运筹学实验.
运筹学综合实验报告
运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。
一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。
二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。
它将优化目标函数的线性组合与整数限制相结合。
一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。
最后两个约束条件要求自变量只能是整数。
2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。
Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。
Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。
三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。
运筹学实验报告
运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。
二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。
2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。
3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。
4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。
5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。
三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。
将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。
四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。
通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。
因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。
五、实验心得:通过本次实验,我对运筹学有了更深入的了解。
通过实践应用运筹学方法,我明白了运筹学的实用性和价值。
在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。
本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。
我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。
运筹学实验报告心得
运筹学实验报告心得运筹学是一门研究决策和优化问题的学科,通过运筹学的方法和技术,可以帮助我们在不同的场景下做出最优决策。
在进行运筹学实验的过程中,我深刻体会到了运筹学的重要性和应用价值。
在实验中我学到了运筹学的基本概念和方法。
运筹学的核心思想是通过建立数学模型,利用计算机等工具进行求解,找到问题的最优解。
在实验中,我们学习了线性规划、整数规划、网络流、排队论等多个运筹学方法,并通过实际案例进行了应用。
通过这些实验,我深入了解了运筹学的理论知识,并学会了如何将其应用到实际问题中。
在实验中我学会了如何进行实验设计和数据分析。
在运筹学实验中,我们需要设计实验方案,确定实验的目标和指标,收集和整理数据,并进行数据分析和结果评价。
通过实验,我掌握了如何进行实验设计和数据处理的方法,学会了如何利用统计学方法对实验结果进行分析和验证。
这些方法不仅在运筹学实验中有用,也可以应用到其他科学研究和工程领域中。
在实验中我也体会到了团队协作的重要性。
在进行运筹学实验时,我们通常需要组成小组,共同完成实验的设计和实施。
在团队中,每个人都有自己的专长和责任,需要相互协作和配合。
通过与团队成员的合作,我学会了如何与他人有效沟通、分工合作,学会了如何在团队中发挥自己的优势,共同完成任务。
在实验中我深刻体会到了运筹学的实际应用价值。
通过运筹学的方法,我们可以在资源有限的情况下,做出最优的决策,有效利用和配置资源,提高效率和效益。
在实验中,我们模拟了不同的场景,如生产调度、物流配送等,通过运筹学的方法进行优化,取得了显著的效果。
这使我对运筹学的价值有了更深的认识,并对其应用前景充满信心。
总的来说,运筹学实验给我带来了很多收获和启发。
通过实验,我不仅学到了运筹学的基本概念和方法,还学会了如何进行实验设计和数据分析,以及团队协作的重要性。
同时,我也深刻认识到了运筹学的实际应用价值。
我相信,在今后的学习和工作中,我会继续发挥运筹学的思维方式和方法,为解决实际问题做出更好的决策和优化。
运筹学实验心得
运筹学实验心得运筹学是一门研究决策和优化问题的学科,通过数学建模和分析,帮助人们在面对复杂的决策问题时做出最优的选择。
在学习运筹学的过程中,我参与了一次实验,通过实践运用运筹学的知识和方法,深刻体会到了它的重要性和实用性。
在这次实验中,我们小组的任务是在有限的资源下,通过运筹学的方法来安排一所医院的医生排班。
我们需要考虑到医生的工作时间、休假时间、不同科室的需求以及患者的就诊需求等因素。
我将整个实验过程分为以下几个部分进行总结和分享。
我们需要进行问题分析和建模。
在实验开始之前,我们小组对问题进行了全面的分析,确定了问题的约束条件和目标。
通过对医生排班的需求进行细致的分析,我们将问题抽象为一个数学模型,将各种变量和约束条件进行数学化的表示。
这个过程需要我们对运筹学的知识有深入的理解和灵活的运用,确保模型的准确性和合理性。
接着,我们使用合适的算法和工具来求解模型。
在这个实验中,我们使用了线性规划和整数规划的方法来求解医生排班问题。
通过建立相应的数学模型,我们将问题转化为一个数学规划问题,然后使用计算机软件来求解最优解。
在求解的过程中,我们需要根据实际情况调整模型的参数和约束条件,以得到符合实际需求的结果。
在实验过程中,我们还进行了模型的验证和灵敏度分析。
通过与实际情况的对比,我们可以评估模型的准确性和可行性。
同时,我们还对模型中的参数和约束条件进行了灵敏度分析,考察它们对最优解的影响程度。
这个过程帮助我们更好地理解问题的本质,为模型的优化提供了依据。
我们对实验结果进行了评估和总结。
通过对实验结果的分析,我们可以评估模型的性能和可行性。
同时,我们还可以根据实验结果提出相应的改进意见,进一步优化模型和算法。
通过总结实验过程中的经验和教训,我们可以更好地应用运筹学的方法解决实际问题。
通过这次实验,我深刻体会到了运筹学的重要性和实用性。
它不仅可以帮助我们在面对复杂的决策问题时做出最优的选择,还可以提高我们的分析和建模能力。
运筹学实验报告
运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。
每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。
生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。
已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。
(2)将电子表格格式转换成标准模型。
(3)将结果复制到Excel或Word文档中。
(4)分析结果。
解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。
大学生运筹学实训报告范文
一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。
为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。
以下是本次实训的报告。
二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。
三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。
(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。
2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。
(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。
3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。
(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。
4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。
(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。
5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。
(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。
四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。
五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。
六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。
运筹学实验报告总结心得
运筹学实验报告总结心得1. 背景运筹学是以数学模型为基础,结合管理科学、经济学和计算机科学等方法,研究在有限资源的条件下优化决策问题的学科。
本次实验旨在通过运筹学方法解决一个实际的问题,并从中探索运筹学的实际应用价值。
2. 分析2.1 问题描述本次实验中,我们需要解决一个物流配送的问题。
具体问题是:给定一定数量的货物和一些配送车辆,如何确定最优的配送路线和配送顺序,以使得总体的运输成本最小。
2.2 求解思路为了解决这个问题,我们采用了TSP(Traveling Salesman Problem,旅行商问题)的算法。
TSP是一种经典的组合优化问题,通过寻找最短的闭合路径,将n个城市依次访问一遍。
我们将货物所在的位置作为城市,将物流中心作为起始点和终点,通过TSP算法确定最优的配送路线。
2.3 模型设计我们将问题抽象成图论问题,货物的位置和物流中心可以看作图的顶点,两个顶点之间的距离可以看作图的边。
我们首先计算出所有顶点之间的距离,并构建一个距离矩阵。
然后,通过TSP算法,求解最优的路径。
3. 结果通过我们的实验,我们成功地解决了物流配送问题,并得到了最优的配送路线和顺序。
我们以图的形式展示了最优路径,并计算出了最小的运输成本。
4. 建议在实验过程中,我们发现了一些可以改进的地方。
首先,我们可以考虑引入实时交通信息来调整路径,以避免拥堵和路况不佳的区域。
其次,我们可以进一步优化TSP算法,以提高求解效率和准确度。
最后,我们还可以考虑引入其他因素,如货物的紧急程度或优先级,来调整配送顺序,以更好地满足客户需求。
5. 总结通过本次实验,我们深入了解了运筹学的应用,特别是在物流配送方面的应用。
我们成功地解决了一个实际问题,并得到了有用的结果和结论。
我们还发现了一些可以改进的地方,为进一步研究和应用运筹学提供了方向。
运筹学作为一门跨学科的领域,具有广泛的应用前景。
通过运筹学方法,我们可以帮助企业和组织优化决策,提高效率,降低成本。
运筹学实验报告
运筹学实验报告实验目的:了解及掌握运筹学一些常用软件,如excel,WinQsb:实验步骤1用Excel求解数学规划例:求max=2x1+x2+x34x1+2x2+2x2≥42x1+4x2≤204x1+8x2+2x3≤4步骤:1.输入模型数据制E3的公式到E4-E6:3.从“工具”菜单中选择“规划求解”,将弹出的“规划求解参数”窗口中的目标单元格设为$E$3,可变单元格设为$B$2:$D$2,目标为求最大值: 4.添加约束:由于本例的约束条件类型分别为<=、>=和=,因此要分3次设置,每次设置完毕后都要单击“添加”按钮,如下图。
添加完成后选择“确定”返回。
5.单击“选项”按钮,将“规划求解选项”窗口中的“采用线性模型”和“假定非负”两项选中后点“确定”返回,设置好参数的界面如下图:6.单击“求解”按钮,得到问题的最优解为:x1 =1,x2=0,x3=0,max Z=2。
2.winQSB求解线性规划及整数规划[例]求解线性规划问题:Minz=2x1—x2+2x32x1+2x2+x3=43x1+x2+x4=6第1步:生成表格选择“程序,生成对话框:第2步:输入数据单击“OK”,生成表格并输入数据如下第3步:求解):x1,x2,x3决策变量(Decision Variable最优解:x1=2,x2=0,x3=0目标系数:c1=2,c2= -1,c3=2最优值:4;其中x1贡献4、x2,x3贡献0;检验数(Reduced Cost):0,0,1.75。
目标系数的允许减量(Allowable Min.c[j])和允许增量(Allowable Max.c[j]):目标系数在此范围变量时,最优基不变。
约束条件(Constraint):C1、C2;左端(Left Hand Side):4,6右端(Right Hand Side):4,6松驰变量或剩余变量(Slack or Surplus):该值等于约束左端与约束右端之差。
运筹学实验心得(精选5篇)
运筹学实验心得(精选5篇)运筹学实验心得篇1实验心得:1.背景与目标:运筹学是一门决策支持学科,它使用数学模型和算法来解决实际生活中的优化问题。
本实验的目标是通过学习运筹学的基本理论和方法,提高自己在实际问题中的决策能力和解决问题的能力。
2.实验内容:本实验包括了几个重要的运筹学主题,包括线性规划、整数规划、非线性规划和动态规划等。
我们首先学习了这些基本概念和算法,然后通过具体案例进行了实践操作,并运用所学知识对实际生活中的一些问题进行了分析和解决。
3.实验结果与收获:通过实验,我们成功地运用运筹学方法解决了一些实际问题。
例如,我们使用线性规划算法解决了货物配送问题,并使用整数规划算法解决了人员调度问题。
同时,我们也收获了一些理论知识和实践经验。
我们学会了如何使用数学模型和算法来解决实际问题,并提高了自己的决策能力和解决问题的能力。
4.反思与建议:在实验过程中,我们遇到了一些困难和挑战。
例如,有时候我们无法理解复杂的数学模型和算法,或者无法找到合适的实际问题来验证我们的知识。
因此,我们建议在学习运筹学时,应该注重基本概念和算法的学习,并积极寻找合适的实际问题来巩固和应用所学知识。
总的来说,这次实验让我们更加深入地了解了运筹学的魅力和价值,也让我们更加坚定了自己的学习方向和目标。
运筹学实验心得篇2当然,我可以帮助您撰写一篇运筹学实验的心得体会。
以下是一个可能的示例:---标题:运筹学实验:理论到实践的桥梁摘要:这篇*分享了一次运筹学实验的经历,描述了实验中的问题、解决方法以及所学到的经验教训。
关键词:运筹学,实验,问题解决,学习经验---运筹学是我在大学期间最喜爱的科目之一。
它提供了一种实用且富有挑战性的方法来理解和解决现实世界中的优化问题。
然而,真正将理论与实际联系起来的,是我的第一次运筹学实验。
实验开始时,我被一大堆复杂的数学模型和计算机程序搞得眼花缭乱。
理论知识和抽象的模型使我有些晕头转向,但我还是勇敢地面对了挑战。
运筹学实验总结
运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。
在这学期的运筹学课程中,我们进行了一系列实验。
这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。
在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。
实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。
我选择了一个典型的生产调度问题作为实验题目。
通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。
通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。
实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。
在这个实验中,我选择了货物配送路线问题作为研究对象。
通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。
这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。
实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。
在这个实验中,我们学习了动态规划的基本原理和设计思想。
我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。
这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。
实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。
在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。
通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。
实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。
在这个实验中,我选择了装箱问题作为研究对象。
通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。
这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。
运筹学实验报告
运筹学实验报告运筹学实验报告一、引言运筹学是一门研究如何有效地进行决策和规划的学科。
它利用数学、统计学和计算机科学的方法,帮助解决各种实际问题。
本次实验旨在通过实际案例,探讨运筹学在实践中的应用。
二、问题描述我们选择了一个物流配送问题作为本次实验的研究对象。
假设有一家电商公司,需要将一批商品从仓库分配给不同的客户。
每个客户的需求量和距离仓库的距离都不同。
我们的目标是找到一种最优的配送方案,以最小化总配送成本。
三、数学模型为了解决这个问题,我们采用了整数规划模型。
首先,我们定义了以下变量:- Xij:表示将商品从仓库i分配给客户j的数量- Di:表示仓库i的供应量- Dj:表示客户j的需求量- Cij:表示将商品从仓库i分配给客户j的单位运输成本然后,我们建立了以下约束条件:1. 每个仓库的供应量不能超过其库存量:∑Xij ≤ Di2. 每个客户的需求量必须得到满足:∑Xij ≥ Dj3. 分配的商品数量必须是非负整数:Xij ≥ 0最后,我们的目标是最小化总配送成本:Minimize ∑Cij*Xij四、实验步骤1. 收集数据:我们收集了仓库的库存量、客户的需求量和单位运输成本的数据,并进行了整理和清洗。
2. 建立数学模型:根据收集到的数据,我们建立了上述的整数规划模型。
3. 求解模型:我们使用了运筹学软件对模型进行求解,并得到了最优的配送方案和总配送成本。
4. 分析结果:我们对结果进行了分析,比较了不同方案的优劣,并提出了一些建议。
五、实验结果与分析经过运筹学软件的求解,我们得到了最优的配送方案和总配送成本。
通过与其他方案的比较,我们发现该方案在成本上具有明显的优势。
同时,我们还发现一些仓库和客户之间的距离较远,可能会导致运输时间和成本增加。
因此,我们建议公司可以考虑优化仓库和客户的布局,以减少运输成本。
六、实验总结本次实验通过运筹学的方法,解决了一个物流配送问题。
我们通过建立数学模型、求解模型和分析结果,得出了最优的配送方案和总配送成本。
运筹学实验一
运筹学实验:线性规划问题一、实验目的1、学习建立数学模型2、熟练运用计算软件求得模型最优解二、实验内容案例一:1.13、某饲养场饲养动物出售,设每头动物每天至少需700g 蛋白质、30g 矿物质、100mg 维生素。
现有五种饲料可供选用,各种饲料每kg 营养成分含量及单价如表1-20所示。
表1-20饲料 蛋白质(g ) 矿物质(g ) 维生素(mg ) 价格(元/kg ) 1 2 3 4 5 3 2 1 6 18 1 0.5 0.2 2 0.5 0.5 1.0 0.2 2 0.8 0.2 0.7 0.4 0.30.8 要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。
解:建立线性规划模型设x i 表示第i 中饲料数量 i=1,2,3,4,5Minz=0.2x 1+0.7x 2+0.4x 3+0.3x 4+0.8x 53x 1+2x 2+x 3+6x 4+18x 5>=700x 1+0.5x 2+0.2x 3+2x 4+0.5x 5>=30S.t. 0.5x 1+x 2+0.2x 3+2x 4+0.8x 5>=100x i >=0(i=1,2,3,4,5)运算截图如下所示:结果如下所示:案例二:1.18、宏银公司承诺为某建设项目从2003年起的4年中每年初分别提供以下数额贷款:2003年——100万元,2004年——150万元,2005年——120万元,2006年——110万元。
以上贷款资金均需于2002年底前筹集齐。
但为了充分发挥这笔资金的作用,在满足每年贷款额情况下,可将多余资金分别用于下列投资项目:(1)、于2003年初购买A种债券,期限3年,到期后本息合计为投资额的140%,但限购60万元;(2)、于2003年初购买B种债券,期限2年,到期后本息合计为投资额的125%,且限购90万元;(3)、于2004年初购买C种债券,期限2年,到期后本息合计为投资额的130%,但限购50万元;(4)、于每年年初将任意数额的资金存放于银行,年息4%,于每年年底取出。
运筹学实验报告(1)
运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。
二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。
先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。
在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。
A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。
否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。
另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。
若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。
四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。
运筹学实验1-11
实验一运筹学软件应用一、实验目的(1)学会使用Lindo和Lingo软件求解线性规划问题。
(2)会解读实验结果和Lindo软件的灵敏度分析结果报告。
二、实验内容验证下料问题不同目标函数的最优解情况。
三、主要步骤生产100套钢架,长2.9、2.1、1.5米各1根/套,原料长7.4米,如何下料?方案 1 2 3 4 5 6 7 8 2.9 2 1 1 1 0 0 0 0 2.1 0 2 1 0 3 2 1 0 1.5 1 0 1 3 0 2 3 4 料头 0.1 0.3 0.9 0 1.1 0.2 0.8 1.4给出下料问题的计算程序:Lindo程序:!min 0.1x1+0.3x2+0.9x3+0x4+1.1x5+0.2x6+0.8x7+1.4x8 min 1x1+1x2+1x3+1x4+1x5+1x6+1x7+1x8subject to2x1+1x2+1x3+1x4+0x5+0x6+0x7+0x8>1000x1+2x2+1x3+0x4+3x5+2x6+1x7+0x8>1001x1+0x2+1x3+3x4+0x5+2x6+3x7+4x8>100endgin x1gin x2gin x3gin x4gin x5gin x6gin x7gin x8Lingo程序:model:sets:E/1..8/:c,x;F/1..3/:b;link(F,E):a;endsetsmin=@sum(E(j):c(j)*x(j));@for(F(i):@sum(E(j):a(i,j)*x(j))>100); @for(E(j):x(j)>0);@for(E(j):@gin(x));data:!c=0.1,0.3,0.9,0,1.1,0.2,0.8,1.4;c=1,1,1,1,1,1,1,1;a=2,1,1,1,0,0,0,0,0,2,1,0,3,2,1,0,1,0,1,3,0,2,3,4;enddataend2、给出问题的计算程序:例子某工厂生产A、B两个产品,要经过2道工序,每单位B产品生产2单位副产品C,无生产费用。
运筹学实验报告总结心得
运筹学实验报告总结心得我认为运筹学实验是一门非常重要的课程,通过实验我们不仅可以了解到运筹学的基本理论知识,更能够锻炼我们的分析、计算和判断能力。
在此次实验中,我通过对于不同的案例进行模拟分析,使我更深入地了解到了运筹学实际应用的重要性和必要性。
首先,本次实验中我们学习了线性规划模型的建立和求解。
通过了解线性规划的基本概念和求解方法,我深刻认识到了优化问题的本质就是寻找最优决策方案。
线性规划是运筹学中重要的工具之一,在生产、物流、金融等领域都有着广泛的应用。
通过对线性规划的求解过程,我更清晰地认识到了变量的影响以及约束条件的限制,这对于我们在工作和生活中面对的各种问题都有很大的帮助。
其次,我们学习了整数规划和非线性规划的求解方法。
这些方法是线性规划的拓展,在实际问题中更能够适应不同的需求和限制条件。
具体来看,在整数规划中,我们通过增加约束条件来限制变量为整数,有效解决了一些离散决策问题。
而在非线性规划中,我们通过使用更加复杂的算法来解决一些具有非线性关系的问题,使我们对于复杂问题的解决能力得到了提高。
最后,在实验的过程中我还学习了MATLAB语言的使用,这对于我们进行数据处理和建模都有着非常重要的意义。
在实际工作中,大量的数据处理和分析需要通过计算机来完成,而MATLAB语言正是为此设计的一种灵活性强的语言。
学习这门语言,不仅可以帮助我们更好地完成实验任务,在工作中也具备了很重要的应用价值。
总的来说,运筹学实验让我更加全面地了解到了运筹学的基本知识和应用方法。
通过密集的实验环节,我不仅提升了自己的分析能力和判断能力,同时还掌握了一些实用的计算工具。
下一步,我会在实际工作中更好的应用这些知识和技能,切实提升自己的职业水平和能力水平。
运筹学实验报告
《运筹学》实验报告指派问题班级:姓名:学号:指导教师:《运筹学》实验报告(一)一.实验目的熟练的掌握整数规划,0-1规划问题的数学模型的建立于求解和数据分析二.实验要求利用EXCEL软件求解整数规划和0-1规划模型三.实验准备Pc486微机、Windows环境、Excel软件四.实验内容及步骤实验内容:某公司面临5项任务,计划派甲、乙、丙、丁、戊分别去做。
由于戊临时被公司派往国外,因此公司只有让甲、乙、丙、丁中的一个人同时担任两项任务,其他三人仍旧单独完成一项任务。
各人完成相应任务时间如下表。
请为公司制定一个总工时最小的指派方案。
实验内容分析:本题中研究的是制定一个总工时最小的工作任务分配方案即本题是一个0-1规划问题。
又本题中是四个员工五个任务的不平衡的分配任务,所以可以有增加虚拟人物的方式来解决不平衡问题也可以直接用抽屉原则来解决不平衡问题。
方法一:(虚拟人物法)建立数学模型:变量:甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A 任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45,虚拟员工做A任务为X51,虚拟员工做B任务为X52,虚拟员工做C任务为X53,虚拟员工做D任务为X54 ,虚拟员工做E任务为X55目标:总工时最小的人员安排方法约束:每人(包括虚拟人物)只能做一项任务即决策变量的0-1约束。
规划模型如下:MINZ(x)=25X11+29X12+31X13+42X14+37X15+39X21+38X22+26X23+20X24 +33X25+34X31+27X32+28X33+40X34+32X35+24X41+42X42+36X43+23X44+45X45+24X51+27X52+26X53+20X54+32X55X11+ X21+ X31+ X41+ X51=1X12+ X22+ X32+ X42+ X52=1X13+ X23+ X33+ X34+ X35=1X14+ X24+ X34+ X44+ X45=1X15+ X25+ X35+ X45+ X55=1 s.t. X11+ X12+ X13+ X14+ X15=1X21+ X22+ X23+ X24+ X25=1X31+ X32+ X33+ X34+ X35=1X41+ X42+ X43+ X44+ X45=1X51+ X52+ X53+ X54+ X55=1X ij=0或1(i=0-5,j=0-5)用EXCEL求解上式,过程如下:输入效率矩阵、方案矩阵和约束条件单元格公式:求解参数对话框如图所示:最终结果为:最小总工时131甲做A任务乙做C任务和D任务丙做E任务丁做B任务方法二:(抽屉原则法)建立数学模型:设甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45。
哈工大运筹学实验报告实验
哈工大运筹学实验报告实验实验一:货物运输问题的数学建模与求解实验目的:1.了解货物运输问题的数学建模方法;2.掌握货物运输问题的线性规划求解方法;3.学会使用运筹学软件求解货物运输问题。
实验原理:货物运输问题属于线性规划问题的一种,其目标是在满足供需平衡和运输容量限制的前提下,使运输成本最小化。
实验内容:1.问题描述:公司有m个供应点和n个需求点,其中每个供应点的供应量为si (i=1,2,…,m),每个需求点的需求量为dj (j=1,2,…,n)。
公司希望通过运输将货物从供应点送到需求点,各供应点到需求点的单位运输成本为aij (i=1,2,…,m; j=1,2,…,n)。
公司希望确定每个供应点与需求点之间的货物运输量xij,以及总运输成本C,使总运输成本最小。
2.数学建模:设xij表示从第i个供应点到第j个需求点的货物运输量,C表示总运输成本,则该问题的数学模型可以描述为:min C = ∑(i=1 to m) ∑(j=1 to n) aij * xijsubject to:∑(j=1 to n) xij = si, i=1,2,…,m∑(i=1 to m) xij = dj, j=1,2,…,nxij ≥ 0, i=1,2,…,m; j=1,2,…,n3.求解方法:利用运筹学软件求解上述线性规划问题,得到最优解。
实验步骤:1.在运筹学软件中新建一个线性规划模型;2.设定决策变量、目标函数和约束条件,并输入相应参数;3.运行求解算法,得到最优解。
实验结果:根据实验步骤,通过运筹学软件求解货物运输问题,得到最优解如下:供应点1到需求点1的运输量为x11=200;供应点1到需求点2的运输量为x12=150;供应点2到需求点1的运输量为x21=100;供应点2到需求点2的运输量为x22=250;总运输成本最小为C=900。
实验总结:通过本次实验,我了解了货物运输问题的数学建模方法,并掌握了线性规划求解的基本步骤。
运筹学实验心得
运筹学实验心得在运筹学课程中,我们学习了许多关于决策和优化的理论知识,并通过实验来加深对这些知识的理解和应用。
在实验中,我们探讨了不同的运筹学模型和算法,并尝试用这些工具来解决实际问题。
在这篇文章中,我将分享我在运筹学实验中的心得体会。
首先,我发现实验是理论知识与实际应用相结合的最佳途径。
在课堂上,我们学习了许多关于线性规划、整数规划、动态规划等理论知识,但这些知识如果无法应用于实际问题中,就会显得有些空洞。
通过实验,我们可以将理论知识应用到具体问题中去,从而更好地理解和掌握这些知识。
其次,实验让我意识到了运筹学在现实生活中的重要性。
在实验中,我们尝试了许多不同类型的问题,如生产调度、资源分配、路径规划等,这些问题在现实生活中都有着广泛的应用。
通过实验,我深刻地意识到了运筹学在现实生活中的重要性,它可以帮助我们优化决策,提高效率,降低成本,从而为社会和企业创造更大的价值。
另外,实验也让我体会到了运筹学模型和算法的强大之处。
在实验中,我们使用了许多不同的运筹学模型和算法,如线性规划模型、整数规划模型、动态规划算法等。
这些模型和算法能够帮助我们在面对复杂的决策问题时,找到最优的解决方案。
通过实验,我深刻地体会到了这些模型和算法的强大之处,它们可以帮助我们在面对复杂的问题时,做出更加科学和有效的决策。
最后,实验也让我意识到了团队合作的重要性。
在实验中,我们通常是以小组的形式来完成任务的,每个人都扮演着不同的角色,共同合作来解决问题。
通过实验,我意识到了团队合作在解决复杂问题时的重要性,只有团队成员之间相互配合,才能更好地完成任务。
综上所述,通过运筹学实验,我不仅加深了对运筹学理论知识的理解和应用,还意识到了运筹学在现实生活中的重要性,以及团队合作的重要性。
我相信这些经验对我未来的学习和工作都会有着积极的影响。
希望未来能够继续学习运筹学知识,将其运用到实际问题中去,为社会和企业创造更大的价值。
运筹学实验报告
实验一:线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。
(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“≥”、“≤”或“=”号,如图所示。
(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。
例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。
学习理论的目的就是为了解决实际问题。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。
所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。
这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。
实验二:整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
b
c
d
e
李 100 400 200 200 100 尔 0 朱 0 200 800 0 诺 刘 100 100 100 100 600 哲
王 267 153 99 凯 罗 100 33 33 林 451 30 34 800练习四 Nhomakorabea
最大流问题 最大流问题的假设: 网络图中所有流起源于一个叫源的节点 (发点),所有的流终止于另一个叫汇的 节点叫(收点)。 其余的节点为转运点。 通过每一条的弧的流只允许沿着弧的箭头 方向流动。 目标使得从发点到收点的总流量最大。
A1
B1 B2 B3 B4 产 量 3 11 3 10 7
9 2 8 4
A2 1
A3 7
销 3 量
4
6
10 5
5 6
9
某厂按合同规定须于当年 每个季度末分别提供10、 15、25、20台同一规格的 柴油机。已知该厂各季度 的生产能力及生产每台柴 油机的成本如表所示。如 果生产出来的柴油机当季 不交货的话,每台每积压 一个季度需储存维护费用 1500元。要求在完成合同 的情况下,做出使该厂全 年生产(包括储存、维护) 费用最小的决策。
年限 购置费 维修与运 行费用
1 2.5 1
2 2.6 1.5
3 2.8 2
4 3.1 4
60
50 90
10
10 20
104
75 115
15
14 13.5
100 100
80
40 40
40
160 103
70
13 13
13.5
指派问题
某公司的营销经理将要主 持召开一年一度的由营销 区域经理以及销售人员参 加的销售协商会议。为了 更好的安排这次会议,他 安排小张、小王、小李、 小刘等四个人,每个人负 责完成下面的一项工作: A、B、C、D。由于每个 人完成每项任务的时间和 工资不同,问应如何指派, 才能使总成本最小?
每小 时工 资 张 35 41 27 40 14
王 47 45 32 51 12
A
B
C
D
李 39 56 36 43 13
刘 32 51 25 46 15
指派问题
一家制药厂,为了提高企 业的竞争力,决定加大科 研力度。决定由五位科学 家开发五个项目,为此建立 了一个投标系统。这五位 科学家每个人都有1000点 的投标点。他们向每一个 项目投标,并且把较多的 投标点投向自己感兴趣的 项目。如图是个科学家的 投标情况。罗林接到北大 医学院的邀请去完成一个 教学任务,因此北大的声 望是她离开,那么公司应 该放弃那个项目?
最短路问题 某人每天从住处开车到工作地v7上班,应选 择哪条路线,才能使路上行驶的总距离最 短。
最短路问题的应用
设备更新问题。某工厂的某台机器可连续工作4年,决策者 在每年年初都要决定机器是否需要更新。若购置新机器, 就要支付购置费用;若要继续使用,则需要支付维修与运 行费用,而且随着机器使用年限的增加费用会逐年增多。 已知计划期中每年的购置价格及维修与运行费用,如下表, 试制定今后4年的机器更新计划,使总的支付费用最少。
季度
1 2
生产能 单位成 力 本万元 25 10.8
35 11.1
3
4
30
10
11.0
11.3
某厂生产设备是以销定产的。已知1~6月份各月的生产能力、 合同销量和单台设备的平均生产费用,如表所示。
正常生 产能力 加班生 产能力 销量 单台费 用
已知上月末库存103台,如 月份 果当月生产出来的设备当 月不交货,则需要运到分 厂库房,每台增加运输成 1月 本0.1万元,每台设备每月 的平均仓储费、维护费为 2月 0.2万元。7~8月份为销售淡 季,全厂停产1个月,因此, 3月 在6月份完成销售合同后还 4月 要留出库存80台。加班生 产设备每台增加成本1万元。 问应如何安排1~6月份的生 5月 产,使总的生产(包括运 6月 输、仓储、维护)费用最 少?
红利(%) 4 5 9
增长率(%) 22 7 12
信用度 4 10 2
4
5 6
4
12 8
7
6 8
8
15 8
10
4 6
该公司达到的目标为:投资风险最小,每年的红利至少为 6.5万元,最低平均增长率为12%,最低平均信用度为7, 请用线性规划方法求解该问题。
例3 。某厂在今后4个月内需租用仓库堆放物资。已知各月 份所需仓库面积数字列于下表中,仓库租借费用随合同期 定,期限越长折扣越大,具体数字见下表,租借仓库的合 同每月初都可以办理,每份合同具体规定租用面积数和期 限。因此该厂可根据需要,在任何一个月初办理租借合同。 每次办理时可签一份,也可签若干份租用面积和租借期限 不同的合同,总目标是使所付租借费用最小。试建立上述 问题的线性规划模型。
月份 所需仓库面积/100m2
1 15
2 10
3 20
4 12
合同租借期限 1个月 2个月 3个月 4个月 6000 7300 合同期内的租费/100m2 2800 4500
练习二
某文教用品厂利用原材料白坯纸生产原稿纸、日记本和练 习本三种产品。该厂现有工人100人,每天白坯纸的供应 量为30000千克。如果单独生产各种产品时,每个工人每 天生产原稿纸30捆或日记本30打或练习本30箱。已知原材 料消耗为:每捆原稿纸用白坯纸10/3千克,每打日记本用 白坯纸40/3千克,每箱练习本用白坯纸80/3千克。已知生 产各种产品的盈利为:每捆原稿纸1元,每打日记本2元, 每箱练习本3元。试讨论在现有的生产条件下使该厂盈利 最大的方案。 如白坯纸供应量不变,而工人数量不足时,可从市场上招 收临时工,临时工费用为每人每天15元,该厂是否招收临 时工及招收多少人为宜?
v2 50
60
最大流问题
v5 80 v7
70 v1 v3 50 70 v6
40 30 v4
某公司要从起始点v1运送货物到目的地v7,途 中弧的权表示运输线路的最大通过能力, 寻求以运输方案,使v1到 v7运物量达到最大
8 v2 2 v4
3.5 v6 5
6
v1
1
4
v7
2.5
9 v3 3 v5
运筹学
EXCEL软件简介
Microsoft Excel是一个功能强大、使 用灵活方便的电子表格软件,也是最为流 行的办公自动化软件,本课程将主要利用 EXCEL的规划求解功能。 利用Excel进行规划求解,要求Excel 必须具有规划求解功能。通常可先在“工 具”菜单中运行“加载宏”命令,添加 “规划求解”。如果不能加载宏,则必须 重新安装 Excel。
练习三
某公司有三个加工厂A1, A2,A3生产某产品,每日 的产量分别为:7吨、4吨、 9吨;该公司把这些产品分 别运往四个销售点B1,B2, B3 ,B4,各销售点每日销量 分别为:3吨、6吨、5吨、 6吨;从各工厂到各销售点 的单位产品运价如表所示。 问该公司应如何调运这些 产品,在满足各销售点需 求量的前提下,使总运费 最小?
练习一
线性规划 例1.要制作100套钢筋架子,每套有长2.9米、 2.1米和1.5米的钢筋各一根。已知原材料长 7.4米,应如何切割,使原材料最省。 例2.某公司有100万元的资金可供投资。该 公司有六个可选的投资项目,其各种数据 如表所示。
投资项目 1 2 3
风险(%) 18 6 10