和y=x+1的图象过同一点(1,2),则当x >0时,这个反比例函数值y 随x 的增大而_____________ (填增大或减小).解析:先求直线y=2x 和y=x+1的图象的交点为(1,2),把点(1,2)代入反比例函数y=xk中,得k=2,所以x >0时这个反比例函数值y 随x 的增大而减小. 答案:减小 9.已知双曲线y=xk-3,在每个象限内,自变量x 逐渐增大,y 的值也随着逐渐增大,那么k 的取值范围为_____________. 解析:若使双曲线y=xk-3在每个象限内自变量x 逐渐增大,y 的值也随着逐渐增大,则3-k <0,得k >3. 答案:k >310.已知正比例函数y=kx 与反比例函数y=x3的图象都过点A(m ,1),求此正比例函数解析式及另一个交点的坐标.解:∵y=x 3的图象过A(m ,1)点,则1=m3, ∴m=3,即A(3,1).将A(3,1)代入y=kx ,得k=31, ∴正比例函数解析式为y=x 31. 又xx 331 ,∴x=±3. 当x=3时,y=1;当x=-3时,y=-1. ∴另一交点为(-3,-1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册课时优化——第三章频数分布及其图形
一、精心选一选(每小题3分,共30分)
1.在10,20,40,20,80,90,50,40,40,50,这10个数据中的极差是…………()A.40 B.70 C.80 D.90
2.小丽随机写了一串数“1233 21112233”,则出现数字“3”的频数是…………………()A.3 B.4 C.5 D.6
3.小明3分钟共投篮80次,进了50个球,则小明进球的频率是………………………()A.80 B.50 C.1.6 D.0.625
4.八年级某班50位同学中,1月份出生的频率是0.30,那么这个班1月份出生的同学有()A.15 B.14 C.13 D.12
5.将100个数据分成8个组,如下表:则第6组的频数为………………………………()组号 1 2 3 4 5 6 7 8
频数11 14 12 13 13 x 12 10
A.12 B.13 C.14 D.15
6.九年级(1)班共50名同学,右图是该班体育模拟测试成
绩的频数分布直方图(满分为30,成绩均为整数). 若将
不低于29分的成绩评为优秀,则该班此次成绩优秀的同
学人数占全班人数的百分比是……………………()
A.20% B.44% C.58% D.72%
7.一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分……()A.10组B.9组C.8组D.7组
8.在对2009个数据进行整理的频数分布直方图中,各组频数之和与频率之和分别等于()
A.2009,1 B.2009,2009 C.1,2009 D.1,1
9.要了解全市八年级学生身高在某一范围内所有学生所占比例的大小,需知道相应样本的……………………………………………………………………………………………()A.平均数B.方差C.众数D.频数分布
10.某班有48位同学,在一次数学测检中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频率)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是……………………………………………()
A.9 B.18 C.12 D.6
二、专心填一填(每空格3分,共30分)
11.2002年上海市二月下旬每日最高气温分别为(单位:℃):13,13,12,9,11,16,12,10,则二月下旬气温的极差为℃.
12.容量是80的一个样本,分组后某一小组的频率是0.25,则样本数据在该组的频数是.
13.将50个数据分成3组,其中第一组和第三组的频率之和是0.7,则第二组的频数是.
14.一个样本有20个数,分组以后落在20.5~22.5内的频数是6,则这一小组的频率是.
15.已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频数是0.10,则第六组的频数为.
16.为了了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后分成4组,画出频数分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为4,则第四小组的频率是,参加这次测试的学生有人.17.从某厂生产同种规格的电阻中,抽取100只进行测量,得到一组数据,其中最大值为11.58欧,最小值为10.72欧,对这组数据进行整理时,确定它的组距为0.10,则应分成组.
18.将一个有80个数据的一组数分成四组,绘出频数分布直方图,已知各小长方形的高的比为3:4:2:1,则第一小组的频率为,第二小组的频数为.
三、耐心做一做(本题有4小题,共4 0分)
19.(本题10分)某中学进行了一次演讲比赛,分段统计参赛同学的成绩,结果如下(分数为整数,满分为100分)
请根据表中提供的信息,解答下列问题:
(1)参加这次演讲比赛的同学有;
(2)已知成绩在91~100分的同学为优秀者,那么优胜率为;
(3)画出成绩频数分布直方图.
分数段(分)人数(人)
91~100 4
81~91 6
71~80 8
61~70 2
20.(本题10分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,并定期进行体能测试,下图是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,画出的频数分布直方图的一部分,已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数9.
(1)请将频数分布直方图补充完整;
(2)该班参加这次测试的学生有多少人?
(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?
(4)这次测试中,你能肯定该班学生成绩中位数各落在哪一小班内吗?
21.(本题10分)某中学为了培养学生的社会实践能力,今天“五一”长假期间要求学生参社会调查活动. 为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图,如图所示
(收入取整数,单位:元).
分组频数频率
1000~1200 3 0.060
1200~1400 12 0.240
1400~1600 18 0.360
1600~1800 0.200
18 00~2000 5
2000~2200 2 0.040
合计50 1.000
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭收入的中位数落在小组;
(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?
22.(本题10分)为了了解某中学初三年级250名学生升学考试的数学成绩,从中抽取了50名学生的数学成绩进行分析,求得=94.5,下面是50名学生数学成绩的频数分布表.频率分布表
根据题中给出的条件回答下列问题:
(1)在这次抽样分析的过程中,样本是.
(2)频数分布表中的数据a= ,b= .
(3)估计该校初三年级这次升学考试的数学平均成绩约为分.
(4)在这次升学考试中,该校初三年级数学成绩在90.5~100.5范围内的人数
约为人.
八年级数学(下)素质基础训练(三)
一、选择题
题序 1 2 3 4 5 6 7 8 9 10
答案 C B D A D B A A D B
二、填空题
11、7 12、20 13、15 14、0.3 15、8 16、0.2,40
17、9 18、0.3,32
三、解答题
19、(1)20 (2)20% (3)略
20、(1)
(2)60 (3)80% (4)三组之间
21、(1)
分组频数频率
1000~1200 3 0.060
1 200~1400 1
2 0.240
1400~1600 18 0.360
1600~1800 10 0.200
1800~2000 5 0.100
2000~2200 2 0.040
合计50 1.000
(2)三(3)180(户)
22、(1)50名学生的数学成绩(2)0.06,10 (3)91.35 (4)85。

相关文档
最新文档