【技术资料】台达可编程逻辑控制器plc电子凸轮

合集下载

台达电子凸轮设计解读

台达电子凸轮设计解读

枕式药剂包装机结构实际图: 送料轴 送膜轴 色标检测 纵缝箱
5
膜位调节器
横封刀位置调 节器
横封切刀轴 横封加热体
• ASDA-A2 SOLUTION
枕式药剂包装机的工艺原理
枕式药剂包装机效果展示:
包裝膜
送膜轴
切刀轴
送料軸
枕料
6

ASDA-A2 SOLUTION
枕式药剂包装机控制结构
枕式药剂包装机控制结构:

ASDA-A2 SOLUTION
枕式药剂包装机控制参数设定
全闭环参数设定:
P1-74 光学尺全闭环功能控制开关
参数功能介绍:
全闭环功能开关 OA/OB/OZ输出来源选择 光学尺回授正反相选择 未使用 全闭环功能开关
设定1实现全 闭环功能及龙 门同动功能
OA/OB/OZ输出来源选择
实现BYpass控制
ASDA-A2 SOLUTION
2009/12
1
A2运动控制枕式包装机
枕式包装机是一种卧式三面封口,自动完成制袋、填 充、封口、切断,要实现高速包装,横封刀必须采用伺服 的电子凸轮功能,运用台达A2高性能伺服控制器所内建 的电子凸轮完全可以达到客户的要求。 目前市面的国产全自动枕式包装机采用PLC控制、变 频调速,机械联动 ,运动曲线是由机械的凸轮来实现的, 机械加工、安装复杂,运行噪音大,效率低。 如今市面上所讲的伺服控制全自动枕式包装机也是采 用PLC控制伺服电机运动,其精度也不是非常的稳定,代 价相当的高,由于运算处理时通过PLC来实现务必造成实 时性落差。 台达目前在枕式包装机上解决方案是用内建的运动 控制功能、同步抓取修正功能、BY-PASS功能完全脱离 上位机控制的只需要简单的参数设置就能实现枕包装机的 工艺要求,而且速度快、精度高、一致性好等特点。

台达电子凸轮设计解读

台达电子凸轮设计解读

台达电子凸轮设计解读电子凸轮是一个用于控制发动机气门的关键部件,它通过控制气门的开关时间和程度来调节进气、排气以及燃烧室的压缩效果,从而影响车辆的动力性能和燃油效率。

台达电子凸轮作为一个创新的产品,在设计上有许多独到之处,下面将对其进行详细解读。

首先,台达电子凸轮采用了先进的电子控制技术,使得气门的开关过程更加精确和可控。

与传统的机械凸轮相比,电子凸轮可以实现更准确的气门开闭控制,从而使得发动机运行更加平稳、可靠。

此外,电子凸轮的控制器还可以根据不同的工况自动调节气门的开启时间和程度,以适应不同的负载和转速,提高了车辆的动力响应和燃油经济性。

其次,台达电子凸轮在结构设计上也有一些独特之处。

它采用了轻量化的材料,如高强度铝合金和碳纤维复合材料,以减轻整个发动机的重量,并提高发动机的功率密度。

此外,台达电子凸轮还采用了模块化设计,使得维修更加便捷,大大降低了维修成本和维修时间。

同时,其设计还考虑到了安全性和可靠性的要求,满足了相关的标准和规范。

再次,台达电子凸轮在制造工艺和生产流程上也有一些创新之处。

它采用了先进的数控加工技术和激光焊接技术,使得凸轮的加工精度和表面质量得到很大的提高。

另外,台达电子凸轮还具有柔性化的生产能力,可以根据用户的需求和要求进行定制生产,以适应不同车型和不同的发动机配置。

最后,台达电子凸轮在性能方面也具备了一定的优势。

它具有更大的气门开启范围和更短的开闭时间,可以有效提高发动机的进气和排气效率,提高动力输出和燃油经济性。

同时,电子凸轮还可以实现气门的连续可变升程控制,使得发动机在不同负载和转速下都能保持较高的效率,并实现更好的动力调节和响应性能。

综上所述,台达电子凸轮作为一种创新的产品,在设计上具有许多独到之处。

它采用了先进的电子控制技术、轻量化材料和模块化设计,使得气门的开关更加精确和可控,结构更加轻量化和可靠,制造工艺更加精细化和灵活化,性能更加出色和高效。

台达电子凸轮的推出将为汽车行业带来更多机会和挑战,有望推动发动机技术的进一步创新与发展。

基于PLC的电子凸轮控制器

基于PLC的电子凸轮控制器
ZENG Qiang
中图分类号: TH137
文献标识码: B
文章编号: 1672- 8904 ( 2007) 03- 0041- 002
引言
灯具自动化生产设备所需求的工位较多, 如一 台排气机有 60 个工位, 为了减少设备占用空间, 所 以一般将设备设计成圆形转盘式, 各工位均匀地分 布在圆形转盘的圆周上。每转过一个工位停留 1 s 至 3 s, 要进行上料、下料、工位打开、灯具夹放、排 气等动作, 这些动作都是由气缸或由气缸驱动的机 械装置来完成的, 因此需要控制的气缸数目多达 30 个, 而且这些气缸动作频繁, 动作周期短。编程时, 如果采用常规的时序编程或步进编程方式, 存在以 下问题: ①气缸前、后端需要大量的位置检测开关, 增加了设备成本, 同时也不便于设备的安装和维 护。②时序控制程序繁杂, 不利于现场进行工艺调 整。③位置控制精度不高, 容易造成动作混乱。用 PLC 与角度编码器配合制作电子凸轮控制器, 每个 电子凸轮轨迹对应控制一个气缸的动作, 就能有效 地解决以上问题。
AN #TEMP6
OPN #IN1


DBW[AR1,P#2.0]
A(
>I

#TEMP7

#TEMP6

# TEMP8
NOP 0


#IN3

#TEMP6
OPN #IN0

DBX[AR2,P#1.0]

DBW[AR1,P#2.0]
NOP 0
>=I
+AR1 P#2.0

#TEMP7
+AR2 P#1.0

L 1.1

L 1.6

L 1.0

【技术资料】台达可编程逻辑控制器plc电子凸轮

【技术资料】台达可编程逻辑控制器plc电子凸轮

【技术资料】台达可编程逻辑控制器plc 电子凸轮基于台达运动控制型PLC电子凸轮功能高速绕线机摘要,介绍台达DVP-20PM00D运动控制器电子凸轮,CAM,功能,阐述高速绕线机工作原理、工艺要求及相关控制程序概要。

关键词,运动控制电子凸轮主轴从轴 CAM Table1 引言本文介绍的全自动无骨架系列空心电磁线圈高速绕线机,可以绕制传动线圈,扬声器线圈,天线线圈以及各种无骨架通用线圈。

设备具有性能可靠,高速高效率,自动化程度高,适合于线圈制造业的批量生产,如图1所示。

图1 空心电磁线圈一般普通绕线机采用内置脉冲功能的小型PLC,通过绕线轴编码器速度输出到PLC内置高速输入点,将绕线轴与排线轴的速比进行简单速度同步,这种方法受 PLC 运算影响,同步精度差,计算量大,CPU处理时间较长,因此会出现绕线不均匀,堆积,塌陷等问题,严重影响绕线成品的质量,举例来说,PLC对绕线轴编码器作高速计数,当到达计数值时利用中断方式控制排线轴电机反向绕制,但受CPU运算处理时间的影响会出现滞后产生误差,在低速的情冴下尚可基本达到绕制要求,但是对于高速绕制多层线圈时就会出现线圈端面不齐整,成品品质下降。

台达DVP-20PM00D是一款专用运动控制型PLC,采用高速双CPU结构形式,利用独立CPU处理运动控制算法,可以很好地实现各种运动轨迹控制、逻辑动作控制,直线/圆弧揑补控制等,在高速绕线机中利用了20PM运动控制器的电子凸轮功能很好的解决了绕线换向出现的绕制不均匀、堆积、不平整等问题,如图2所示。

图2 运动控制器DVP-20PM00D2 高速绕线机2.1 设备结构简介高速绕线机共包含九部分机构,如图3所示。

图3 高速绕线机,1,机架。

机架由角钢框架及不锈钢台面组成,并设置脚轮便于移动,当设备到位后可将支脚调低作为稳定支撑。

,2,张力机构。

安装于进线部分,作为绕线张力调节,保证线圈绕制时维持张力恒定,张力调节器具有调节旋钮可针对不同需求进行张力调节设定,调整完毕后,张力调节器自动控制绕线张力。

台达运动控制型PLC应用技术【详情】

台达运动控制型PLC应用技术【详情】

台达运动控制型PLC应用技术FP0+、FP0-、FP1+、FP1-:脉冲输出端口RP0+、RP0-、RP1+、RP1-:脉冲输出端口(注:0表示第一轴,1表示第二轴,如START0表示启动第一轴,START1表示启动第二轴,其他信号依次类推)从端子分布可以看到,除了常用的极限和启动停止信号外,配置了过零脉冲PG和手摇轮功能输入端,手摇轮是机床应用中常用而必备功能,而利用过零信号在精确控制场合往往会用到,当然更不用说定位控制中都会用到的DOG原点信号。

2.3配线规格一般I/O点配线就不再赘言了,可以关注一下PLC比较少用到的差分输入输出方式,在信号中有一部分是这样的,一定要注意否则将不能正确完成,参见图2、图3。

图2差分输入配线示意图图3差分输出配线示意图3 台达运动控制型PLC软件结构3.1 DVP20PM程序结构由于20PM主机结合了PLC顺序逻辑控制及双轴插补定位控制的功能,因此在程序架构上主要分为O100主程序、Ox运动子程序及Pn子程序等三大类,结合了基本指令、应用指令、运动指令及G Code指令,使程序设计更多元化,结构更清晰;程序采用PMSOFT软件进行编辑,参见图4。

图4 程序设计界面(1)主程序。

主程序以O100作为起始标记,M102作为结束标记,是PLC顺序控制程序,主要为控制主机动作执行,在O100主程序区域中,可以使用基本指令及应用指令,或在程序中启动Ox0~Ox99运动子程序及调用Pn子程序。

主要提供主控制程序的建立,以及运动子程序的设定及启动控制。

(2)运动子程序。

Ox0~Ox99运动子程序为运动控制程序,主要为控制20PM系列主机进行X-Y轴双轴运动之子程序,于Ox0~Ox99运动子程序区段中,有支持基本指令、应用指令、运动指令及G码指令,并在程序中可规划呼叫Pn指针子程序,通过PLC提供的内部特D特M进行子程序的控制。

主要提供运动子程序的建立,以及运动子程序的运动控制,在架构上可算是20PM的运动指令及G码指令规划区域。

台达电子凸轮设计资料

台达电子凸轮设计资料

台达电子凸轮设计资料凸轮是一种机械元件,常用于驱动连杆机构的运动。

台达电子作为一家知名的电子产品生产商,其凸轮设计资料包括凸轮的基本原理和设计要点,以及使用凸轮的应用领域和优势等方面。

一、凸轮的基本原理和设计要点凸轮是一种具有特定形状的轴,常用于驱动其他部件(如活塞、阀门等)的运动。

它的基本原理是通过凸轮曲面的几何形状,在旋转运动时实现对其他部件的间歇或连续运动。

设计凸轮需要考虑以下要点:1.凸轮的曲面形状:凸轮曲面的设计根据具体的要求而定,可以是直线、曲线、椭圆等不同形状。

曲线的选择要考虑到所需运动的速度、间隙和稳定性等因素。

2.凸轮的工作环境:凸轮在工作过程中会受到各种力的作用,因此需要考虑材料的强度、硬度和耐磨性等因素。

同时还要注意凸轮与其他部件的配合工作,如轴承和润滑等问题。

3.凸轮的驱动方式:凸轮可以通过直接驱动或间接驱动来实现运动,具体的驱动方式要根据实际需要选择。

二、凸轮的应用领域和优势凸轮广泛应用于各种机械装置中,包括发动机、汽车、电动工具、纺织设备、包装机械等领域。

凸轮的具体应用优势如下:1.凸轮能够实现不同的运动形式,如往复运动、循环运动、摆动运动等,使得其在各种机械装置中的应用非常灵活多样。

2.凸轮的设计精度高,可以实现精确的定位和控制。

通过合理设计凸轮曲线形状,还可以实现不同速度和加速度的运动,从而满足不同的工艺要求。

3.凸轮具有高效率和可靠性。

由于凸轮的工作部位相对简单,且不容易出现故障,因此具有较好的机械性能和运动稳定性。

总之,凸轮作为一种常用的机械元件,具有广泛的应用前景。

通过合理的设计和选择,可以实现不同形式和功能的运动,满足各种工艺要求。

台达电子作为电子产品制造商,凸轮设计资料将为其产品的研发和制造提供有力的支持。

台达PLC的原理与应用(1)

台达PLC的原理与应用(1)

PLC装置- 数值、常量
2. 八进制(OCT) DVP-PLC外部输入/输出端子编号采用8进制: 外部输入:X0~X7,X10~X17…(装置编号) 外部输出:Y0~Y7,Y10~Y17….(装置编号)
3. 十进制(DEC) 主要用于PLC装置(如辅助继电器、定时器、计数器、寄存器等)编号
4. BCD码 主要用于读取指拨开关的输入值
MOV
K20
D1039 设置扫描周期为20ms
M1039
固定扫描周期
PLC装置-特殊模塊偵測
扩展模块侦测 D1140,D1142,D1143
D1140:特殊模块(AD,DA,XA,PT,TC,HC,PU)的数量,最多为8台。 D1142:数字量扩展模块X点数 D1143:数字量扩展模块Y点数
范例
请问: 左侧PLC与扩展模块的连接示意图中 D1140=? D1142=? D1143=?
K50
定時器范例三
PLC装置-累計型定時器
PLC装置-計數器
PLC装置-計數器
PLC装置-計數器
PLC装置-計數器
PLC装置-計數器
計數器范例
計數器范例
PLC装置-特殊輔助繼電器
PLC装置-內部時鐘脈沖
PLC装置-內部時鐘脈沖
PLC装置-內部時鐘脈沖
PLC装置-內部時鐘脈沖
程序范例
当X0=ON时,Y0=OFF; 当X0=OFF时,Y0=ON
X0 Y0
当X10=ON时,Y2=OFF; 当X10=OFF时,Y2=ON
X10 Y2
符号
功能
SET 输出保持
程序范例
基本指令
符号
功能
RST 复位指令
程序范例

台达电子凸轮器卷绕机

台达电子凸轮器卷绕机

基于台达运动控制PLC电子凸轮的高速绕线机2008-12-15 10:40:00 来源:摘要:介绍台达DVP-20PM00D运动控制器电子凸轮<CAM)功能,阐述高速绕线机工作原理、工艺要求及相关控制程序概要。

关键词:运动控制电子凸轮主轴从轴 CAM Table1 引言本文介绍的全自动无骨架系列空心电磁线圈高速绕线机,可以绕制传动线圈,扬声器线圈,天线线圈以及各种无骨架通用线圈。

设备具有性能可靠,高速高效率,自动化程度高,适合于线圈制造业的批量生产,如图1所示。

图1 空心电磁线圈一般普通绕线机采用内置脉冲功能的小型PLC,通过绕线轴编码器速度输出到PLC内置高速输入点,将绕线轴与排线轴的速比进行简单速度同步,这种方法受PLC运算影响,同步精度差,计算量大,CPU处理时间较长,因此会出现绕线不均匀,堆积,塌陷等问题,严重影响绕线成品的质量,举例来说,PLC对绕线轴编码器作高速计数,当到达计数值时利用中断方式控制排线轴电机反向绕制,但受CPU运算处理时间的影响会出现滞后产生误差,在低速的情况下尚可基本达到绕制要求,但是对于高速绕制多层线圈时就会出现线圈端面不齐整,成品品质下降。

台达DVP-20PM00D是一款专用运动控制型PLC,采用高速双CPU结构形式,利用独立CPU处理运动控制算法,可以很好地实现各种运动轨迹控制、逻辑动作控制,直线/圆弧插补控制等,在高速绕线机中利用了20PM运动控制器的电子凸轮功能很好的解决了绕线换向出现的绕制不均匀、堆积、不平整等问题,如图2所示。

图2 运动控制器DVP-20PM00D2 高速绕线机2.1 设备结构简介高速绕线机共包含九部分机构,如图3所示。

图3 高速绕线机<1)机架。

机架由角钢框架及不锈钢台面组成,并设置脚轮便于移动,当设备到位后可将支脚调低作为稳定支撑。

<2)张力机构。

安装于进线部分,作为绕线张力调节,保证线圈绕制时维持张力恒定,张力调节器具有调节旋钮可针对不同需求进行张力调节设定,调整完毕后,张力调节器自动控制绕线张力。

台达-A2 伺服电子凸轮使用

台达-A2 伺服电子凸轮使用

凸輪脫離後關掉電子凸輪 功能 (P5-88. X = 0)
Low Word UZ YX 0~8 0~2 0~5 0~1
脫離
P5-88.U=2 凸輪行走到達P5-89的
Bit
設定量後脫離且立即停止 (P5- 89)
P5-88.BA < > 0
脫離時呼叫P5-88.BA 所設定的PR
P5-88 .U=4 Bit
/ Opt B /OB /Opt B /OB
P1-74.B = 1
P1-74.B = 1
主動軸信號來源(6)
脈波控制流程圖
光學尺 輔助編碼器
馬達 主編碼器
CN5 CN2
P1-74 .C 光學尺回授
正反相
P5-17 軸位置輔助編碼器
內部電路
P5-18 軸位置脈波命令
P5-16
CN1
軸位置-
馬達
編碼器 0 1 1 2
主動軸: 主動軸訊號來源
P5-88.Y
離合器: 控制凸輪軸開始跟隨 主動軸運動的時機
P5-88.UZ, P5-87, P5-89
主動軸電子齒輪: 命令脈波解析控制
P5-83, P5-84
凸輪軸電子齒輪: 凸輪曲線對輸出訊號 的解析控制
P1-44, P1-45, P5-19
Delta Confidential
訊號強度回復,無衰減。
主動軸信號來源(4)
脈波 By-pass CN1 傳遞
•P1-74.B=2 是設定CN1為脈波by-pass訊號的來源
主動軸 CN1 OA, /OA, OB, /OB
Delta Confidential
凸輪軸 1 凸輪軸 1 凸輪軸 2 凸輪軸 2 凸輪軸 3凸輪軸 3

台达PLC详解,附PLC功能简介~

台达PLC详解,附PLC功能简介~

台达PLC详解,附PLC功能简介~一、可编程控制器的应用1、开关量逻辑控制:电动机启动与停止2、运动控制:对步进电动机或伺服电动机的单轴或多轴系统实现位置控制3、过程控制:对温度、压力、流量等连续变化的模拟量进行闭环控制4、数据处理:数据采集-运算-传送5、机械加工机床的数字控制:数控系统6、机器人控制:7、通信联网: PLC-计算机,PLC-PLC,PLC-人机界面二、可编程控制器的分类与特点1 、按结构形式分类(1) 整体式:将电源、I/O点、CPU、储存器等做成1个整体(2) 模块式:将电源、I/O点、CPU、储存器等做成多个模块2、按I/O点数及内存容量分类(1) 、超小型机:I/O点数在64以内,内存容量在256-1k字节(2)、小型机:I/O点数在64-256,内存容量在l-3.6K字节(3) 、中型机:I/O点数在256-2048,内存容量在3.6-13K字节(4) 、大型机:I/O点数在2048以上,内存容量在13K字节以上3、按功能分类(1) 低档机:基本功能,逻辑运算、定时、计数等(2) 中档机:较强的数据处理、子程序及远程I/O等功能(3) 高档机:较强的模拟调节、智能控制、过程控制等功能三、可编程控制器的特点1、编程简单并具有很好的柔性2、功能完善、实用性强3、可靠性高、抗干扰能力强4、体积小、重量轻、功耗低5、机电一体化四、PLC的基本组成1、中央处理器CPU模块(Central Processing Unit)2、存储器1)、系统程序存储区2)、用户程序存储区3、输入/输出模块4、电源模块5 、编程器和编程软件6、PLC的工作原理(1)输入采样阶段(2)用户程序执行阶段(3)输出刷新阶段7、关于梯形图的格式,一般有如下一些要求;每个梯形图网络由多个梯级组成,每个输出元素可构成一个梯级,每个梯级可由多个支路组成.通常每个支路可容纳11个编程元素。

最右边的元素必须是输出元素。

台达电子凸轮设计

台达电子凸轮设计
优化改进
根据仿真验证和实物测试结果,对设计进行优化改进,提高 设计的可靠性和性能。
04
台达电子凸轮设计案例分析
案例一:汽车发动机凸轮设计
总结词:高效稳定
详细描述:汽车发动机凸轮设计采用了台达电子凸轮技术,实现了高精度、高效 率的加工过程。通过优化凸轮的几何形状和运动轨迹,提高了发动机的性能和稳 定性,减少了振动和噪音。
案例二:纺织机械凸轮设计
总结词:高可靠性
详细描述:纺织机械凸轮设计采用了台达电子凸轮技术,确保了高可靠性和长寿命。通过精确控制凸轮的运动轨迹和速度, 提高了纺织机械的生产效率和产品质量,减少了维护和维修成本。
案例三:包装机械凸轮设计
总结词:高精度
详细描述:包装机械凸轮设计采用了台达电子凸轮技术,实现了高精度的加工和控制。通过优化凸轮 的几何形状和运动轨迹,提高了包装机械的自动化程度和生产效率,降低了废品率。
设计实施阶段
初步设计
根据需求分析,进行初步的结构和功能设计,形成初步设计 方案。
详细设计
对初步设计方案进行细化,包括电子凸轮的尺寸、材料、工 艺等方面的详细设计。
设计验证与优化阶段
1 2
3
仿真验证
通过仿真测试验证设计的可行性和正确性,找出潜在问题。
实物制作与测试
制作实物并进行实际测试,进一步验证设计的有效性,并根 据测试结果进行优化。
台达电子凸轮的设计理念
人性化设计
台达电子凸轮系统的设 计注重人机交互和用户 体验,操作简便直观, 降低了使用难度和培训
成本。
可持续性
台达电子凸轮系统采用 环保材料和低能耗设计 ,减少了能源消耗和排 放,符合可持续发展的
要求。
安全可靠
台达电子凸轮系统注重 安全性能和稳定性,采 取多重安全保护措施, 确保设备和人员安全。

台达PLC

台达PLC

整体控制系统方案采用了台达DVP系列PLC和相关的选配模块、I/O模块。
采用了一套台达DVP14SS11R作为PLC主机(输入:8点,输出:6点,继电器输出),选配了DVP16SP11R,16 点I/O扩展模块(输入:8点,输出:8点,继电器输出),来组成40点PLC控制部分,采用一块DVP02DA-S,为2 路模拟量输出模块,来分别控制主变频传动和钢领板升降变频驱动。使用台达平板型交流电机驱动器VFD-B-P系 列变频器控制主传动电机和钢领板电机。显示单元部分采用台达TP04-AS2文本显示屏进行系统外部输入与纺纱各 项数据的监控。
系统介绍
系统特点
特色
台达PLC以高速、稳健、高可靠度而著称,广泛应用于各种工业自动化机械; 台达PLC除了具有快速执行程序运算、丰富指令集、多元扩展功能卡及高性价比等特色外,并且支持多种通 讯协议,使工业自动控制系统联成一个整体。 为适应工业环境使用,与一般控制装置相比较,PLC有以下特点: 1、可靠性高,抗干扰能力强 硬件和软件两大措施保证控制设备的可靠性: ·硬件措施: 主要模块均采用大规模或超大规模集成电路,大量开关动作由无触点的电子存储器完成,I/O系统设计有完 善的通道保护和信号调理电路。 ①屏蔽——对电源变压器、CPU、编程器等主要部件,采用导电、导磁良好的材料进行屏蔽,以防外界干扰。 ②滤波——对供电系统及输入线路采用多种形式的滤波,如LC或π型滤波络,以消除或抑制高频干扰,也削 弱了各种模块之间的相互影响。
新型细纱机电气控制系统采用PLC控制整个纺纱落纱过程,具备纺纱过程所需的钢领板自动升降、留头率功 能、中途停车后能自动记住纺纱位置跟踪开车、中途落纱、定长落纱等功能。可以设定和修改纺纱的各项工艺参 数,实现定长落纱、机械落纱,可以根据用户的需要设定锭子的十点曲线长度和速度,以及班产量累计、高级设 置密码保护及自动故障诊断等功能。对纺纱过程的锭速、前罗拉转速、前罗拉线速、捻度等进行计算并在文本显 示屏上跟踪显示,并依据机器上各部分传感器自动协调控制,具有较高的系统整体抗干扰性。

电子凸轮介绍[优质PPT]

电子凸轮介绍[优质PPT]

2、上次公司的一个客户,是一台对铝膜进行冲孔的设备。其主轴控 制冲孔模具连续的做上下往返冲孔运动,从轴控制水平方向的对铝膜 的牵引运动。同样可以运用电子凸轮功能来实现主轴与从轴的配合。 客户原来用的是一种独立分开的控制方式,即主轴按照设定的速度连 续转动,从轴一开始是出于停止状态,当控制器接收到主轴的位置信 号后,才开始启动从轴牵引铝膜,牵引到位后从轴停止并等待主轴的 下一个到位信号。这样的控制就要求从轴的运行周期必须要短于主轴 的运行周期,也就是说相对来讲,在一个周期内,从轴的速度要快些。 而这就造成了客户当时一时难以解决的问题:从轴在牵引铝膜时由于 速度偏快,在牵引铝膜时对铝膜的作用力较大,会把铝膜孔拉变形。
从启动位置和终点位置是否一致可以将电子凸轮曲线分为闭式曲线和 开式曲线,如下图(绝大多数的凸轮运行轨迹都是闭式曲线):
四、电子凸轮的行业应用
如上面所介绍,电子凸轮大多用于周期性的曲线运动的场合,比
如像上面图片中的需要不停的做往复运动的场合和一些不适宜安装机
械凸轮的设备,就可以使用电子凸轮。(从查找的资料来看,电子凸
3、在印刷行业,电子凸轮也可以实现送纸和传动之间的同步。比如 将旋转编码器安装在传动马达轴上,编码器将马达的位置和速度信息 反馈给电子凸轮,电子凸轮输出传动马达的速度和凸轮信号给送纸马 达驱动器,从而实现送纸和传动之间的的同步。
4、像飞剪控制很多用的野是电子凸轮功能。
上面所讲的应用都是一种追随性的凸轮控制方式,即各个轴分别以主 轴的位置信号为参考目标去追随,从轴之间独立运行。另外还有一种 同步方式的电子凸轮,所谓同步电子凸轮,指的是两个或多个轴之间 去追随某一个轴,同时两个或多个轴之间要相互参考位置,以插补的 方式并进。这对控制器或伺服等的性能要求就更高了。在应用方面比 如像大型龙门机床的双丝杆推动的平台,一个工作台用两条丝杆来推 动,这就对两条丝杆之间有比较高的同步要求了,否则若出现两个丝 杆之间的偏差达到一定值时,在将出现平台卡死甚至算坏丝杆的情况。

台达电子凸轮设计资料

台达电子凸轮设计资料
2

ASDA-A2 SOLUTION
枕式包装机行业应用
工业用品 制药行业
生活用品行业
行业 应用
食品行业
纸巾行业
化妆品行业
3

ASDA-A2 SOLUTION
枕式药剂包装机的工艺原理
枕式药剂包装机工艺原理:
枕式药机包装机的送膜和送料可视为同步运行,送料和横切伺服控制器直接抓取膜 位色标信号进行位置检测,以确定送料的位置及横切的位置,薄膜经过拉膜轮及纵缝 装置后形成了筒膜,同时物料被送进筒膜内,一起向前经过横封横切部位,由电子凸 轮控制的的横封横切刀对筒膜进行横向封切,输出包装成品,在此期间通过A2伺服自 己的同步抓取修正或者拉膜轮进行了裁切位置调整。
枕式药剂包装机动作流程:
送膜/切刀 轴回原点 PR路径执行 完成参数设置 啮合信 号DI7输入 电子凸 轮启动
切刀伺服PR路径设置(同步抓取修正,抓色标):
PR#0 原点复归 AUTO P6-01=0 PATH:7 PR#7 定位(ABS) AUTO P6-15=0 PR#3 写参数 AUTO P5INS 39=0X020 PR#8 定位(REL) AUTO P617=125000 PR#9 JUMP: JUMP P6-17 INT =1 PR#1 写参数 AUTO P5INS 97=0X00
送料轴
• ASDA-A2 SOLUTION
枕式药剂包装机的控制原理
枕式药剂包装机控制原理:
送膜轴 此轴采用速度控制,作为整个系统的主轴。下达脉冲命令给切刀轴和送料轴, 下达的脉冲命令线数有P1-46设置来决定。 切刀轴 以PR模式(内部位置控制模式)内建的电子凸轮跟随主轴运行,脉冲来源为 送膜主轴的OA,/OA;OB,/OB,采用凸轮自动飞剪同步方式进行同步控制,当 伺服控制器检测到色标光电S1信号,凸轮启动运转,在运转过程中,伺服控制 器会抓取S1的信号,利用内建的同步抓取修正轴(色标补偿功能),调节凸轮速 度,保证精准的裁切位置。 送料轴 以PR模式(内部位置控制模式)内建的电子凸轮跟随主轴运行,脉冲来源为 送膜主轴的OA,/OA;OB,/OB,采用手动凸轮建表方式建表进行同步控制,当 伺服控制器检测到色标光电S1信号,凸轮启动运转,在运转过程中,伺服控 制器会抓取S1的信号,利用内建的同步抓取修正轴(色标补偿功能),调节凸轮 速度,保证精准的裁切位置。 切刀轴和送料轴的命令来源都是有送膜轴的OA,/OA;OB,/OB输出给定, 根据参数P1-74的设置来决定。

A2电子凸轮应用技巧

A2电子凸轮应用技巧

A2电子凸轮应用技巧摘要:台达ASDA-A2伺服内建的电子凸轮功能,在各个行业内的应用日趋广泛。

本文主要结合实际应用中不同问题的解决方案,介绍A2电子凸轮在实际应用中的窍门和技巧,以方便工程设计人员更好进行系统搭建和应用调试。

关键词: 误差补偿By-pass 切长比主轴脉冲正向递增1.A2伺服“一主多从”的连接“一主多从”有两种,第一种主轴为交流电机+编码器;另外一种为伺服主轴。

两种反方式下,A2伺服均提供两种连接方式。

当主轴为信号来源为外接编码器时,若使用CN5传递,不用去设定P1-73.方式1:主轴脉冲信号通过伺服CN1接口进行传递方式2:主轴脉冲信号通过伺服CN1和CN5接口进行传递2.电子凸轮主轴脉冲“正向递增”当主从硬件连接完成后,定义好电子凸轮启动控制参数P5-88后,不要看到凸轮轴可以动了,就认为没有问题了。

其实还有一个很重要的问题需要审视。

那就是凸轮主轴脉冲是否为正向递增。

因为凸轮主轴命令脉冲的“正向递增”是完成电子凸轮其它辅助功能,如前置,脱离,同步修正等功能的必要前提条件。

如果主轴脉冲不符合“正向递增”特性,调试中便会出现很多莫名其妙的问题。

那如何才能知道主轴脉冲的特性呢?A2伺服提供有凸轮主轴脉冲监视寄存器,即参数P5-86,可以通过观察P5-86来确认主轴脉冲是否为“正向递增”。

当主轴脉冲方向不正确时,在脉波by-Pass模式下,A2提供换相功能(用P1-03.Y),以利多台串接调整方向用,信号源CN1/CN5均有效,只需修改参数便可实现脉冲方向的调换。

如下图说明:3.飞剪模式下追随误差补偿追随误差补偿,在飞剪轮切应用过程中,到当由低速到高速运转过程中,会出现追随误差导致裁切滞后,即裁切点后偏现象。

针对此问题,A2伺服具有独特的解决方案,即飞剪追随误差动态补偿功能,运用此功能可以有效降低追随误差。

而此功能的应用设定非常简单,只要设定P1-36=1,并调整P2-53和P2-02即可实现此功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【技术资料】台达可编程逻辑控制器plc 电子凸轮基于台达运动控制型PLC电子凸轮功能高速绕线机
摘要,介绍台达DVP-20PM00D运动控制器电子凸轮,CAM,功能,阐述高速绕线机工作原理、工艺要求及相关控制程序概要。

关键词,运动控制电子凸轮主轴从轴 CAM Table
1 引言
本文介绍的全自动无骨架系列空心电磁线圈高速绕线机,可以绕制传动线圈,扬声器线圈,天线线圈以及各种无骨架通用线圈。

设备具有性能可靠,高速高效率,自动化程度高,适合于线圈制造业的批量生产,如图1所示。

图1 空心电磁线圈
一般普通绕线机采用内置脉冲功能的小型PLC,通过绕线轴编码器速度输出到PLC内置高速输入点,将绕线轴与排线轴的速比进行简单速度同步,这种方法受 PLC 运算影响,同步精度差,计算量大,CPU处理时间较长,因此会出现绕线不均匀,堆积,塌陷等问题,严重影响绕线成品的质量,举例来说,PLC对绕线轴编码器作高速计数,当到达计数值时利用中断方式控制排线轴电机反向绕制,但受CPU运算处理时间的影响会出现滞后产生误差,在低速的情冴下尚可基本达到绕制要求,但是对于高速绕制多层线圈时就会出现线圈端面不齐整,成品品质下降。

台达DVP-20PM00D是一款专用运动控制型PLC,采用高速双CPU结构形式,利用独立CPU处理运动控制算法,可以很好地实现各种运动轨迹控制、逻辑动作控制,直线/圆弧揑补控制等,在高速绕线机中利用了20PM运动控制器的电子凸轮功能很好的解决了绕线换向出现的绕制不均匀、堆积、不平整等问题,如图2所示。

图2 运动控制器DVP-20PM00D
2 高速绕线机
2.1 设备结构简介
高速绕线机共包含九部分机构,如图3所示。

图3 高速绕线机
,1,机架。

机架由角钢框架及不锈钢台面组成,并设置脚轮便于移动,当设备到位后可将支脚调低作为稳定支撑。

,2,张力机构。

安装于进线部分,作为绕线张力调节,保证线圈绕制时维持张力恒定,张力调节器具有调节旋钮可针对不同需求进行张力调节设定,调整完毕后,张力调节器自动控制绕
线张力。

,3,绕线机构。

主要由台达B系列200W伺服电机、同步齿形带、绕线飞叉组成,是电子凸轮运动中的绕制主轴,铜线经过飞叉旋转绕制于绕线模头上,是绕线机主要运动部件之一。

,4,排线机构。

包括台达B系列100W伺服电机、精密直线螺杆、精密导轨、气动滑叉等,是电子凸轮运动中的排线从轴,在绕线运动中跟随绕线主轴正反向往复运动实现排线动作,是绕线机主要运动部件之一。

,5,工作转台
由分度步进电机、旋转台、线叉、绕线模头组成,该设备为多任务位绕线机,在绕线同时执行模头预热、剪线、加热、脱模等工艺动作,这需要工作转台按不同工位动作完成。

,6,剪线机构。

为气动执行机构,主要是将绕制完成的线圈两端引线剪断。

,7,脱模机构。

由分度步进电机、气动脱模组成,将绕制完成的成品从绕线模头取下。

,8,热风系统。

设备配置两个可调温度220V热风枪,在绕线前将模头预热,绕线后对线圈进行热风处理便于脱模。

,9,电气控制。

包含电气控制箱、触摸屏操作盒。

采用DVP-20PM00D运动控制器作为控制核心,触摸屏作为人机交换,伺服电机作为执行机构,实现转轴与排线的精确控制,从而保证绕线的精度。

电气控制系统框图如图4所示。

图4 电气控制系统框图
2.2 工艺流程
绕线头回原点?进给至起绕点?张力调节?模头预热?绕线、排线?加热?剪线?脱模?成品?退至脱模点?进给至起绕点循环生产。

2.3 电气系统配置
电气控制主要包括绕排线部分、步进分度部分、气缸动作控制部分。

具体配置如表1所示。

表1 绕线机电控配置
3 台达PLC电子凸轮功能
高速绕线机的主要控制功能基于台达20PM电子凸轮的应用,使绕制产品的成品品质及效率大大提高。

以下对电子凸轮功能作简单介绍,
3.1 什么是电子凸轮
参见图5,凸轮是用于实现机械三维空间联动传动关系与控制的机械结构。

自动化运动控制系统用软件程序与伺服电机实现三维空间联动传动关系与控制的软件系
统就是电子凸轮功能。

从图5可以看到,左边是我们常见的机械式凸轮方式,而右边就是电子凸轮方式。

也就是说利用程序的方式,配合伺服单元,完成机械凸轮控制所需要的轨迹,实现主轴和从轴的啮合运动。

图4 电子凸轮功能
3.2 电子凸轮的实现
,1,获取主轴位置。

获取主轴位置有多种方法,一是采用虚拟轴,计算简单准确,二是从主轴编码器或伺服脉冲获取,将主轴编码器信号进行处理,三是从测量编码器获取。

获得编码器信号之后,将其换算成主轴位置。

,2,实现主从轴的啮合。

实际上是定义主从轴之间的关系,称之为cam table,。

cam table有两种方法表述,一是采用X、Y的点对点关系,二是采用两者的函数关系。

cam table的获取也有多种途径,根据实际工作中测量到的点与点之间的对应关系,根据主从轴的标准函数关系。

cam table可以定义多个cam曲线。

关系确定和实现后,根据主轴的位置,就能得到从轴的位置。

3.3 台达运动控制型PLC的电子凸轮
台达20PM运动控制器除了实现直线/圆弧揑补以及定位功能之外,内嵌了电子凸轮功能,使其可以应用在多种运动控制场合。

20PM为2轴运动控制器,具有2路500KHz的输入与输出,在电子凸轮功能中定义X轴为从轴,Y轴为主轴,当定义好cam table后,从轴依据定义的曲线跟随主轴运动。

图6是电子凸轮图形化定义软件主界面。

图6 台达电子凸轮软件图形化定义主界面
在软件中我们可以清楚地利用图形方式设定、修改电子凸轮曲线。

当我们点击进入资料表单设定按钮时会弹出下面的区段设置表。

使用者需先设定 Start Ang, End Ang, Stroke以及透过下拉式选单选取CAM curve,具有连续、正弦、匀加速等6种曲线,并可加入其它标准曲线和自定义曲线,,在设定完成后按下Setting completed按钮, 即可在主画面绘制位移, 速度, 加速度坐标图7所示。

图7台达电子凸轮软件图形化定义分界面
图8是以高速绕线机为例的电子凸轮曲线图,采用CYCLIC模式排线从轴根据绕线主轴连续正反排线。

以下是计算主从轴关系算式,
主轴转一圈所出线的距离,圆周长,=π,D ,mm, Or 绕线模具一圈的出线的距离,圆周长,=π,D ,mm,,
排线从轴转一圈所需脉波数=10000P/R=>相对应转一圈滚珠螺杆移动之距离
=10mm, 主轴旋转一圈所需脉波=3600P/R =>从轴相对应主轴旋转一圈所转动的圈数所需脉波= 100P/R =>相对应滚珠螺杆移动之距离=0.1mm
Master/Slave关系式=,主轴旋转一圈所需脉波,凸轮一周期的匝数,/,从轴相对应主轴旋转一圈所转动的圈数所需脉波,线径,排线宽度的匝数,图8 高速绕线机电子凸轮曲线图
4 绕线控制电子凸轮设计
4.1 程序设计
程序设计的关键在于高速绕线机的控制难点分析及解决方案。

,1,系统难点。

绕线机在换向处出现绕线不均匀、堆积,绕线机换向处出现螺旋纹、不平整,无法进行斜排绕线,奇偶数绕线。

,2,难点分析。

换向处绕线不均匀、堆积情冴出现主要是由于普通PLC的速度指令处理时间长,换向受程序扫描周期影响,没有同步指令且无法实时刷新,同时伺服刚性参数,动态响应速度也是原因之一。

换向处出现螺纹主要是因为螺旋绕线方式造成,可采用最后半圈定位绕线解决。

斜排绕线在爬坡时每圈需要增加一个线宽和线厚,奇偶数绕线是在每绕一层变换绕线匝数奇偶性,两种绕线方式都需要每次绕线后进行计算,由于普通小型PLC运算时间长,导致无法进行高速斜排和奇偶数绕线。

4.2 台达解决方案
由以上分析可以看出,高速绕线机的瓶颈在于高速运算及响应,而台达20PM运动控制器除逻辑控制CPU外具有独立的高速运算CPU,由硬件直接完成高速运算响应,2轴同步控制时间小于0.5ms,达到高速绕线需求。

关于台达20PM运动控制器电子凸轮功能及应用在上面章节已有描述。

此外,对于程序编写也十分简单方便,利用PMSoft编程软件设置好cam table 后,直接控制对应的内部寄存器即可完成电子凸轮运行。

表2 为X轴排线轴内部寄存器表,例如在对应的D1511中传送不同数值即可实现0,停止,、1,正向点动,、2,反向点动,、3,单段速运动,、4,电子凸轮运动,,其它寄存器同样有各自功能。

表2 X轴排线轴内部寄存器表
X轴排线轴梯形图如下,
5 结束语
基于台达20PM电子凸轮功能的绕线机控制系统系统已经投产使用,绕线速度最高可达2500r/min,绕制产品品质达到用户需求,台达20PM电子凸轮功能成功应用于高速绕线机中。

电子凸轮功能不仅仅可以应用在绕线机控制中,通过变换不同的
控制曲线,该功能广泛应用于各种较高要求的运动控制中,例如,包装机行业中的飞剪,机床行业中的飞锯,印刷机行业中的电子轴裁切及套印,纺机行业中的精密络筒绕线等等。

相关文档
最新文档