中考数学函数类应用题目综合测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学函数类应用题目综合测试卷
中考数学函数类应用题综合测试卷
一、单选题(共6道,每道15分)
1.为推进节能减排,发展低碳经济,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).当、时,y与x 之间的函数关系式分别是()
A. B.
C. D.
2.为推进节能减排,发展低碳经济,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).当、时,第一年的年获利w与x函数关系式分别是()(年获利=年销售额-生产成本-节电投资)
A.
B.
C.
D.
3.为推进节能减排,发展低碳经济,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,根据题意列方程得()
A. B.
C. D.
4.在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识.某企业采用技术革新,节能减排.从去年1至6月,该企业二氧化碳排放量(吨)与月份x(1≦x≦6,且x取整数)之间的函数关系如下
表:
去年7至12月,二氧化碳排放量(吨)与月份x(7≦x≦12,且x取整数)的变化情况满足二次函数(a≠0),且去年7月和去年8月该企业的二氧化碳排放量都为56吨.观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识表达与x之间、与x之间的函数关系式.下列选项中正确的是()
A. B.
C. D.
5.在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共
识.某企业采用技术革新,节能减排.从去年1至6月,该企业二氧化碳排放量(吨)与月份x(1≦x≦6,且x取整数)之间的函数关系如下表:
去年7至12月,二氧化碳排放量(吨)与月份x(7≦x≦12,且x取整数)的变化情况满足二次函数(a≠0),且去年7月和去年8月该企业的二氧化碳排放量都为56吨.政府为了鼓励企业节能减排,决定对每月二氧化碳排放量不超过600吨的企业进行奖励.去年1至6月奖励标准如下,以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖励z(元)与月份x满足函数关系式(1≦x≦6,且x取整数),如该企业去年3月二氧化碳排放量为200吨,那么该企业得到奖励的吨数为(600-200)吨;去年7至12月奖励标准如下:以每月二氧化碳排放量600吨为标准,不足600吨的二氧化碳排放量每吨奖励30元,如该企业去年7月份的二氧化碳排放量为56吨,那么该企业得到奖励的吨数为
(600-56)吨.设去年1至6月中第x月政府奖励该企业的资金为,7至12月中第x月政府奖励该企业的资金为,则与x之间、与x之间的函数关系式为()
A.
B.
C.
D.
6.在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识.某企业采用技术革新,节能减排.从去年1至6月,该企业二氧化碳排放量(吨)与月份x(1≦x≦6,且x取整数)之间的函数关系如下
表:
去年7至12月,二氧化碳排放量(吨)与月份x(7≦x≦12,且x取整数)的变化情况满足二次函数(a≠0),且去年7月和去年8月该企业的二氧化碳排放量都为56吨.在去年一年中,政府奖励该企业资金最多的是第()月,最多资金
为()
A. B.
C. D.