椭圆及其标准方程练习题与详细答案
《椭圆》方程典型例题20例(含标准答案解析)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
《椭圆》方程典型例题20例(含标准答案解析]
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=,4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=. ∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-. 将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=,112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b ,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b ,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+ay x ay ,将22222y b a a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b cab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12F PF,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα ∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα, ∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+= ∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
椭圆的定义和标准方程基础练习[含答案解析]
. WORD格式.资料.椭圆的定义与标准方程一.选择题(共19小题)或22223.椭圆上一点P到一个焦点的距离为5,则P 到另一个焦点的距离为()5.椭圆上一动点P到两焦点距离之和为()B7.已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()8.设集合A={1,2,3,4,5},a,b∈A,则方程表示焦点位于y轴上的椭圆()9.方程=10,化简的结果是()B(x≠0)(x≠0)(x≠0)(x≠0)13.已知P是椭圆上的一点,则P到一条准线的距离与P到相应焦点的距离之比为()B14.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦15.如果方程表示焦点在y轴上的椭圆,则m的取值范围是()2217.已知动点P(x、y)满足10=|3x+4y+2|,则动点P的轨迹是()18.已知A(﹣1,0),B(1,0),若点C(x,y)满足=()19.在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是()B二.填空题(共7小题)20.方程+=1表示椭圆,则k的取值范围是_________ .21.已知A(﹣1,0),B(1,0),点C(x,y)满足:,则|AC|+|BC|= _________ .22.设P是椭圆上的点.若F1、F2是椭圆的两个焦点,则PF1+PF2= _________ .23.若k∈Z,则椭圆的离心率是_________ .24.P为椭圆=1上一点,M、N分别是圆(x+3)2+y2=4和(x﹣3)2+y2=1上的点,则|PM|+|PN|的取值范围是_________ .25.在椭圆+=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标是_________ .26.已知⊙Q:(x﹣1)2+y2=16,动⊙M过定点P(﹣1,0)且与⊙Q相切,则M点的轨迹方程是:_________ .三.解答题(共4小题)27.已知定义在区间(0,+∞)上的函数f(x)满足,且当x>1时f(x)<0.(1)求f(1)的值(2)判断f(x)的单调性(3)若f(3)=﹣1,解不等式f(|x|)<228.已知对任意x.y∈R,都有f(x+y)=f(x)+f(y)﹣t(t为常数)并且当x>0时,f(x)<t(1)求证:f(x)是R上的减函数;(2)若f(4)=﹣t﹣4,解关于m的不等式f(m2﹣m)+2>0.29.已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=﹣3.(1)试证明:函数y=f(x)是R上的单调减函数;(2)试证明:函数y=f(x)是奇函数;(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.30.已知函数是奇函数.(1)求a的值;(2)求证f(x)是R上的增函数;(3)求证xf(x)≥0恒成立.参考答案与试题解析一.选择题(共19小题)或,,22223.椭圆上一点P到一个焦点的距离为5,则P 到另一个焦点的距离为(),∴a=5,5.椭圆上一动点P到两焦点距离之和为()B7.已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()8.设集合A={1,2,3,4,5},a,b∈A,则方程表示焦点位于y轴上的椭圆()9.方程=10,化简的结果是()B)的距离,所以椭圆的方程为:.(x≠0)(x≠0)(x≠0)(x≠0)13.已知P是椭圆上的一点,则P到一条准线的距离与P到相应焦点的距离之比为()Bc===14.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦15.如果方程表示焦点在y轴上的椭圆,则m的取值范围是().22可化为17.已知动点P(x、y)满足10=|3x+4y+2|,则动点P的轨迹是(),等式左边为点到定直线的距离的,由椭圆定义即可判断解:∵10的距离的18.已知A(﹣1,0),B(1,0),若点C(x,y)满足=(),整理得:.可知点)满足,.c=19.在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是B代入得,,即,即故该椭圆离心率的取值范围是二.填空题(共7小题)20.方程+=1表示椭圆,则k的取值范围是k>3 .+=1表示椭圆,则解:方程=121.已知A(﹣1,0),B(1,0),点C(x,y)满足:,则|AC|+|BC|= 4 .,按照椭圆的第二定义,=,∴a=2,22.设P是椭圆上的点.若F1、F2是椭圆的两个焦点,则PF1+PF2= 10 .解:椭圆是椭圆上的点,23.若k∈Z,则椭圆的离心率是.,=,=故答案为24.P为椭圆=1上一点,M、N分别是圆(x+3)2+y2=4和(x﹣3)2+y2=1上的点,则|PM|+|PN|的取值范围是[7,13] .+解:依题意,椭圆25.在椭圆+=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标是.+=1解:由椭圆+,右准线方程为:=2﹣x=故答案为:26.已知⊙Q:(x﹣1)2+y2=16,动⊙M过定点P(﹣1,0)且与⊙Q相切,则M点的轨迹方程是:=1 .=故答案为:三.解答题(共4小题)27.已知定义在区间(0,+∞)上的函数f(x)满足,且当x>1时f(x)<0.(1)求f(1)的值(2)判断f(x)的单调性(3)若f(3)=﹣1,解不等式f(|x|)<2,(,,或28.已知对任意x.y∈R,都有f(x+y)=f(x)+f(y)﹣t(t为常数)并且当x>0时,f(x)<t(1)求证:f(x)是R上的减函数;(2)若f(4)=﹣t﹣4,解关于m的不等式f(m2﹣m)+2>0.29.已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=﹣3.(1)试证明:函数y=f(x)是R上的单调减函数;(2)试证明:函数y=f(x)是奇函数;(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.30.已知函数是奇函数.(1)求a的值;(2)求证f(x)是R上的增函数;(3)求证xf(x)≥0恒成立.是奇函数,其定义域为)∵函数的定义域为)可得>>=﹣。
《椭圆》方程典型例题20例(含标准答案)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
《椭圆》方程典型例题20例(含标准答案)
例1 椭圆的一个顶点为()02,A 分析:解:(1)当()02,A 椭圆的标准方程为:11422=+y x (2)当()02,A 为短轴端点时,b 椭圆的标准方程为:116422=+y x 说明:横竖的,因而要考虑两种情况.例2 解:31222⨯⨯=c a c ∴23c =∴3331-=e . 说明:和c 的齐次方程,再化含e 例3 已知中心在原点,焦点在x 点,OM 的斜率为0.25解:由题意,设椭圆方程为22+ax )直线与曲线的综合问题,经常要借)22y ,与焦点()04,F 的距离成等差数BT 的斜率k .(2)因为线段AC 221=+-y y y 又∵点T 在x ()212221024x x y y x --=-又∵点()11y x A ,,(2x B ∴ ()212125259x y -=()222225259x y -= ∴ (12221259x y y +-=-将此式代入①,并利用 253640-=-x ∴ 4540590=--=x k BT例5 已知椭圆13422=+yx ,距离MN 是1MF 与2MF 解:假设M 存在,设M 2=a ,3=b ,∴=c ∵左准线l 的方程是=x ① ②.k ,利用条件求k . ⎪⎭⎫ ⎝⎛-=21x k .代入椭圆方程,并整理∵P 是弦中点,∴121=+x x 所以所求直线方程为342-+y x 分析二:设弦两端坐标为(11y x ,率:2121x x y y --.解法二:设过⎪⎭⎫⎝⎛2121,P ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x .将③、④代入⑤得212121-=--x x y y 所求直线方程为0342=-+y x 说明:(1迹;过定点的弦中点轨迹.(2(3线问题也适用.例7 (1)长轴长是短轴长的2(2)在x 12222=+b y a x 求出1482=a ,372=b ,1=. .182=a .故所求方程为191822=+y x .MF AM 2+为最小值M 到右准线的距离,从而得最小8=x l :.过A 作l AQ ⊥,垂足为AQ ,即M 为所求点,因此说明:是M 例9 求椭圆32x 分析:值.解:椭圆的参数方程为⎩⎨⎧距离为26sin cos 3=+-=θθd 当13sin -=⎪⎭⎫⎝⎛-θπ时,d 说明:例10的点的最远距离是7分析:要注意讨论b 提高逻辑推理能力.0>>b a 待定.21<b 矛盾.⎪⎭⎫-21,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫ ⎝⎛-=-==a b a b a a c e 2143112=-=-=e a b ,即a 设椭圆上的点()y x ,到点 ⎝⎛0P 22222cos 23=⎪⎭⎫ ⎝⎛-+=θa y x d sin 3sin 34222--=θθb b b 421sin 3222+⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当由题设得()22237⎪⎭⎫⎝⎛+=b 于是当b21sin -=θ时2d 由题设知()34722+=b,∴∴所求椭圆的参数方程是⎩⎨⎧y x 由21sin -=θ,cos θ例11 设x ,R ∈y ,y x 63222=+分析:考虑椭圆及圆的位置关系求得最值.0,0)点和(3,0)点. )1->.0,0)点时,半径最41=+m ,∴15=m .a 、b 如何变化, 120≠∠APB .(2分析:22222y ba a x -=解:(1 ⎩⎨⎧b x 2于是k AP=∵APB ∠∴tan ∠∵22c a >∴tan ∠故tan ∠(2)设∴tan ∠12-=k c .由21=e ,得4=k . k -1.8与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 例14 已知椭圆142222=+by b x 分析:解法一:由142222=+by b x ,得由椭圆定义,a PF PF 221=+b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,∴b ePF d 3211==,即P 到左准线的距离为b 32解法二:∵e d PF =22,2d 为P ∴b ePF d 33222==. 又椭圆两准线的距离为c a 22=⋅∴P 到左准线的距离为b 338说明:圆的第二定义.3π=∠POx ,求P 点坐标.3π, 552, )0>上的一点,P 到左焦点1F 和右焦.ca 20+,∴01ex a PQ e r +==说明:例17 已知椭圆15922=+y x 上一点.(1) 求1PF PA +(2) 求223PF PA +分析:即代数方法.二是数形结合,解:(1)如上图,62=a ,)0,2(2F ,22AF PF PA -≥,∴1+PF PA 22AF PF PA -=时成立,此时P 、由22AF PF PA +≤,∴+PA 22AF PF PA +=时成立,此时P 、==45,02得两交点 ,P 点与2P 重合时,2PF PA +取Q 为垂足,由3=a ,2=c ,PQ PA PF PA +=+223,要使29=x .1,代入椭圆得满足条件的A 向相应准线作垂线段.巧用(2)分析:解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S )sin 2,cos 3(θθ则2sin 12sin 2cos 34=⨯⨯=θθS 故椭圆内接矩形的最大面积为说明:问题,用参数方程形式较简便.例19 已知1F ,2F (1)(2)求证21F PF ∆分析:12222=+b y a x (0>>b a )),(11y x P ,)0,(1c F -,)0,(2c F 方程联立消去21x 得2312212-+cy b y c 出1y 可以求出21F PF ∆思路二:利用焦半径公式1PF =再利用],[1a a x -∈,可以确定离心率a 2求解.),11y ,)0,(1c F -,)0,(2c F ,0>c ,(1)在21F PF ∆︒==60sin 2sin sin cn m βα∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα∴sin sin 60sin βα=+︒==a c e 212cos21≥-=βα.当且仅当βα=(2)在21F PF ∆-+=2)2(222mn n m c mn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即∴60sin 2121mn S F PF ︒=∆即21F PF ∆说明:椭圆上的一点P 21PF PF +的结,若这个椭圆上总存在点P ,使AP OP ⊥,转化为P 点坐的一个不等式,转化为关于e 的不等222ba b -=θ, ,又222c a b -= P 使AP OP ⊥.如何证明?。
《椭圆》方程典型例题20例(含实用标准问题详解)
《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
高中数学人教A版选择性必修第一册3.1.1椭圆及其标准方程 课时分层练习题含答案解析
3.1.1 椭圆及其标准方程基础练习一、单选题1.已知P 是椭圆2212516x y +=上的一个点,1F 、2F 是椭圆的两个焦点,若13PF =,则2PF 等于( ) A .10 B .7 C .5 D .22.以()11,0F -,()21,0F 为焦点,且经过点1,2⎛⎫ ⎪⎝⎭的椭圆的标准方程为( )A .22132x y +=B .22143x y +=C .22134x y +=D .2214x y +=3.已知椭圆143x y +=的两个焦点为1F ,2F ,过2F 的直线交椭圆于M ,N 两点,若1F MN△的周长为( ) A .2 B .4C .6D .84.椭圆22221(0)x y a b a b +=>>的左右焦点分别为12(2,0),(2,0)F F -,P 为椭圆上一点,若12||||6PF PF +=,则12PF F △的周长为( )A .10B .8C .6D .45.已知椭圆C :21y x k+=的一个焦点为(0,-2),则k 的值为( )A .5B .3C .9D .25标准方程是( )A .221168x y +=B .221168y x +=C .2212416x y +=D .221249x y +=7.已知椭圆C :()2210x y a b a b+=>>的右焦点为),右顶点为A ,O 为坐标原点,过OA的中点且与坐标轴垂直的直线交椭圆C 于M ,N 两点,若四边形OMAN 是正方形,则C 的方程为( )A .2213x y +=B .22153x y +=C .22175x y +=D .22197x y +=【答案】A8.已知点12,F F分别是椭圆1259x y+=的左、右焦点,点P在此椭圆上,1260F PF∠=,则12PF F∆的面积等于A B.C.D.60及三角形面积公式即可求解【详解】椭圆225x+9.已知m为3与5的等差中项,n为4与16的等比中项,则下列对曲线22:1x yCm n+=描述正确的是()A.曲线C可表示为焦点在y轴的椭圆B.曲线C可表示为焦距是4的双曲线C.曲线C的椭圆D.曲线C可表示为渐近线方程是y=的双曲线A .M 到两定点()0,2,()0,2-的距离之和为4B .M 到两定点()0,2,()0,2-的距离之和为6C .M 到两定点()3,0,()3,0-的距离之和为6D .M 到两定点()3,0,()3,0-的距离之和为8 【答案】BD【分析】根据椭圆的定义进行逐一判断即可.【详解】因为两定点()0,2,()0,2-的距离为46<,所以选项A 不符合椭圆定义,选项B 符合椭圆定义;因为两定点()3,0,()3,0-的距离为68<,所以选项C 不符合椭圆定义,选项D 符合,11.在曲线()22:10,0C Ax By A B +=>>中,( )A .当AB >时,则曲线C 表示焦点在y 轴的椭圆 B .当A B ≠时,则曲线C 为椭圆 C .曲线C 关于直线y x =对称D .当A B ≠时,则曲线C 的焦距为【答案】ABD12.若椭圆221254x y +=上一点P 到焦点1F 的距离为3,则点P 到另一焦点2F 的距离为______.【详解】 又PF 13.过椭圆142x y +=的一个焦点1F 的弦AB 与另一个焦点2F 围成的2ABF 的周长是______.【答案】8,利用椭圆的定义可得出2ABF 的周长由题意可知,2ABF 的周长为12BF BF +14.椭圆22115x y m ++=的焦距为4,则m =______.1715.已知方程164x y m m +=+-表示焦点在y 轴上的椭圆,则实数m 的取值范围是_______;16.椭圆194x y +=的短轴长为______.17.椭圆123x y +=1的一个焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则点M 的纵坐标为_____.19.已知椭圆22110036x y+=上一点P到左焦点的距离为7,求点P到右焦点的距离.20.已知椭圆的两个焦点分别为1和2,再添加什么条件,可使得这个椭圆的方程为221 259x y+=?(1)22110064x y +=; (2)221916x y +=;(3)2222x y +=.49-,求点A 的轨迹方程..用圆规画一个圆,然后在圆内标记点,并把圆周上的点1折叠到点,连接1,标记出1OP 与折痕1l 的交点1M (如图),若不断在圆周上取新的点2P ,3P ,…进行折叠并得到标记点2M ,3M ,…,则点1M ,2M ,3M ,…形成的轨迹是什么?并说明理由.24.已知定点1、2和动点.(1)再从条件①、条件②这两个条件中选择一个作为已知,求:动点M 的轨迹及其方程. 条件①:1212MF MF += 条件②:128MF MF +=(2)()1220MF MF a a +=>,求:动点M 的轨迹及其方程.一、单选题1.椭圆22110064x y+=的焦点为1F,2F,椭圆上的点P满足1260F PF∠=︒,则点P到x轴的距离为()A B C D.64 312PF F S=2.已知1F 、2F 是椭圆2:1163x y C +=的两个焦点,P 为椭圆上一点,则12PF PF ⋅( )A .有最大值,为16B .有最小值,为16C .有最大值,为4D .有最小值,为43.已知椭圆C :221259x y +=,1F ,2F 分别为它的左右焦点,A ,B 分别为它的左右顶点,点P是椭圆上的一个动点,下列结论中正确的有( ) A .存在P 使得122F PF π∠=B .12cos F PF ∠的最小值为725-C .12PF PF ⊥,则12F PF △的面积为9D .直线PA 与直线PB 斜率乘积为定值925根据120D D F F ⋅<得,结合余弦定理与基本不等式求解判断进而计算面积判断选项,由于()(124,3,4,3F F D D =--=-,1216D D F F ⋅=-12F PF S=对于D 4.舒腾尺是荷兰数学家舒腾设计的一种作图工具,如图,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处的铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动.当点D 在滑槽AB 内做往复移动时,带动点N 绕O 转动,点M 也随之而运动.记点N 的运动轨迹为1C ,点M 的运动轨迹为2C .若1O N D N ==,3MN =,过2C 上的点P 向1C 作切线,则切线长的最大值为______.依题意,2MD DN =,且1DN ON ==,)()00,2x y x t y -=-,且()0220x t x y ⎧-⎪⎨+⎪⎩5.如图,1,2分别是椭圆的左、右焦点,点P 是以12为直径的圆与椭圆在第一象限内的一个交点,延长2PF 与椭圆交于点Q ,若124PF QF =,则直线2PF 的斜率为_______.在1PF Q 中,6.与椭圆22194x y +=有相同的焦点,且过点()3,2-的椭圆方程为______.【答案】2211510x y +=【分析】结合已知条件求出c ,然后利用7.已知直线y =与椭圆在第一象限内交于M 点,又MF 2⊥x 轴,F 2是椭圆的右焦点,另一个焦点为F 1,若122MF MF ⋅=,求椭圆的标准方程.,进而由122MF MF ⋅=求得.⎝又因为122MF MF ⋅=,所以122,MF MF c ⎛⋅=- ⎝()2,2M ,1F 矩形的最大面积.9.已知P 是椭圆221259x y +=上的一点,1F 、2F 为椭圆的两个焦点.(1)若1290F PF ∠=︒,求12PF F 的面积; (2)求12PF PF ⋅的最大值. 12Rt F PF 中,11002PF -⋅12F PF 的面积为(1)求曲线C 的方程;(2)曲线C 上是否存在点M 使12MF MF ⊥?若存在,求出点M 的坐标;若不存在,说明理由.11.已知椭圆1C 与椭圆2:1305x y C +=具有共同的焦点1F ,2F ,点P 在椭圆1C 上,12PF PF ⊥,______.在下面三个条件中选择一个,补充在上面的横线上,并作答.①椭圆1C 过点();②椭圆1C 的短轴长为10;③椭圆1C 的离心率为2.(1)求椭圆1C 的标准方程; (2)求12PF F △的面积.12PF F S=12.已知椭圆()2210x y a b a b +=>>的长轴长为4,右焦点到直线4x =的距离为3.(1)求椭圆的方程;(2)若直线y x =M ,N 两点,椭圆上存在点P ,使得()()0OP OM ON λλ=+>,求实数λ的值.所以(0,OM =-,87ON ⎛= ⎝又()83,7OP OM ON λλ⎛=+= ⎝8363,77P λλ⎛⎫- ⎪ ⎪⎝⎭,13.已知P 点坐标为(0,2)-,点,A B 分别为椭圆22:1(0)x yE a b a b+=>>的左、右顶点,ABP △是等腰直角三角形,长轴长是短轴长的2倍. (1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于,M N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.所以0OM ON ⋅>,即12121x x y y x +=)(2122k x x k +-。
椭圆定义及标准方程专项练习含解析
定义及标准方程一、单选题(共28题;共56分)1.已知椭圆+=1的两个焦点F1,F2,M是椭圆上一点,且|MF1|-|MF2|=1,则△MF1F2是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 等边三角形2.已知椭圆上的一点到左焦点的距离为6,则点到右焦点的距离为()A. 4B. 6C. 7D. 143.已知椭圆的两个焦点是,椭圆上任意一点与两焦点距离的和等于4,则椭圆C的离心率为()A. B. C. D. 24.如果方程表示焦点在轴上的椭圆,则的取值范围是().A. B. C. D.5.已知椭圆的一点到椭圆的一个焦点的距离等于6,那么点到椭圆的另一个焦点的距离等于( )A. 2B. 4C. 6D. 86.椭圆的左右焦点分别为,,一条直线经过与椭圆交于,两点,则的周长为()A. B. 6 C. D. 127.已知椭圆的一个焦点坐标为,则k的值为()A. 1B. 3C. 9D. 818.已知椭圆的中点在原点,焦点在轴上,且长轴长为,离心率为,则椭圆的方程为().A. B. C. D.9.椭圆的焦距为8,且椭圆的长轴长为10,则该椭圆的标准方程是()A. B. 或C. D. 或10.方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.11.若直线经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为()A. B. C. 或 D. 以上答案都不对12.已知椭圆C:中,,,则该椭圆标准方程为A. B. C. D.13.已知方程的曲线是焦点在轴上的椭圆,则实数的取值范围是()A. B. C. D. 且14.已知椭圆的两个焦点是,且点在椭圆上,则椭圆的标准方程是()A. B. C. D.15.P为椭圆上一点,、为左右焦点,若则△的面积为()A. B. C. 1 D. 316.已知椭圆:()的左、右焦点为,,离心率为,过的直线交于,两点.若的周长为,则的方程为()A. B. C. D.17.以双曲线的焦点为顶点,顶点为焦点的椭圆方程为( )A. B. C. D.18.椭圆的焦点在轴上,中心在原点,其短轴上的两个顶点和两个焦点恰好为边长为的正方形的顶点,则椭圆的标准方程为()A. B. C. D.19.椭圆的焦距为2,则m的值等于A. 5或3B. 8C. 5D. 或20.焦点坐标为,长轴长为10,则此椭圆的标准方程为()A. B. C. D.21.点A(a,1)在椭圆的内部,则a的取值范围是()A. -<a<B. a<-或a>C. -2<a<2D. -1<a<122.已知方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.23.椭圆的一个焦点坐标是()A. B. C. D.24.已知F1F2为椭圆的两个焦点,过F2作椭圆的弦AB,若的周长为16,椭圆的离心率,则椭圆的方程为()A. B. C. D.25.“”是“方程表示焦点在y轴上的椭圆”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件26.已知、为椭圆两个焦点,P为椭圆上一点且,则()A. 3B. 9C. 4D. 527.已知椭圆的焦点在轴上,离心率为,则的值为()A. B. C. D. 或28.方程2x2+ky2=1表示的是焦点在y轴上的椭圆,则实数k的取值范围是( )A. (0,+∞)B. (2,+∞)C. (0,2)D. (0,1)二、填空题(共17题;共19分)29.已知椭圆中心在原点,一个焦点为,且长轴长是短轴长的2倍.则该椭圆的长轴长为________;其标准方程是________.30.已知椭圆的左、右两个焦点分别为,若经过的直线与椭圆相交于两点,则的周长等于________31.已知F1,F2为椭圆的两个焦点,过F1的直线交椭圆于A,B两点,若|F2A|+|F2B|=12,则|AB|=________.32.已知两定点、,且是与的等差中项,则动点P的轨迹方程是________ .33.已知点,点B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交于点,则动点的轨迹方程为________.34.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则________.35.已知椭圆:的左、右焦点分别为、,以为圆心作半经为1的圆,为椭圆上一点,为圆上一点,则的取值范围为________.36.焦点在x轴上,短轴长等于16,离心率等于的椭圆的标准方程为________.37.椭圆的焦点为,点P在椭圆上,若,则的大小为________.38.P是椭圆上的点,F1和F2是该椭圆的焦点,则k=|PF1|·|PF2|的最大值是________。
椭圆及其标准方程练习题及答案
椭圆及其标准方程练习题一、课前练习:1.判断下列各椭圆的焦点位置,并说出焦点坐标、焦距。
(1) (2) (3)2.求适合下列条件的椭圆标准方程:两个焦点的坐标分别为(- 4,0),(4,0),椭圆上一点P 到两焦点距离的和等于10。
3.方程表示焦点在轴的椭圆时,实数m 的取值范围是 。
二、典例:例1:已知椭圆两个焦点的坐标分别是(- 2,0),(2,0),并且经过点(25,- 23),求它的标准方程。
变式练习1:与椭圆x 2+4y 2=16有相同焦点,且过点(5,-6),的椭圆方程是 。
14322=+y x 1422=+y x 1422=+y x 221||12x y m +=-y例2:如图,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?例3:如图,设A 、B 的坐标分别为(- 5,0),(5,0),直线AM ,BM 相交于点M ,且它们的斜率之积为 -94,求点M 的轨迹方程。
变式练习2:已知定圆x 2+y 2-6x -55=0,动圆M 和已知圆内切且过点P (-3,0),求圆心M 的轨迹及其方程。
三、巩固练习:1.椭圆的焦距是 ,焦点坐标为 ;若CD 为过左焦点F 1的弦,则△F 2CD 的周长为 。
1.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A 、B 为焦点的椭圆”,那么-------------------------------------------------------------------------------------------------( )A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C .甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件191622=+y x2.椭圆5x 2 - ky 2=5的一个焦点是(0,2),那么k 等于-------------------------------------------------------( )A .- 1B .1C .5D .- 54.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为-----------------------------------( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)5.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件,则点P 的轨迹是( )A .椭圆 B .线段 C .不存在 D .椭圆或线段6.椭圆和具有-----------------------------------------------------------------()A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴7.已知:△ABC 的一边长BC =6,周长为16,求顶点A 的轨迹方程。
椭圆的标准方程(含答案)
一 椭圆的标准方程习题一、选择题1.设定点F 1(0,-3),F 2(0,3),动点P (x ,y )满足条件|PF 1|+|PF 2|=a (a >0),则动点P 的轨迹是( )A .椭圆B .线段C .椭圆、线段或不存在D .不存在2.椭圆2x 2+3y 2=12的两焦点之间的距离是( )A .210 B.10 C. 2 D .2 23.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 的值为( )A .-1B .1 C. 5 D .- 54.已知方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .-9<m <25 B .8<m <25 C .16<m <25D .m >85.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是( )A .(0,±m -n )B .(±m -n ,0)C .(0,±n -m )D .(±n -m ,0)6.若△ABC 的两个顶点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( ) A.x 225+y 29=1 B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 7.点P 为椭圆x 25+y 24=1上一点,以点P 以及焦点F 1、F 2为顶点的三角形的面积为1, 则P 点的坐标为( )A.⎝⎛⎭⎫±152,1B.⎝⎛⎭⎫152,±1C.⎝⎛⎭⎫152,1D.⎝⎛⎭⎫±152,±1 8.已知椭圆过点P ⎝⎛⎭⎫35,-4和点Q ⎝⎛⎭⎫-45,3,则此椭圆的标准方程是( ) A.y 225+x 2=1 B.x 225+y 2=1或x 2+y 225=1 C.x 225+y 2=1 D .以上都不对 9.AB 为过椭圆x 2a 2+y 2b2=1中心的弦,F (c,0)为椭圆的左焦点,则△AFB 的面积最大值是( ) A .b 2B .bcC .abD .ac二、填空题10.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的交点到两焦点的距离分别为3和1, 则椭圆的标准方程为________.11.过点(-3,2)且与x 29+y 24=1有相同焦点的椭圆方程是________. 三、解答题12.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.13.求以椭圆9x 2+5y 2=45的焦点为焦点,且经过点M (2,6)的椭圆的标准方程.二 椭圆的标准方程(答案)1、[答案] C [解析] 当a >|F 1F 2|=6时,动点P 的轨迹为椭圆;当a =|F 1F 2|=6时,动点P 的轨迹为线段;当a <|F 1F 2|=6时,动点P 的轨迹不存在2、[答案] D [解析] 椭圆方程2x 2+3y 2=12可化为:x 26+y 24=1,a 2=6,b 2=4,c 2=6-4=2,∴2c =2 2. 3、[答案] B [解析] 椭圆方程5x 2+ky 2=5可化为:x 2+y 25k =1, 又∵焦点是(0,2),∴a 2=5k ,b 2=1,c 2=5k-1=4,∴k =1. 4、[答案] B[解析] 由题意得⎩⎪⎨⎪⎧ m +9>025-m >0m +9>25-m ,解得8<m <25.5、[答案] C [解析] 椭圆方程mx 2+ny 2+mn =0可化为x 2-n +y 2-m =1, ∵m <n <0,∴-m >-n ,椭圆的焦点在y 轴上,排除B 、D ,又n >m ,∴m -n 无意义,排除A ,故选C.6、[答案] D[解析] |AB |=8,|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D.7、[答案] D [解析] S △PF 1F 2=12×|F 1F 2|·|y P |=12×2×|y P |=1, ∴|y P |=1,y P =±1,代入椭圆方程得,x P =±152. 8、[答案] A [解析] 设椭圆方程为:Ax 2+By 2=1(A >0,B >0)由题意得⎩⎨⎧ 925A +16B =11625A +9B =1,解得⎩⎪⎨⎪⎧A =1B =125. 9、[答案] B [解析] S △ABF =S △AOF +S △BOF =12|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b .∴△ABF 面积的最大值为bc .10、[答案] x 24+y 23=1 [解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3a -c =1,∴⎩⎪⎨⎪⎧a =2c =1,三 故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1. 11、[答案] x 215+y 210=1 [解析] 因为焦点坐标为(±5,0),设方程为x 2a 2+y 2a 2-5=1,将(-3,2)代入方程可得9a 2+4a2-5=1,解得a 2=15,故方程为x 215+y 210=1.12、[解析] 设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433.13、[解析] 由9x 2+5y 2=45,得y 29+x 25=1.其焦点F 1(0,2)、F 2(0,-2).设所求椭圆方程为y 2a 2+x 2b 2=1.又∵点M (2,6)在椭圆上,∴6a 2+4b 2=1①又a 2-b 2=4②解①②得a 2=12,b 2=8.故所求椭圆方程为y 212+x 28=1.。
椭圆的标准方程和几何性质练习题
椭圆的标准方程和几何性质练习题一1. 假设曲线ax 2+by 2=1为核心在x 轴上的椭圆,那么实数a ,b 知足( )A .a 2>b 2B.1a <1bC .0<a <bD .0<b <a答案:C 由ax 2+by 2=1,得x 21a+y 21b=1,因为核心在x 轴上,因此1a >1b>0,因此0<a <b . 2. 一个椭圆中心在原点,核心F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2| 成等差数列,那么椭圆方程为( )A.2x 8+2y 6=1B.2x 16+2y 6=1C.2x 8+2y 4=1D.2x 16+2y 4=1 答案:A 设椭圆的标准方程为2222x y a b +=1(a>b>0)。
由点P(2,3)在椭圆上知2243a b+=1。
又|PF 1|,|F 1F 2|,PF 2|成等差数列,那么|PF 1|+|PF 2|=2|F 1F 2|,即2a=2×2c,c 1,a 2=又c 2=a 2-b 2,联立得a 2=8,b 2=6 3. 已知△ABC 的极点B 、C 在椭圆x 23+y 2=1上,极点A 是椭圆的一个核心,且椭圆的另外一个核心在BC 边上,那么△ABC 的周长是( )A .23 B .6 C .43 D .12答案:C 如图,设椭圆的另外一个核心为F ,那么△ABC 的周长为|AB |+|AC |+|BC |=(|AB |+|BF |)+(|AC |+|CF |)=4a =43。
4. 已知椭圆x 2+my 2=1的离心率e ∈⎝ ⎛⎭⎪⎫12,1,那么实数m 的取值范围是( )A. ⎝⎛⎭⎫0,34B. ⎝⎛⎭⎫43,+∞C. ⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞ D. ⎝⎛⎭⎫34,1∪⎝⎛⎭⎫1,43答案:C 在椭圆x 2+my 2=1中,当0<m <1时,a 2=1m ,b 2=1,c 2=a 2-b 2=1m-1,∪e 2=c 2a 2=1m -11m=1-m ,又12<e <1,∪14<1-m <1,解得0<m <34,当m >1时,a 2=1,b 2=1m ,c 2=1-1m , e 2=c 2a 2=1-1m 1=1-1m ,又12<e <1,∪14<1-1m <1,解得m >43,综上可知实数m 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞。
椭圆的定义和标准方程的基本练习(包括答案).doc
椭圆的定义和标准方程的基本练习(包括答案)椭圆和标准方程1的定义。
选择题(共19题)1。
如果F1 (3,0),F2 ({3,0),从点p到F1,F2的距离之和是10,那么点p的轨迹方程是()a.b.c.d .或2。
移动圆内接圆x2 y2 6x 5=0,圆x2y2-6x-91=0。
那么运动圆的中心轨迹是()a。
椭圆b。
双曲线c。
抛物线d。
圆3。
从椭圆上的点p到一个焦点的距离是5,那么从点p到另一个焦点的距离是()。
已知坐标平面上的两点a ({1,0)和b (1,0 ),从移动点p到a和b的距离之和为常数2。
那么运动点p的轨迹是()a .椭圆b .双曲线c .抛物线d .线段5。
从椭圆上的移动点p到两个焦点的距离之和为()a. 10b.8c.6d。
已知两点f1 ({1,0),F2 (1,0),并且|f1F2|是|PF1|和|PF2|的等差中值,则移动点p的轨迹方程为()a.b.c.d.7。
已知F1和F2是椭圆的两个焦点=1,并且穿过点F2的直线在点a和b处与椭圆相交。
如果|AB|=5,则|AF1| |BF1|等于()A.16B.11C.8D.3 8。
设a={1,2,3,4,5},A,b∈A,则该方程表示焦点在y轴上的椭圆()A.5 B.10 C.20 D.25 9。
简化的结果是在平面上有一个长度为2的线段AB和一个移动点p(a . b . c . d . 10)。
如果满足|PA| |PB|=8,则|PA|的取值范围为()a. [1,4] b. [2,6] c. [3,5] d. [3,6] 11。
设定点F1(0,651233),F2(0,3)并满足条件|PF1| |PF2|=6,则运动点P的轨迹是()a .椭圆b .线段c .椭圆或线段d .不存在。
12.已知△ABC的周长为20,顶点为B (0,651234),C (0,4),那么顶点a的轨迹方程为()a. (x ≠ 0) b. (x ≠ 0) c. (x ≠ 0) d. (x ≠ 0) 13。
椭圆及其标准方程练习题与详细答案
x2 1.椭圆
y2
1上一点 P 到一个焦点的距离为 5,则 P 到另一个焦点的距离
25 9
为( )
A.5
B.6
C.4
D.10
2.椭圆 x 2 y 2 1 的焦点坐标是( ) 25 169
A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0)
⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点 P 到两焦点的距离
之和等于 10;
⑵两个焦点坐标分别是(0,-2)和(0,2)且过( 3 , 5 )奎奎 奎奎奎 奎奎 22
参考答案: 1.A 2.A 3.A 4.B 5. C 6.D
7. y 2 x 2 1 36 35
8.答案: 2c 2
x2 3.已知椭圆的方程为
y2
1,焦点在 x 轴上,则其焦距为(
A)
8 m2
A.2 8 m2
B.2 2 2 m
C.2 m2 8
D. 2 m 2 2
4.方程
x2 3
y2 sin(2
)
1 表示椭圆,则
的取值范围是(
)
4
A. 3
8
c=64, b=36
6.已知 F1, F2 是定点,| F1 F2|=8, 动点 M 满足|M F1|+|M F2|=8,则点 M 的轨迹是
(A)椭圆 (B)直线 (C)圆 (D)线段
二、
7. a 6, c 1,焦点在 y 轴上的椭圆的标准方程是
奎奎 奎奎奎
奎奎
8.椭圆 x 2 y 2 1的焦距是 16 9
3.1.1 椭圆及其标准方程-A基础练(解析版).
3.1.1椭圆及其标准方程-A 基础练一、选择题1.(2020·全国高二课时练习)下列说法正确的是()A .到点12(4,0),(4,0)F F -的距离之和等于8的点的轨迹是椭圆B .到点12(4,0),(4,0)F F -的距离之和等于6的点的轨迹是椭圆C .到点12(4,0),(4,0)F F -的距离之和等于12的点的轨迹是椭圆D .到点12(4,0),(4,0)F F -距离相等的点的轨迹是椭圆【答案】C【解析】对于选项A ,128F F =,故到点12,F F 的距离之和等于8的点的轨迹是线段12F F ,所以该选项错误;对于选项B ,到点1,2,F F 的距离之和等于6的点的轨迹不存在,所以该选项错误;对于选项C ,根据椭圆的定义,知该轨迹是椭圆,所以该选项正确;对于选项D ,点的轨迹是线段12F F 的垂直平分线,所以该选项错误.故选:C2.(2020·沙坪坝·重庆一中月考)若椭圆22:184x y C +=的右焦点为F ,过左焦点F '作倾斜角为60︒的直线交椭圆C 于P ,Q 两点,则PQF △的周长为()A.B.C.6D.8【答案】B【解析】由椭圆方程可知28a a =⇒=根据椭圆的定义可知'2PF PF a +=,'2QF QF a +=,PQF △的周长为''4PQ PF QF PF QF PF QF a ++=+++==.3.(2020·天津一中期中)若椭圆2a 2x 2-ay 2=2的一个焦点是(-2,0),则a =()A.134-B.134±C.154-D.154【答案】C【解析】由原方程可得222y 112x a a-=,因为椭圆焦点是(-2,0),所以2124a a ⎛⎫--= ⎪⎝⎭,解得14a =,因为20a ->,即0a <,所以14a =,故选:C 4.(2020·浙江丽水高二月考)已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是()A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【答案】B【解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC =8,AB +AC =20﹣8=12,∵12>8,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,∵a =6,c =4,∴b 2=20,∴椭圆的方程是()22102036x y x +=≠,故选B .5.(多选题)已知椭圆22:13620x y E +=的左、右焦点分别为12,F F ,定点(1,4)A ,若点P 是椭圆E上的动点,则1||PA PF +的值可能为()A .7B .10C .17D .19【答案】ABC【解析】由题意可得2(4,0)F ,则25AF ==,故22|||5PA PF AF -=| .因为点P 在椭圆E 上,所以12212PF PF a +==,所以1212F PF P =-,故1||12||PA PF PA +=+2PF -,由于25||5PA PF -- ,所以17||17PA PF + ,故1||PA PF +的可能取值为7,10,17.6.(多选题)(2020全国高二课时练习)已知P 是椭圆2214x y +=上一点,12,F F 是其两个焦点,则12F PF ∠的大小可能为()A .34πB .23πC .2πD .4π【答案】BCD【解析】设12,PF m PF n ==,则0,0m n >>,且24m n a +==,在12F PF △中,由余弦定理可得2221212()2122cos 122m n m n mn F PF mn mn mn +-+--∠===,因为242m n mn +⎛⎫= ⎪⎝⎭,所以121cos 2F PF ∠-,当且仅当m n =时取等号,故12F PF ∠的最大值为23π,所以12F PF ∠的大小可能为2,,324πππ.故选:BCD 二、填空题7.(2020全国高二课时练)已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为.【答案】 216+x 2=1【解析】由已知2a=8,2c=215,所以a=4,c=15,所以b 2=a 2-c 2=16-15=1.又椭圆的焦点在y 轴上,所以椭圆的标准方程为 216+x 2=1.8.椭圆 21223=1的一个焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则点M的纵坐标为.【答案】【解析】∵线段PF 1的中点M 在y 轴上且O 是线段F 1F 2的中点,∴OM 为△PF 1F 2的中位线,∴PF 2⊥x 轴,∴点P 的横坐标是3或-3,∵点P 在椭圆上,∴912 23=1,即y 2=34,∴∴点M 的纵坐标为9.(2020河北石家庄二中高二月考)已知椭圆()222:1024x y C b b +=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______.【答案】32【解析】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b ac =-=-=,所以,32b =.10.(2020·江西南昌二中高二月考)如图所示,12F F 分别为椭圆2222x y 1a b+=的左右焦点,点P 在椭圆上,2POF 的正三角形,则2b 的值为.【答案】【解析】2POF 234c ∴=解得2c =.(P ∴代入椭圆方程可得:22131a b+=,与224a b =+联立解得:2b =三、解答题11.求满足下列条件的椭圆的标准方程.(1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)c ∶a=5∶13,且椭圆上一点到两焦点的距离的和为26.【解析】(1)由焦距是4可得c=2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,2a=32 (2 2)2 32 (2-2)2=8,所以a=4,所以b 2=a 2-c 2=16-4=12.又焦点在y 轴上,所以椭圆的标准方程为216212=1.(2)由题意知,2a=26,即a=13,又c ∶a=5∶13,所以c=5,所以b 2=a 2-c 2=132-52=144,因为焦点所在的坐标轴不确定,所以椭圆的标准方程为21692144=1或21692144=1.12.(2020·富平县富平中学高二月考)已知某椭圆C ,它的中心在坐标原点,左焦点为F (﹣,0),且过点D (2,0).(1)求椭圆C 的标准方程;(2)若已知点A (1,),当点P 在椭圆C 上变动时,求出线段PA 中点M 的轨迹方程.【解析】(1)由题意知椭圆的焦点在x 轴上,∵椭圆经过点D (2,0),左焦点为F (﹣,0),∴a=2,c=,可得b=1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,∴线段PA中点M的轨迹方程是.。
人教版高二上学期数学(选择性必修1)《3.1.2椭圆的标准方程及性质的应用》练习题及答案
人教版高二上学期数学(选择性必修1)《3.1.2椭圆的标准方程及性质的应用》练习题及答案学校:___________班级:___________姓名:___________学号:___________一、选择题1.直线y =kx -k 与椭圆x 29+y 24=1的位置关系为( ) A.相交 B.相切C.相离D.不确定2.直线y =kx +2和椭圆x 23+y 22=1有公共点,则k 的取值范围是( ) A.k <-63或k >63 B.k ≤-63或k ≥63C.-63<k <63D.-63≤k ≤633.德国天文学家开普勒发现天体运行轨道是椭圆,已知地球运行的轨道是一个椭圆,太阳在它的一个焦点上,轨道近日点到太阳中心的距离和远日点到太阳中心的距离之比是29∶30,那么地球运行轨道所在椭圆的离心率是( ) A.159 B.259 C.2959 D.30594.已知过圆锥曲线x 2m +y 2n =1上一点P (x 0,y 0)的切线方程为x 0x m +y 0y n =1.过椭圆x 212+y 24=1上的点A (3,-1)作椭圆的切线l ,则过点A 且与直线l 垂直的直线方程为( )A.x -y -3=0B.x +y -2=0C.2x +3y -3=0D.3x -y -10=05.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆(如图所示),若“切面”所在平面与底面成60°角,则该椭圆的离心率为( )A.12B.22C.32D.136.如图是一个篮球在太阳光照射下的影子,已知篮球的直径为22 cm ,现太阳光与地面的夹角为60°,则此椭圆形影子的离心率为( )A.13B.12C.22D.327.(多选)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( ) A.63 B.-63C.-33 D.33 8.(多选)如图所示,某探月卫星沿地月转移轨道飞向月球,在月球附近一点P 处变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点处第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,且轨道Ⅱ的右顶点为轨道Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为a 1和a 2,半焦距分别为c 1和c 2,离心率分别为e 1,e 2,则下列结论正确的是( )A .a 1+c 1>2(a 2+c 2)B .a 1-c 1=a 2-c 2C .e 1=e 2+12D .椭圆Ⅱ比椭圆Ⅰ更扁 二、填空题9.某隧道的拱线设计为半个椭圆的形状,最大拱高h 为6米(如图所示),路面设计是双向车道,车道总宽为87 米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽d 至少应是________米.10.过点M(1,1)作斜率为-12的直线与椭圆C:x2a2+y2b2=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为________11.若直线y=x+2与椭圆x2m+y23=1有两个公共点,则m的取值范围是________________12.罗马竞技场,建于公元72年到82年,是古罗马文明的象征,其内部形状近似为一个椭圆形,其长轴长约为188米,短轴长约为156米,竞技场分为表演区与观众区,中间的表演区也近似为椭圆形,其长轴长为86米,短轴长为54米,若椭圆的面积为πab(其中a,b分别为椭圆的长半轴长与短半轴长,π取3.14),已知观众区可以容纳9万人,由此推断,观众区每个座位所占面积约为________平方米(保留小数点后两位).三、解答题13.已知椭圆x2+8y2=8,在椭圆上求一点P,使P到直线l:x-y+4=0的距离最短,并求出最短距离.14.已知点A,B的坐标分别是(-1,0),(1,0),直线AM,BM相交于点M,且它们的斜率之积为-2.(1)求动点M 的轨迹方程;(2)若过点N ⎝ ⎛⎭⎪⎫12,1的直线l 交动点M 的轨迹于C ,D 两点,且N 为线段CD 的中点,求直线l 的方程.15.如图,某市新城公园将在长34米、宽30米的矩形地块内开凿一个“挞圆”形水池,水池边缘由两个半椭圆x 2a 2+y 2b 2=1(x ≤0)和y 2b 2+x 281=1(x ≥0)组成,其中a >b >9,“挞圆”内切于矩形(即“挞圆”与矩形各边均有且只有一个公共点).(1)求“挞圆”的方程;(2)在“挞圆”形水池内建一矩形网箱养殖观赏鱼,若该矩形网箱的一条边所在直线方程为y =t (t ∈(0,15)),求该网箱所占水面面积的最大值.参考答案及解析一、选择题1.A 解析:由⎩⎪⎨⎪⎧ y =kx -k ,x 29+y 24=1,消去y 得(4+9k 2)x 2-18k 2x +9k 2-36=0Δ=(-18k 2)2-4(4+9k 2)(9k 2-36)=576(2k 2+1),易知Δ>0恒成立∴直线y =kx -k 与椭圆x 29+y 24=1的位置关系为相交. 2.B 解析:将y =kx +2代入椭圆方程x 23+y 22=1,消去y ,可得(2+3k 2)x 2+12kx +6=0 ∴Δ=144k 2-24(2+3k 2)=72k 2-48∵直线和椭圆有公共点,∴72k 2-48≥0,∴k ≤-63或k ≥63. 3.A 解析:设椭圆的长半轴长为a ,半焦距为c ,由题意可得a -c a +c =2930整理得a =59c ,即c a =159. ∴地球运行轨道所在椭圆的离心率是159. 4.B 解析:过椭圆x 212+y 24=1上的点A (3,-1)的切线l 的方程为3x 12+(-y )4=1,即x -y -4=0,切线l 的斜率为1.与直线l 垂直的直线的斜率为-1,故过点A 且与直线l 垂直的直线方程为y +1=-(x -3),即x +y -2=0.5.C 解析:设椭圆长轴长为2a ,短轴长为2b ,由“切面”所在平面与底面成60°角可得2b 2a =cos 60°,即a =2b ,所以e =c a =a 2-b 2a 2=32. 6.B 解析:如图,l 1,l 2 是两条与球相切的直线,分别切于点A ,C ,与底面交于点B ,D ,设篮球的半径为R∴AC =2R =22,R =11过点C 作CE ∥BD 交l 1于点E ,则CE =BD在△ACE 中,CE =AC sin 60°,∴CE =22×23=2a ,∴a =223=2R 3,b =R ∴c =4R 23-R 2=33R ,∴e =c a =3R 32R 3=12. 7.AB 解析:由⎩⎪⎨⎪⎧ y =kx +2,x 23+y 22=1,得(3k 2+2)x 2+12kx +6=0,由题意知Δ=144k 2-24(3k 2+2)=0 解得k =±63. 8.ABC 解析:对A ,由题可知a 1=2a 2,c 1=a 2+c 2>2c 2,所以a 1+c 1>2(a 2+c 2),所以选项A正确;对B ,由a 1-c 1=|PF |,a 2-c 2=|PF |,得a 1-c 1=a 2-c 2,所以选项B 正确;对C ,由a 1=2a 2,c 1=a 2+c 2,得c 1a 1=a 2+c 22a 2=1+c 2a 22,即e 1=e 2+12,所以选项C 正确;对D ,根据选项C 知,2e 1=e 2+1>2e 2,所以e 1>e 2,即椭圆Ⅰ比椭圆Ⅱ更扁,所以选项D 错误.故选ABC .二、填空题9.答案:32解析:设椭圆方程为x 2a 2+y 236=1,当点(47,4.5)在椭圆上时,16×7a 2+⎝ ⎛⎭⎪⎫92236=1,解得a =16 ∵车辆高度不超过4.5米,∴a ≥16,d =2a ≥32,故拱宽至少为32米.10.答案:22解析:设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b2=1,① x 22a 2+y 22b 2=1.② ∵M 是线段AB 的中点,∴x 1+x 22=1,y 1+y 22=1. ∵直线AB 的方程是y =-12(x -1)+1,∴y 1-y 2=-12(x 1-x 2). 由①②两式相减可得x 21-x 22a 2+y 21-y 22b 2=0,即2a 2+⎝ ⎛⎭⎪⎫-12·2b 2=0.∴a =2b ,∴c =b ,∴e =c a =22. 11.答案:(1,3)∪(3,+∞)解析:∵x 2m +y 23=1表示椭圆,∴m >0且m ≠3. 由⎩⎪⎨⎪⎧ y =x +2,x 2m +y 23=1,得(m +3)x 2+4mx +m =0∴Δ=16m 2-4m (m +3)>0,解得m >1或m <0.∴m >1且m ≠3∴m 的取值范围是(1,3)∪(3,+∞).12.答案:0.22解析:由条件可得,竞技场的总面积为π×1882×1562=7 332π(平方米),表演区的面积为π×862×542=1 161π(平方米),故观众区的面积为7 332π-1 161π=6 171π(平方米),故观众区每个座位所占面积为6 171π90 000≈6 171×3.1490 000≈0.22(平方米).三、解答题13.解:设与直线x -y +4=0平行且与椭圆相切的直线方程为x -y +a =0(a ≠4) 由⎩⎨⎧ x 2+8y 2=8,x -y +a =0,消x 得9y 2-2ay +a 2-8=0 由Δ=4a 2-36(a 2-8)=0,解得a =3或a =-3∴与直线l 距离较近的切线为x -y +3=0,两条直线之间的距离即为所求最短距离 且直线x -y +3=0与椭圆的切点即为所求点P .故所求最短距离d =|4-3|2=22. 由⎩⎨⎧ x 2+8y 2=8,x -y +3=0,得⎩⎪⎨⎪⎧ x =-83,y =13,即P ⎝ ⎛⎭⎪⎫-83,13.14.解:(1)设M (x ,y ).因为k AM ·k BM =-2,所以y x +1·y x -1=-2(x ≠±1),化简得2x 2+y 2=2(x ≠±1). 即点M 的轨迹方程为2x 2+y 2=2(x ≠±1).(2)设C (x 1,y 1),D (x 2,y 2).当直线l ⊥x 轴时,直线l 的方程为x =12,易知此时线段CD 的中点不是N ,不符合题意. 当直线l 不与x 轴垂直时,设直线l 的方程为y -1=k ⎝ ⎛⎭⎪⎫x -12,将点C (x 1,y 1),D (x 2,y 2)的坐标代入2x 2+y 2=2(x ≠±1),得2x 21+y 21=2,① 2x 22+y 22=2,② ①-②整理得k =y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×2×122×1=-1 故直线l 的方程为y -1=-⎝ ⎛⎭⎪⎫x -12,即所求直线l 的方程为2x +2y -3=0. 15.解:(1)由题意知b =15,a +9=34,解得a =25,b =15.所以“挞圆”方程为x 2252+y 2152=1(x ≤0)和y 2152+x 292=1(x ≥0). (2)设P (x 0,t )为矩形在第一象限内的顶点,Q (x 1,t )为矩形在第二象限内的顶点则t 2152+x 2092=1,x 21252+t 2152=1,可得x 1=-259x 0.所以内接矩形的面积S =2t (x 0-x 1)=2t ×349x 0=15×34×2·x 09·t 15≤15×34⎝ ⎛⎭⎪⎫x 2092+t 2152=510 当且仅当x 09=t 15时,S 取最大值510. 所以网箱所占水面面积的最大值为510平方米。
椭圆的标准方程与性质(有答案)
椭圆的标准方程与性质1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:2.2第1课时 椭圆及其标准方程一、选择题1.平面上到点A (-5,0)、B (5,0)距离之和为10的点的轨迹是( ) A .椭圆 B .圆 C .线段 D .轨迹不存在 2.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( )A .(±a -b ,0)B .(±b -a ,0)C .(0,±a -b )D .(0,±b -a )3.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95 B .3 C.977 D.944.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点P 的纵坐标是( )A .±34B .±22C .±32D .±345.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=( )A.32 B.3 C.72D .4 6.(09·陕西理)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.椭圆x 2m +y 24=1的焦距是2,则m 的值是( )A .5B .3或8C .3或5D .208.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一个焦点F 2构成△ABF 2的周长是( )A .2B .4 C.2 D .2 29.已知椭圆的方程为x 216+y 2m 2=1,焦点在x 轴上,则m 的取值范围是( )A .-4≤m ≤4B .-4<m <4且m ≠0C .m >4或m <-4D .0<m <410.若△ABC 的两个顶点坐标为A (-4,0),B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1 B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 二、填空题11.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=______.12.已知A (-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为____________.13.(08·浙江)已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.14.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.三、解答题15.求适合下列条件的椭圆的标准方程: (1)焦点在y 轴上,且经过两个点(0,2)和(1,0). (2)坐标轴为对称轴,并且经过两点A (0,2),B (12,3)16.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.17.已知m 为常数且m >0,求证:不论b 为怎样的正实数,椭圆x 2b 2+m +y 2b 2=1的焦点不变.18.在面积为1的△PMN 中,tan M =12,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点P (x 0,y 0)(y 0>0)的椭圆方程.2.2第2课时 椭圆的简单几何性质一、选择题1.将椭圆C 1∶2x 2+y 2=4上的每一点的纵坐标变为原来的一半,而横坐标不变,得一新椭圆C 2,则C 2与C 1有( )A .相等的短轴长B .相等的焦距C .相等的离心率D .相等的长轴长2.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是( ) A.14 B.12 C.22 D.323.(2010·广东文,7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.154.已知椭圆2x 2+y 2=2的两个焦点为F 1,F 2,且B 为短轴的一个端点,则△F 1BF 2的外接圆方程为( )A .x 2+y 2=1B .(x -1)2+y 2=4C .x 2+y 2=4D .x 2+(y -1)2=45.已知椭圆的长轴长为20,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是( ) A .[6,10]B .[6,8]C .[8,10]D .[16,20]6.椭圆C 1:x 225+y 29=1和椭圆C 2:x 29-k +y 225-k =1 (0<k <9)有( )A .等长的长轴B .相等的焦距C .相等的离心率D .等长的短轴7.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆离心率为( ) A.22 B.32 C.53 D.638.已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为( )A.x 24+y 26=1B.x 26+y 24=1C.x 236+y 232=1或x 232+y 236=1D.x 236+y 232=1 9.已知点(3,2)在椭圆x 2a 2+y 2b2=1上,则( )A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 10.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b2=k (k >0)具有( )A .相同的长轴B .相同的焦点C .相同的顶点D .相同的离心率 二、填空题11.(2009·广东理)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.12.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.13.椭圆x 2a 2+y 2b 2=1上一点到两焦点的距离分别为d 1、d 2,焦距为2c ,若d 1、2c 、d 2成等差数列,则椭圆的离心率为________.14.经过椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为________.三、解答题15.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.16.已知椭圆的中心在原点,它在x 轴上的一个焦点F 与短轴的两个端点B 1,B 2的连线互相垂直,且这个焦点与较近的长轴的端点A 的距离为10-5,求这个椭圆的方程.17.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.求椭圆的方程.2.2第1课时 椭圆及其标准方程一、选择题 1.[答案] C[解析] 两定点距离等于定常数10,所以轨迹为线段. 2.[答案] D[解析] ax 2+by 2+ab =0可化为x 2-b +y 2-a=1∵a <b <0∴-a >-b >0,∴y 2-a +x 2-b =1,焦点在y 轴上,c =-a +b =b -a∴焦点坐标为(0,±b -a ) 3.[答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7. ∵△PF 1F 2为直角三角形.∴P 是横坐标为±7的椭圆上的点.(P 点不可能是直角顶点)设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.4.[答案] C[解析] 设F 1(-3,0)∴P 点横坐标为3代入x 212+y 23=1得y 23=1-34=14,y 2=34,∴y =±325.[答案] C[解析] 如图所示,由x 24+y 2=1知,F 1、F 2的坐标分别为(-3,0)、(3,0),即P 点的横坐标为x p=-3,代入椭圆方程得y p =12,∴|PF 1|=12,∵|PF 1|+|PF 2|=4.∴|PF 2|=4-|PF 1|=4-12=72.6. [答案] C[解析] 方程mx 2+ny 2=1表示焦点在y 轴上的椭圆⇔1n >1m>0⇔m >n >0.故选C. 7.[答案] C[解析] 2c =2,c =1,故有m -4=12或4-m =12,∴m =5或m =3且同时都大于0,故答案为C. 8.[答案] B[解析] ∵|AF 1|+|AF 2|=2,|BF 1|+|BF 2|=2,∴|AF 1|+|BF 1|+|AF 2|+|BF 2|=4, 即|AB |+|AF 2|+|BF 2|=4. 9.[答案] B[解析] 因为焦点在x 轴上,故m 2<16且m 2≠0,解得-4<m <4且m ≠0. 10.[答案] D[解析] 顶点C 满足|CA |+|CB |=10>|AB |,由椭圆定义知2a =10,2c =8 所以b 2=a 2-c 2=25-16=9, 故椭圆方程为x 225+y 29=1(y ≠0).二、填空题 11.[答案] 2 3[解析] 由题意S △POF 2=34c 2=3,则c 2=4⇒c =2 ∴P =(1,3)代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,求出b 2=2 3. 12. [答案] x 2+43y 2=1[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2,∴|P A |+|PF |=2,且|P A |+|PF |>|AF |,即动点P 的轨迹是以A 、F 为焦点的椭圆,a =1,c =12,b 2=34.∴动点P 的轨迹方程为x 2+y 234=1,即x 2+43y 2=1.13. [答案] 8[解析] (|AF 1|+|AF 2|)+(|BF 1|+|BF 2|) =|AB |+|AF 2|+|BF 2|=4a =20,∴|AB |=8. 14.[答案] 35[解析] 设椭圆右焦点为F ′,由椭圆的对称性知, |P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+12(|P 4F |+|P 4F ′|)=7a =35.三、解答题15.[解析] (1)由于椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0)由于椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1.⇒⎩⎪⎨⎪⎧a 2=4,b 2=1故所求椭圆的方程为y 24+x 2=1.(2)设所求椭圆的方程为x 2m +y 2n =1(m >0,n >0).∵椭圆过A (0,2),B (12,3),∴⎩⎨⎧0m +4n =1,14m +3n =1,解得⎩⎪⎨⎪⎧m =1,n =4.∴所求椭圆方程为x 2+y 24=1.16. [解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b 2=1,又a =3b ,代入得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1.当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0).由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1.故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1.17. [解析] ∵m >0,b 2+m >b 2,∴焦点在x 轴上,由(b 2+m )-b 2=m ,得椭圆的焦点坐标为(±m ,0),由m 为常数,得椭圆的焦点不变.18. [解析] 以线段MN 的中点为原点,MN 所在直线为x 轴,建立坐标系. 设M (-c,0),N (c,0),c >0, 又P (x 0,y 0),y 0>0.由⎩⎪⎨⎪⎧y 0x 0-c=-2,y 0x 0+c =12,cy 0=1⇒⎩⎨⎧x 0=53c ,y 0=43c ,⇒P (523,23).设椭圆方程为x 2b 2+34+y 2b 2=1,又P 在椭圆上,故b 2(523)2+(b 2+34)(23)2=b 2(b 2+34),整理得3b 4-8b 2-3=0⇒b 2=3. 所以所求椭圆方程为x 2154+y 23=1.2.2第2课时 椭圆的简单几何性质一、选择题 1. [答案] C[解析] 把C 1的方程化为标准方程,即 C 1:x 22+y 24=1,从而得C 2:x 22+y 2=1.因此C 1的长轴在y 轴上,C 2的长轴在x 轴上.e 1=22=e 2,故离心率相等,选C. 2.[答案] D[解析] △ABF 1为等边三角形, ∴2b =a ,∴c 2=a 2-b 2=3b 2 ∴e =c a=c 2a 2=3b 24b 2=32. 3. [答案] B[解析] 本题考查了离心率的求法,这种题目主要是设法把条件转化为含a ,b ,c 的方程式,消去b 得到关于e 的方程,由题意得:4b =2(a +c )⇒4b 2=(a +c )2⇒3a 2-2ac -5c 2=0⇒5e 2+2e -3=0(两边都除以a 2)⇒e =35或e =-1(舍),故选B.4.[答案] A[解析] 椭圆的焦点为F 1(0,1),F 2(0,-1),短轴的一个端点为(1,0),于是△F 1BF 2的外接圆是以原点为圆心,以1为半径的圆,其方程为x 2+y 2=1.5.[答案] C[解析] 由题意知a =10,b =8,设椭圆上的点M (x 0,y 0),由椭圆的范围知,|x 0|≤a =10,|y 0|≤b =8,点M 到椭圆中心的距离d =x 20+y 20.又因为x 20100+y 2064=1,所以y 20=64(1-x 20100)=64-1624x 20,则d =x 20+64-1625x 20=925x 2+64,因为0≤x 20≤100,所以64≤925x 20+64≤100,所以8≤d ≤10. 6. [答案] B[解析] 依题意知椭圆C 2的焦点在y 轴上,对于椭圆C 1:焦距=225-9=8,对于椭圆C 2:焦距=2(25-k )-(9-k )=8,故答案为B. 7.[答案] A[解析] 由题意知b =c ,∴a =2c ,∴e =c a =22.8.[答案] C[解析] ∵长轴长2a =12,∴a =6,又e =13∴c =2,∴b 2=a 2-c 2=32,∵焦点不定,∴方程为x236+y232=1或x232+y236=1.9. [答案] C[解析]∵点(3,2)在椭圆x2a2+y2b2=1上,∴由椭圆的对称性知,点(-3,2)、(3,-2)、(-3,-2)都在椭圆上,故选C.10. [答案] D[解析]椭圆x2a2+y2b2=1和x2a2+y2b2=k(k>0)中,不妨设a>b,椭圆x2a2+y2b2=1的离心率e1=a2-b2a,椭圆x2 a2k +y2b2k=1(k>0)的离心率e2=k a2-b2ka=a2-b2a.二、填空题11. [答案]x236+y29=1[解析]设椭圆G的标准方程为x2a2+y2b2=1(a>b>0),半焦距为c,则⎩⎪⎨⎪⎧2a=12ca=32,∴⎩⎪⎨⎪⎧a=6c=33,∴b2=a2-c2=36-27=9,∴椭圆G的方程为x236+y29=1.12. [答案]2120°[解析]依题知a=3,b=2,c=7,由椭圆定义得|PF1|+|PF2|=6,∵|PF1|=4,∴|PF2|=2. 又|PF1|=4,|PF2|=2,|F1F2|=27.在△F1PF2中,由余弦定理可得cos∠F1PF2=-12,∴∠F1PF2=120°.13. [答案]12[解析]由题意得4c=d1+d2=2a,∴e=ca=12.14. [答案]2b2a[解析]∵垂直于椭圆长轴的弦所在直线为x=±c,由⎩⎪⎨⎪⎧x=±cx2a2+y2b2=1,得y2=b4a2,∴|y|=b2a,故弦长为2b2a.三、解答题15. [解析] 椭圆方程可化为x 2m +y 2mm +3=1, ∵m -m m +3=m (m +2)m +3>0, ∴m >m m +3. 即a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32得,m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1, ∴a =1,b =12,c =32. ∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1(-32,0),F 2(32,0);四个顶点分别为A 1(-1,0),A 2(1,0),B 1(0,-12),B 2(0,12). 16. [解析] 由于椭圆中心在原点,焦点在x 轴上,可设其方程为x 2a 2+y 2b 2=1(a >b >0). 由椭圆的对称性知,|B 1F |=|B 2F |,又B 1F ⊥B 2F ,因此△B 1FB 2为等腰直角三角形,于是|OB 2|=|OF |,即b =c .又|F A |=10-5即a -c =10-5,且a 2+b 2=c 2.将以上三式联立,得方程组,⎩⎪⎨⎪⎧b =c a -c =10-5a 2=b 2+c 2解得⎩⎪⎨⎪⎧ a =10b =5 所求椭圆方程是x 210+y 25=1. 17. [解析] 由e =c a =32,得3a 2=4c 2,再由c 2=a 2-b 2,得a =2b . 由题意可知12×2a ×2b =4,即ab =2. 解方程组⎩⎪⎨⎪⎧ a =2b ,ab =2,得a =2,b =1, 所以椭圆的方程为x 24+y 2=1.。
椭圆》方程典型例题20例(含标准答案)
椭圆》方程典型例题20例(含标准答案)典型例题一已知椭圆的一个顶点为A(2.0),其长轴长是短轴长的2倍,求椭圆的标准方程。
分析:题目没有指出焦点的位置,要考虑两种位置。
解:(1)当A(2.0)为长轴端点时,a=2,b=1,椭圆的标准方程为:x^2/4+y^2/1=1;(2)当A(2.0)为短轴端点时,b=2,a=4,椭圆的标准方程为:x^2/16+y^2/4=1.说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况。
典型例题二一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率。
解:设椭圆长轴长为2a,焦点到准线的距离为c,则2c/3=a,即c=3a/2.由椭圆定义可得c^2=a^2-b^2,代入c=3a/2中得到9a^2/4=a^2-b^2,化简得b^2=3a^2/4.再由离心率的定义e=c/a得到e=√(1-b^2/a^2)=√(1-3/4)=√(1/4)=1/2.说明:求椭圆的离心率问题,通常有两种处理方法,一是求a,求c,再求比。
二是列含a和c的齐次方程,再化含e的方程,解方程即可。
典型例题三已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A、B两点,M为AB中点,OM的斜率为0.25,椭圆的短轴长为2,求椭圆的方程。
解:由题意,设椭圆方程为x^2/4+y^2/a^2=1,直线方程为y=1-x。
将直线方程代入椭圆方程得到x^2/4+(1-x)^2/a^2=1,化简得到(4+a^2)x^2-8ax+(4-a^2)=0.设AB的中点为M(x1.y1),则M的坐标为[(x1+x2)/2.(y1+y2)/2],其中x2为方程(4+a^2)x^2-8ax+(4-a^2)=0的另一个解。
由OM的斜率为0.25可得到y1=0.25x1.又因为M在直线x+y-1=0上,所以有y1=1-x1.解以上两个方程可得到M的坐标为(4/5.1/5)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆及其标准方程练习题 一、 1.椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )
A.5
B.6
C.4
D.10
2.椭圆1169
252
2=+y x 的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0)
3.已知椭圆的方程为1822
2=+m
y x ,焦点在x 轴上,则其焦距为( A ) A.22
8m - B.2m -22 C.28
2-m D.222-m 4.方程1)4
2sin(322=+-π
αy x 表示椭圆,则α的取值范围是( )
A.
838παπ≤
≤- B.k k k (838ππαππ+<<-∈Z) C.838παπ<<- D. k k k (83282ππαππ+<<-∈Z) 5.在方程22
110064
x y +=中,下列a , b , c 全部正确的一项是 (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =36
6.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是
(A )椭圆 (B )直线 (C )圆 (D )线段
二、
7.1,6==c a ,焦点在y 轴上的椭圆的标准方程是 8.椭圆19
162
2=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为
9.椭圆以坐标轴为对称轴,长、短半轴之和为10,焦距为45,则椭圆方程
为 .
10.P 点在椭圆452x +20
2
y =1上,F 1,F 2是椭圆的焦点,若PF 1⊥PF 2,则P 点的坐标是 .
三、
11.椭圆22a x +22
b
y =1(a >b >0)的两个焦点及其与坐标轴的一个交点正好是一个等边三角形的三个顶点,且椭圆上的点到焦点距离的最小值为3,求椭圆的方程.
12.已知椭圆92x +4
2
y =1上的点P 到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,求P 点坐标.
13.写出适合下列条件的椭圆的标准方程:
⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;
⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,2
5)
参考答案:
1.A 2.A 3.A 4.B 5. C 6.D
7.135
362
2=+x y 8.答案:164);0,7(),0,7(;72221=-=a F F c
9. 362x +162
y =1或362y +16
2x =1 10.(3,4),(3,-4),(-3,4),(-3,-4) 11. 122x +9
2
y =1 12.(0,2)或(0,-2) 13.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为
122
22=+b
y a x )0(>>b a 9454
,58
2,10222222=-=-=∴==∴==c a b c a c a 所以所求椭圆标准方程为9
252
2=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为 12
2
22=+b x a y )0(>>b a 由椭圆的定义知,
22)225()23(2++-=a +22)22
5()23(-+- 102
11023+=102= 10=∴a 又2=c 6410222=-=-=∴c a b
所以所求标准方程为6
102
2=+x y 另法:∵ 42
222-=-=a c a b ∴可设所求方程142222=-+a x a y ,后将点(23-,2
5)的坐标代入可求出a ,从而求出椭圆方程。