求向量组的秩与极大无关组

合集下载

§3 向量组的秩与极大线性无关组

§3  向量组的秩与极大线性无关组

同的线性相关性。
A 1 , 2 ,
初等行变换 , n B 1 , 2 ,
, n
AX 0 与 BX 0 同解
定理
矩阵A的秩等于A的行(列)向量组的秩。
矩阵的秩的定义:存在 K 阶子式不为 0,对任意 K+1 阶子式均为 0, 则 k 即为矩阵的秩。
km 0 时,k11 k2 2
km m 0 才
成立,或者说, k1 , k2 , , km 不全为零,那么 k11 k22 kmm 必不 为零.)
定理 向量组 1 , 2 , , m 线性相关
齐次线性方程组 1 , 2 ,
x1 x2 , m 0 有非零解 xm
线性无关组等价。
性质 如果多数向量能用少数向量线性表示出, 那么多数向量一定线性相关。
性质
1 , 2 , 如果向量组 A:
R(1 , 2 ,
, m 可由向量组 B: 1 , 2 ,
, n
线性表示,则向量组A的秩不超过向量组B的秩,即
, m ) R( 1 , 2 , , n )
例:设矩阵
2 1 1 1 1 1 2 1 A 4 6 2 2 3 6 9 7
2 4 4 9
求矩阵 A 的列向量组的一个极大线性无关组,并把不属于极
大线性组的列向量用极大无关组线性表示.
解:第一步先用初等行变换把矩阵化成行阶梯形矩阵. 2 1 1 1 2 1 1 2 1 4 r 1 1 2 1 4 0 1 1 1 0 ~ A 4 6 2 2 4 0 0 0 1 3 3 6 9 7 9 0 0 0 0 0 行阶梯形矩阵有 3 个非零行,故R(A) = 3 . 第二步找B的一个3阶非零子式.可取行阶梯形矩阵中非零行 的第一个非零元所在的列 ,与之对应的是选取矩阵 A 的第一、 二、四列. 2 1 1 1 1 1 r 1 1 1 0 1 1 A0 (a1 , a2 , a4 ) ~ B0 4 6 2 0 0 1 3 6 7 0 0 0

1求下列向量组的秩与一个极大线性无关组

1求下列向量组的秩与一个极大线性无关组

习题4.31.求下列向量组的秩与一个极大线性无关组: (1)[]12,1,3,1T α=-, []23,1,2,0Tα=-,[]31,3,4,2T α=-,[]44,3,1,1Tα=-.(2)[]11,1,1,1T α=, []21,1,1,1Tα=--, []31,1,1,1Tα=--,[]41,1,1,1Tα=---.(3)[]11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14Tα=,[]41,1,2,0T α=-,[]52,1,5,6Tα=.分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组.解 (1) []123423141133113301123241000010210000αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组.(2) []123411111111111101011111001111110001αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥---⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组.(3) []1234510312103121301101101217250001042140600000ααααα⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组.2.计算下列向量组的秩,并判断该向量组是否线性相关. (1)[]11,1,2,3,4T α=-,[]23,7,8,9,13Tα=-,[]31,3,0,3,3T α=----,[]41,9,6,3,6Tα=-.(2)[]11,3,2,1T β=--, []22,1,5,3T β=-,[]34,3,7,1Tβ=-, []41,11,8,3Tβ=---,[]52,12,30,6Tβ=-.解 (1) []123413111311173901122806000039330000413360000αααα--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦所以该向量组的秩为2, 小于向量的个数4, 所以线性相关.(2)[]123451241212412313111201548257830001111313600000βββββ----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦所以该向量组的秩为3, 小于向量的个数5, 所以线性相关.3.设[]11,2,1T α=-, []22,4,T αλ=, []31,,1Tαλ=.(1) λ取何值时1α,2α,3α线性相关? λ取何值时1α,2α,3α线性无关? 为什么? (2)λ取何值时3α能经1α,2α线性表示? 且写出表达式.解 (1)[]1231211212402211002αααλλλλ⎡⎤⎡⎤⎢⎥⎢⎥=−−→+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当2λ≠且2λ≠-时, 矩阵的秩为3与向量个数相同, 所以此时该向量组线性无关.当2λ=或2λ=-时, 矩阵的秩为2小于向量个数, 所以此时向量组线性相关. (1) 当2λ=时, 秩([]12αα)=秩([]123ααα)=2, 此时3α能经1α,2α线性表示.表达式的系数为方程组[]123X ααα=的解, 而此时该方程组的解为120,1.2x x =⎧⎪⎨=⎪⎩所以表达式为3α=212α. 当2λ=-时, 秩([]12αα)=1, 秩([]123ααα)=2, 两者不相等, 所以不能线性表示.当2λ≠且2λ≠-时, 秩([]12αα)=2, 秩([]123ααα)=3, 两者不相等,所以不能线性表示.4.下述结论不正确的是( ),且说明理由.(A) 秩为4的4×5矩阵的行向量组必线性无关. (B) 可逆矩阵的行向量组和列向量组均线性无关. (C) 秩为r(r<n)的m ×n 矩阵的列向量组必线性相关. (D) 凡行向量组线性无关的矩阵必为可逆矩阵.解 (A) 正确. 如果行向量组线性相关则行向量组的秩必小于行向量的个数4, 即矩阵的行秩小于4, 而矩阵的行秩等于矩阵的秩, 因此矩阵的秩小于4, 这与矩阵的秩为4矛盾! 所以行向量组必线性无关.(B) 正确. 可逆矩阵必为满秩矩阵, 即n n ⨯的可逆矩阵的秩为n , 而矩阵的秩等于行秩和列秩, 所以矩阵的行秩=列秩=n , 因此行向量组的秩和所含向量个数相同, 据此可知该行向量组必线性无关; 同理列向量组也必线性无关.(C) 正确. 列向量组含有n 个向量, 又由于列向量组的秩(即列秩)等于矩阵的秩r , 而r<n , 即列向量组的秩小于向量组所含向量的个数, 据此列向量组必线性相关.(D) 设111001A ⎡⎤=⎢⎥⎣⎦, 易知该矩阵的行向量组线性无关, 但是它不是方阵, 所以不是可逆矩阵. 所以该选项不正确.综上所述应选D.。

3.3 向量组的极大无关组与秩

3.3 向量组的极大无关组与秩

矩阵 C的列向量组能由 A的列向量组线性表示,
因此r ( C ) r ( A). 又因为 C T B T AT ,由上段证明知 r ( C T ) r ( B T ), 25 即r ( C ) r ( B).
练习
1.求下列向量组的秩:
T T (1) 1 (2, 1, 1) , 2 (5, 4, 2, ) , 3 (3, 6, 0) T T ( 3 , 1 , 0 , 2 ) ( 1 , 1 , 2 , 1 ) (2) 1 , , 2 3 (1, 3, 4, 4) T .
20

1 1 3 2 , 2 1 2 .
1 1 0 0 1 1 0 0 1 0 0 1
1 0 1 2 2 3 1 1 2 2 , 0 0 0 0 0 0
2 0 1 1 而 ( 1 , 2 , 1 , 2 ) 3 1 3 1
9
定理3.10
若向量组A可由向量组B线性表示,则
r(A) ≤ r(B)。 推论 若向量组A与向量组B等价,则 r(A) = r(B)。
10
回顾
α1 α2
αm
矩阵A既对应一个行向量组,又对应一 个列向量组: 其中 i ( a i 1 , a i 2 , , a in ), i 1, , m a1 j 1 a2 j 2 j 1, 2, , n
28
23
则r 1 1 , 2 2 , , n n r t r ( A) r ( B) r ( A B) r ( A) r ( B)
r i 1 , i 2 , ir , j 1 , j 2 , jt

求向量组的秩与极大无关组

求向量组的秩与极大无关组

求向量组的秩与极大无关组对于具体给出的向量组,求秩与极大无关组的常用方法如下。

方法1 将向量组排成矩阵:(列向量组时)或(行向量组时) (*)并求的秩,则即是该向量组的秩;再在原矩阵中找非零的阶子式,则包含的个列(或行)向量即是的列(或行)向量组的一个极大无关组.方法2 将列(或行)向量组排成矩阵如(*)式,并用初等行(或列)变换化为行(或列)阶梯形矩阵(或),则(或)中非零行(或列)的个数即等于向量组的秩,且是该向量组的一个极大无关组,其中是(或)中各非零行(或列)的第1个非零元素所在的列(或行).方法3 当向量组中向量个数较少时,也可采用逐个选录法:即在向量组中任取一个非零向量作为,再取一个与的对应分量不成比例的向量作为,又取一个不能由和线性表出的向量作为,继续进行下去便可求得向量组的极大无关组。

对于抽象的向量组,求秩与极大无关组常利用一些有关的结论,如“若向量组(Ⅰ)可由向量组(Ⅱ)线性表示,则(Ⅰ)的秩不超过(Ⅱ)的秩",“等价向量组有相同的秩”,“秩为的向量组中任意个线性无关的向量都是该向量组的极大无关组"等.例1 求向量组,,,,的秩与一个极大无关组。

解法1,所以向量组的秩为3;又中位于1,2,4行及1,2,4列的3阶子式故是向量组的一个极大无关组(可知;均可作为极大无关组)。

法2由于的第1,2,4个行向量构成的向量组线性无关,故是向量组的一个极大无关组.例2 求向量组,,,的秩和一个极大无关组。

解(1)当且时,,故向量组的秩为3,且是一个极大无关组;(2)当时,,故向量组的秩为3,且是一个极大无关组;(3) 当时,若,则,此时向量组的秩为2,且是一个极大无关组。

若,则,此时向量组的秩为3,且是一个极大无关组.例3 设向量组的秩为.又设,,求向量组的秩.解法1 由于,且所以故向量组与等价,从而的秩为.法2 将看做列向量,则有其中可求得,即可逆,从而可由线性表示,故这两个向量组等价,即它们有相同的秩。

4.3 向量组的秩和最大无关组

4.3 向量组的秩和最大无关组

设1, 2, …, n为Rn的一组基,则
Rn = L(1, 2, …, n)
返回
又,
Rn = L(ε1, ε2, …, εn)
Rn 的标准基
Rn, 1, 2, …, n为一组基, = x11+ x22+ …+ xnn 在基1, 2, …, n下的坐标 一个向量在确定基下的坐标是唯一的(坐标的唯一性).
矩阵A的列秩:A的列向量组的秩;
矩阵A的行秩:A的行向量组的秩.
返回
定理2 矩阵的 行秩 = 列秩 = 矩阵的秩.
证 设 R(A) = r,
A 行初等变换 B(行阶梯形矩阵),
B有 r 个非零行,B的r 个非零行的非零首元素所在 的r 个列向量线性无关, 为什么? 为B的列向量组的最大无关组. 为什么?
1, 2, …, r 可由1, 2 , …, s线性表出,有
R(B)=R(B, A) 则R( A) ≤ R(B) ≤ s
1, 2, …, r 线性无关,则 R(A)=r
r≤ s
返回
两向量组秩的关系: 若向量组(Ⅰ)可由组(Ⅱ)线性表出,则 组(Ⅰ)的秩 r1≤ 组(Ⅱ)的秩 r2. 证 设 1 ,..., r1 为(Ⅰ) 的最大无关组, 1 ,..., r2 为(Ⅱ) 的最大无关组. 组(Ⅰ)可由组(Ⅱ)线性表出,所以
4.3
向量组的秩与最大无关组
一、向量组的秩与最大无关组的概念
二、Rn 的基、维数与坐标
返回
一、向量组的秩与最大无关组的概念
例1 1 =(1,0,1), 2 =(1,-1,1), 3 =(2,0,2) 。
1, 2, 3 线性相关. 1, 2 线性无关; 2 ,3 线性无关,

极大无关组与向量组的秩

极大无关组与向量组的秩

提示: 极大无关组不唯一,但是所含向量的个数都相等
线性代数
16
例3 设矩阵 2 1 1 1 1 1 2 1 A 4 6 2 2 3 6 9 7 2 4 4 9
求矩阵A的列向量组的一个极大 无关组, 并把不属于极大无关组 的列向量用极大 无关组线性表示 .
0 1 0
即得
a 3 a1 a 2 , a5 4a1 3a 2 3a4
线性代数
20
练习:义1 设 V 为 n 维向量的集合,如果集合V 非空, 且集合V对于加法及数乘两种运算封闭,那么就称 集合 V 为向量空间.
说明 1.集合V 对于加法及数乘两种运算封闭指
知R(a1 , a2 , a4 ) 3,故a1 , a2 , a4线性无关
要把a3 , a5用a1 , a2 , a4线性表示,必须将 A再变 成行最简形矩阵.
线性代数
19
A
初等行变换
~
1 0 0 0
4 1 1 0 3 0 0 1 3 0 0 0 0
验证a1 , a 2 , a 3 , 是R 3的一个基,并把 b1 , b2用这个基 线性表示.
线性代数
27
解 要证a1 , a2 , a3是R 的一个基,只要证 a1 , a2 , a3 线性无关,即只要证 A ~ E.

即 x11 (b1 , b2 ) (a1 , a 2 , a 3 ) x 21 x 31 记作B AX .
k1 k n 0时, 才有 k1 1 k 2 2 k n n 0 成立 .
线性代数
8
2. 对于任一向量组, 不是线性无关就是 线性相关 .

高等代数第二节 向量组的秩

高等代数第二节 向量组的秩
分析 证明向量组的一个部分组构成最大线性无 关组的基本方法就是:
根据最大线性无关组的定义来证,它往往还 与向量组的秩相联系.
证明 不失一般性,设 i1 , i2 ,, ir 是 1 , 2 ,, s中的任意r个线性无关的向量,于是对于任意 的 k (k 1,2,, s),向量组 i1 , i2 ,, ir , k 线性
解法二 对行向量组,可以先都转置为列向量,
排成矩阵后,用行变换化为行最简型

T :
2
0
2
1
α1T
2 4
,
α2T
2 1
,
α3T
0 3
,
α4T
1
0
4
5
1
4
显然 T 秩=T 秩,且极大无关组互为转置向量
2 0 2 1
A α1T
α2T
α3T
α4T
2
4
2 1
0 3
因B组能由A组线性表示,故A组和B组合并而
成的向量组( A, B)能由A组线性表示. 而A组是( A, B)组的部分组,故A组总能由
( A, B)组线性表示. 所以( A, B)组与A组等价,因此
( A, B)组的秩也为r.
又因B组的秩为r , 故B组的最大无关组B0含r 个向量,因此B0组也是( A, B)组的最大无关组, 从 而( A, B)组与B0组等价.
rankT s
又 1线性无关,1秩=r, 但1秩 秩,r s.
证毕
定理3 说明
(1) r个线性无关向量,若可用另一组向量线性表示, 则后一组向量的个数不少于r ;
(2) 一组线性无关的向量,不可能用另一组个数 更少的向量线性表示。 特别在三维向量空间中: (1)两个线性无关的向量,不能用同一个向量线性表 示; (2)三个线性无关的向量,不能用两个或一个向量 线性表示。 推论1 设向量组1秩为r,向量组2秩为s.若1可由2

3-2 向量组的秩和最大无关组

3-2 向量组的秩和最大无关组
R( A, B ) r R( A)
充分性: 若 R( A, B ) R( A) r , 则 a1,…, ar 为(A, B)的一 个最大无关组, 当然向量组 B 可由 a1,…, ar 线性表示, 从而向量组 B 可由向量组 A 线性表示.
首页 上页 返回 下页 结束 铃
定理3 向量组 B 可由向量组 A 线性表示的充要条件是
向量组的秩 设 A 为一向量组, A 中线性无关向量组所含向量个 数的最大值 r, 称为向量组 A 的秩, 记为 R(A).
规定{0}的秩为 0. 提示: 当 s n 时, n 维向量组 a1,…, as 线性相关. 这是因为 R ( a 1 , , a s ) n s
首页 上页 返回 下页 结束 铃
§3.2 向量组的秩和最大无关组
一、向量组的秩和最大无关组 二、等价向量组
首页
上页
返回
下页
结束

一、向量组的秩和最大无关组
设 A 为一 n 维向量组( A {0}), A 中任一线性无关 向量组所含向量个数不多于 n 个. A 中线性无关向量组所含向量个数存在最大值: 存在正整数 r, 使得 A 中有 r 个向量线性无关, 而 A 中任意多于 r 个向量(若存在的话)线性相关.
T T T T T 若 x 满足 (A A)x 0, 则有 x (A A)x 0, (Ax) (Ax) 0, T
从而 Ax 0. 综上可知 Ax 0 与 (A A)x 0 同解, 设其解集为 S,
T
x 为 n 元未知量, 则有
R( A A) R( A) n - R(S )
证明向量组 a1, a2 与向量组 b1, b2, b3 等价. 证明 记 A (a1, a2), B (b1, b2, b3),

向量组的极大无关组与秩的定义

向量组的极大无关组与秩的定义

复习
向量组的等价
1.定义1: 设有两个 n 维向量组 (I ) : 1,2 ,,r (II ) : 1, 2 ,, s
若向量组(I )中每个向量都可由向量组(II)线性
表示,则称向量组(I )可由向量组(II)线性表示;
若向量组(I )与向量组(II)可以互相线性表示,
则称向量组(I )与向量组(II)等价。
向量组的极大无关组 定义1:设 向量组T 的部分向量组1,2 ,,r 满足
(i) 1,2,,r线性无关 (ii) T 中向量均可由1,2,,r线性表示。
或T 中任一向量. ,1,2 ,,r线性相关。 则称1,2 ,,r是向量组T 的一个极大线性
无关组,简称极大无关组。
极大无关组的含义有两层:1无关性; 2.极大性。
as1
a12 a22
as2
a1s 1 a2s 2
ass s
a11
K
a21
as1
a12 a22
as2
a1s a2s
ass
证明: 若r(K) s,则1, 2 ,, s线性无关。
r(K) s K可逆 1,2,,s可由1, 2,, s表示 1,2,,s与1, 2,, s等价。
1
2
C
s
12
s
O
O
.
r
O
r r(A) r(C) s.
推论1:若向量组1,2 ,,r可由向量组 1, 2 ,, s 线
性表示,且r >s,则向量组1,2,,r线性相关。
推论2:任意两个线性无关的等价向量组所含向量的个 数相等。
定理2:一个向量组的任意两个极大无关组所含向量的 个数相等。
若向量组(I )线性无关,且可由向量组(II )线性表

向量组的极大无关组与秩的求法

向量组的极大无关组与秩的求法

4
2 3 5 0 0 0 0
4时,r( A) 3 4, 1,2 ,3,4线性相关。
r(1,2 ,3 ) 3,1,2,3是一个极大无关组。
但,行摆行变换不行!
反例: 1 (1,0,0),2 (1,1,0),3 (1,1,0).
A
12
1 1
3
1
0 1 1
0 0
0 0
BT sn
AT ms
=CT
,
r(C) r(CT ) r(BT AT ) r(BT ) r(B).
r( Ams Bsn ) minr(A), r(B)
设有n两个维向量组1,2,,s与 1, 2 ,, s , 若
1,2 ,,s线性无关且
1
2
a11
a21
a12
a22
a1s 1
,
1 1
B
2
,C
2
.
am1
am2
ams
s
m
1
a11 a12 a1s 1
2
C
AB
a21
a22
a2s
2
m
a m1
am2
ams
s
r(C) r(1,2,,m ) r(1, 2,, s ) r(B).
Ams Bsn=C, r(C) r(AB) r(A).
r1 r3
1 1
1 1 1
0 0
0 0
r2r 1
1 1
1 0 1
0
0
0
0 1 0 0 0 0
r3r2
1 0
0 1
0 0
r1 r3
1 0
0 1
0

3-3 向量组的秩和极大线性无关组

3-3 向量组的秩和极大线性无关组

显然 Rn的最大无关组很多 任何n个线性无关的n维向量 都是Rn的极大无关组
Henan Agricultural University
3.性质
(1)只含零向量的向量组没有极大无关组 规定它的秩为0 (2)一个线性无关向量组的极大线性无关组是向量组本身. (3)向量组的极大无关组一般不是唯一的。 例如 a1(1 1 1)T a2(0 2 5)T a3(2 4 7)T 因为a1 a3和a2 a3都是线性无关组 而a1 a2 a3线性相关 所以a1 a3和a2 a3都是向量组a1 a2 a3的极大无关组
k11 k (b1, b2, , bl ) (a1, a2, , am ) 21 km1 k12 k22 km 2 k1l k2l km l
B =AK

bj k1ja1k2ja1 kmjam
的极大无关组提供了方法。 Henan Agricultural University
四、向量组极大线性无关组的求法
矩阵A经行初等变换化为B,则A的列向量组与 B对应的列向量组有相同的线性组合关系.
1.把向量组按列排成矩阵A; 2.用初等行变换把A化为简化的行阶梯形矩阵C; 3.求出C的列向量组的一个极大线性无关组; 4.与其相应的A中的列就是A的列向量组的一个极大线性无关组.
Henan Agricultural University
例2 求矩阵A的列向量组的 一个极大无关组 并把不属于 极大无关组的列向量用极大 无关组线性表示 其中
2 1 1 1 1 1 2 1 A 4 6 2 2 3 6 9 7 2 4 4 9
可见B中1,2,4列有单位矩 阵,对应B的一个最高阶(三 阶)非零子式,即B中1,2,4 列为B的一个极大线性无关组。 相应地,A的1、2、4列 为A的一个极大无关组

1-3 向量组的极大无关组及向量组的秩

1-3 向量组的极大无关组及向量组的秩

11
α1 = (1, 2,0, 1) α2 = (3,1, 5, 7) 例4 求向量组 α3 = (5, 3,7,9) α = (2,1, 3, 3) 4 α5 = (1, 4, 2, 7)
的秩及向量组的一极大无关组, 的秩及向量组的一极大无关组,并求其余向量由这极大无关 组的线性表达式. 组的线性表达式. 极大无关组为: 极大无关组为: α1 ,α2 ,α4 或者 α1 ,α3 ,α4
4 7 α3 = 5α1 5 α2 为极大无关组为例: 以α1 ,α2 ,α4 为极大无关组为例: α = 9α + 8α 2α 4 5 5 1 5 2 12
或者 α1 ,α2 ,α5 或者 α1 ,α3 ,α5
小结
1.介绍基本概念:极大无关组,秩. 介绍基本概念:极大无关组, 介绍基本概念 2. 向量组的初等变换,行阶梯形矩阵. 向量组的初等变换,行阶梯形矩阵. 3. 重点:定理1.3.3. 重点:定理1 4 .必须会求向量组的秩,极大无关组. 必须会求向量组的秩, 必须会求向量组的秩 极大无关组.
§1.3 向量组的极大无关组及向量组的秩 一,极大无关组,秩 极大无关组, 二,向量组的初等变换
1
一,极大无关组,秩 极大无关组, 定义1.3.1 定义1.3.1
α1 ,α2 ,,αr 是向量组 的一部分向量组,如果满足 是向量组T 的一部分向量组,
线性无关; (1)α1 ,α2 ,,αr 线性无关; (2)α ∈T, 总有 α1 ,α2 ,,αr,α 线性相关. 线性相关. 则称 α1 ,α2 ,,αr 是向量组 的一个极大线性无关组, 是向量组T 简称极大无关组.
若写成矩阵形式 ,可以看到有阶梯出现
α1 1 α2 = 0 α3 0 α 0 4

向量组的秩的求法

向量组的秩的求法
1. A (1 ,2 ,,s(分量为列构成) )
2. A
行初等变换
阶梯形矩阵 T
行初等变换
行简化阶梯形r (T ) T的非零行数
T0中r个坐标单位向量对应的 原向量 构成的向量组即为极大 无关组
例4 求向量组
(1, 1, 0, 0), T 3 (0, 1, 1, 1),
1 1 0 1 2 r 2 r1 0 1 1 2 4 ~ 0 1 1 2 4 0 1 1 1 1
3
1 1 r 3 ( 1 ) r 2 r4 r2 0 1 ~ 0 0 0 0 1 1 r4 r3 0 1 ~ 0 0 0 0
0 1 2 1 2 4 0 3 5 0 0 0
故向量组 1 , 2 , 3 , 4 , 5的秩为3.
又 1 , 2 , 4 是U的列向量组的一个最大 线性 无关组, 所以 1 , 2 , 4 也是A的列向量组的一个最大
线性无关组.
5
求向量组的秩及极大无关组的方法步骤求向量组的秩及极大无关组的方法步骤分量为列构成阶梯形矩阵的非零行数行简化阶梯形矩阵行初等变换行初等变换无关组构成的向量组即为极大原向量个坐标单位向量对应的行变换作初等无关组线性的列向量组的一个最大线性无关组的列向量组的一个最大也是所以
求向量组的秩及极大无关组的方法(步骤)
记作
0 1 2 1 2 4 0 0 0 0 3 5 0 1 2 1 2 4 0 3 5 0 0 0
1 2 3 4 5 U .
4
1 1 A ( 1 2 3 4 5) 0 1 0 0 0 0 A的列秩 r ( A) 3,

大学线性代数:向量组的秩

大学线性代数:向量组的秩

10
例:设 α1 = ( 2,1, 2, 2, −4), α 2 = (1,1, −1, 0, 2), α 3 = (0,1, 2,1, −1),
α 4 = ( −1, −1, −1, −1,1), α 5 = (1, 2,1,1,1).
求秩和一个极大线性无关组。
解:转置后排列为矩阵得 ⎛ 2 1 0 ⎜ ⎜ 1 1 1 ⎜ 2 −1 2 ⎜ ⎜ 2 0 1 ⎜ −4 2 −1 ⎝ ⎛1 ⎜ r3 ↔ r5 ⎜0 r2 ↔ r4 ⎯⎯⎯ →⎜0 ⎜ ⎜0 ⎜0 ⎝ −1 1 ⎞ ⎛ 1 1 1 ⎟ ⎜ −1 2 ⎟ ⎜ 2 1 0 r1 ↔ r2 → ⎜ 2 −1 2 −1 1 ⎟ ⎯⎯⎯ ⎟ ⎜ −1 1 ⎟ ⎜ 2 0 1 ⎜ −4 2 −1 1 1⎟ ⎠ ⎝ 1 1 −1 2 ⎞ ⎛1 ⎟ ⎜ 1 −1 0 0 ⎟ r − 2 r ⎜ 0 3 2 r4 + r1 →⎜0 2 1 −1 3 ⎟ ⎯⎯⎯ ⎟ ⎜ −1 −2 1 −3 ⎟ ⎜0 ⎜0 −2 2 0 0 ⎟ ⎠ ⎝ −1 2 ⎞ ⎛1 1 r5 + 2 r4 ⎟ 4 − r3 ⎜ −1 1 ⎟ r r3 − r2 ⎜ 0 −1 r2 − 2 r1 → ⎜ 0 −2 −1 1 ⎟ ⎯⎯⎯ ⎟ ⎜ −1 1 ⎟ ⎜0 1 ⎜0 2 1 1⎟ ⎠ ⎝ 1 1 −1 2 ⎞ ⎛ 1 1 ⎟ ⎜ 1 −1 0 0 ⎟ ⎜ 0 1 0 3 −1 3 ⎟ → ⎜ 0 0 ⎟ ⎜ 0 −3 1 −3 ⎟ ⎜ 0 0 ⎜ 0 0 0 0⎟ ⎠ ⎝0 0 1 −1 2 ⎞ ⎟ − 2 1 −3 ⎟ 2 0 0⎟ ⎟ −1 0 0 ⎟ 1 −1 3 ⎟ ⎠ 1 −1 2 ⎞ ⎟ −1 0 0 ⎟ 3 −1 3 ⎟ ⎟ 0 0 0⎟ 0 0 0⎟ ⎠

4.3 向量组的极大无关组与向量组的秩

4.3 向量组的极大无关组与向量组的秩

1 1 2 一次行 B = 2 A= ① r r ③ kr ② k r i j i m m
则显然有
1, 2 ,, m 1 , 2 ,, m
行秩(A)=行秩(B)。
所以,初等行变换不改变矩阵的行秩与列秩。 类似有: 定理2.12 初等列变换不改变矩阵的行秩与列秩。
定理4 初等列变换不改变矩阵的行秩与列秩。 定理5 初等变换不改变矩阵的行秩与列秩。 定理6
① 将向量组以列向量构成矩阵
② 对矩阵A 施以初等行变换化为行最简形矩阵;
A = (1, 2 ,, s ) ;


A = (1, 2 ,, s ) B = ( 1, 2 ,, s )
③ 所得矩阵的列向量组中基本单位向量对应 位置的向量即为所求 极大无关组,即
1, 2 ,, s 的极大无关组对应
2 n ) 则称向量组 1, 2 ,, m 为矩阵A的行向量组;
则称向量组 1, 2 ,, n 为矩阵A的列向量组。
1.矩阵的行秩与列秩 定义2 矩阵A的行向量组的秩,称为A的行 秩,记为行秩A); 矩阵A的列向量组的秩,称为A的列秩,记 为列秩A)。 例如,矩阵
r ( A) = 2 ,
推论3 向量组中任两个极大无关组等价。 【由等价的传递性】 推论4 向量组的极大线性无关组所含向量的 个数唯一。 【上节定理5?】 【称这个唯一的数为向量组的秩】
【称这个唯一的数为向量组的秩】 3. 向量组的秩 (1)秩的概念 定义2 向量组 1, 2 ,, s 的极大无关组 所含向量的个数称为该向量组的秩, 记为
1 0 1 1 A= 0 1 3 2
行秩A)=2, 列秩A)=2

向量组的最大无关组与秩

向量组的最大无关组与秩
Dr 0. 由 Dr 0 知其所在的 r 列线性无关; 又由A中所有r 1阶子式均为零, 知A中任意r 1 个列向量都线性相关. 因此Dr 所在的r列是A的列 向量的一个最大无关组, 故列向量组的秩等于r .
类似可证A的行向量组的秩也等于R( A).
即: 利用矩阵的秩可以求向量组的秩.
故向量组 A0 是向量组 A 的一个最大无关组.
定理3.16 向量组 A和它的最大无关组 A0 是等价的. 证明 因为向量组 A0 是组A的一个部分组 ,
故 A0组总能由A组 线性表示, 由最大无关组定义可知: 对于A 中任一向量 , r+1个向量 , 1, 2, , r 线性相关, 而 1, 2, , r 线性无关, 可知 能由1, 2, , r 线性表示,
则向量组 A0 是向量组 A 的一个最大无关组.
证明 设 1, 2, , r+1 是组A中任意r+1个向量, 由(2)可知这r+1个向量能由向量组 A0线性表示, 从而有: R( 1, 2, , r+1) R(1, 2, , r ) =r 所以 r+1个向量1, 2, , r+1 线性相关,
且 1,2,3 为向量组的一个最大无关组. 说明: 向量组的最大无关组一般不是唯一的.
3 3 1 1 1 1 3 7 1 3 , 例2 设矩阵 A 3 1 1 15 3 1 5 9 12 1 求矩阵 A 的列向量组的一个最大无关组, 并把不属
则RB RA .
推论 若向量组 B 与向量组 A 等价, 则RA=RB . 例3 若向量组 B 能由向量组 A 线性表示, 且RA =RB , 证明向量组A 与向量组 B 等价.
m 线性表示的充分必要条件是

向量组的极大无关组与向量组的秩

向量组的极大无关组与向量组的秩
一个向量。

k 11 2 2 r r
0 ( k 1 1 ) 1 ( k 2 2 ) 2 ( k r r ) r
因 a1,a2,,ar线性无关,
3

k1 k2 k3
1 0 1
所以
4 13
上一页 31 下一页
同理可求得
5123

一个向量由它所在的向量组中的极大无关组线性表示,其线性表达式是否唯 一呢?我们有下面的命题.
命题12.12 一个向量由它所在向量组中极大无关组线性表示,其表达式唯一.
证 设 a1,a2, ,ar是向量组T中的一个极大无关组, 是向量组T中任意
则必有
k 1 1 k 2 2 k r r 0

k 11 ,k 22 , ,k rr
所以,由 a1,a2, ,ar线性表示的表达式唯一.
am1x1 am2x2 amnn 0
上面的齐次线性方程组可写成 1 ,2 , ,n X 0 , ( 这 X x 1 , x 2 里 , x n ')
现设
1 , 2 , , n 经 过 初 1 ,等 2 , 行 , n变换
由命题12.1知
1 ,2 , ,n X 0 与 1 ,2 ,n X 0
同解.所以向量组 a 1 ,a 2 , ,a n 与 1 , 2 , , n的线性相关性相同.

由此我们知道,矩阵A的秩就是列向量组T中极大线性无关组所含向量的个数.
又会命题11.11显然下面的命题成立.
11234
00 0 0 0
由命题12.11知,向量组的秩等于3,且 1,2,3 就是一个极大无关组.下面球4 ,5

求向量组的秩与极大无关组(修改整理)

求向量组的秩与极大无关组(修改整理)

求向量组的秩与最大无关组一、 对于具体给出的向量组,求秩与最大无关组 1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵 【定理】 矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等) ①把向量组的向量作为矩阵的列(或行)向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③阶梯形B 中非零行的个数即为所求向量组的秩.【例1】 求下列向量组a 1=(1, 2, 3, 4),a 2 =( 2, 3, 4, 5),a 3 =(3, 4, 5, 6)的秩. 解1:以a 1,a 2,a 3为列向量作成矩阵A ,用初等行变换将A 化为阶梯形矩阵后可求.因为阶梯形矩阵的列秩为2,所以向量组的秩为2.解2:以a 1,a 2,a 3为行向量作成矩阵A ,用初等行变换将A 化为 阶梯形矩阵后可求.因为阶梯形矩阵的行秩为2,所以向量组的秩为2. 2、求向量组的最大线性无关组的方法 方法1 逐个选录法给定一个非零向量组A :α1, α2,…, αn ①设α1≠ 0,则α1线性相关,保留α1②加入α2,若α2与 α1线性相关,去掉α2;若α2与 α1线性无关,保留α1 ,α2; ③依次进行下去,最后求出的向量组就是所求的最大无关组【例2】求向量组:()()()1231,2,12,3,14,1,1,,,TTTααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。

所以最大无关组为a 1,a 2 方法2 初等变换法【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立.向量组:α1=(1,2,3)T, α2=(-1,2,0)T, α3=(1,6,6)T由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ;③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组.【例3】求向量组 :α1=(2,1,3,-1)T, α2=(3,-1,2,0)T, α3=(1,3,4,-2)T, α4=(4,-3,1,1)T的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。

3-2 向量组的秩和最大无关组

3-2 向量组的秩和最大无关组
首页 上页 返回 下页 结束 铃
例3 设 ξ1,…, ξn−r [r = R(A)]为 n 元齐次线性方程组 … − 为 Ax = 0 的一个基础解系 S 为方程组 Ax = 0 的解集 的一个基础解系 基础解系, 解集, 则有
S = {x = k1ξ1 +⋯+ kn−rξn−r | k1,⋯ kn−r ∈R} ,
等价. 证明向量组 a1, a2 与向量组 b1, b2, b3 等价 证明 记 A = (a1, a2), B = (b1, b2, b3),
1 3 2 1 3 1 3 2 1 3 r ( A, B ) = −1 1 0 1 −1 0 2 1 1 1 → 1 1 1 0 2 0 0 0 0 0
首页
上页
返回
下页
结束

1 3 2 1 3 例2 设 a1 = −1 , a2 = 1 , b1 = 0 , b2 = 1 , b3 = −1 1 1 1 0 2
定理4 定理 初等行变换保持矩阵的列向量组的线性关系 线性关系. 初等行变换保持矩阵的列向量组的线性关系 • 行最简形矩阵的秩等于它的列向量组的秩 行最简形矩阵的秩等于它的列向量组的秩. 定理5 定理 矩阵的秩等于它的(行 列向量组的秩 列向量组的秩. 矩阵的秩等于它的 行)列向量组的秩 证明 由定理 知, 矩阵的列向量组的秩等于它的行最 由定理4 简形的列向量组的秩, 从而等于它的行最简形的秩. 简形的列向量组的秩 从而等于它的行最简形的秩 而 矩阵的秩等于它的行最简形的秩. 因此, 矩阵的秩等于它的行最简形的秩 因此 矩阵的秩等于 它的列向量组的秩. 它的列向量组的秩 考虑转置即知, 矩阵的秩等于它的行向量组的秩. 考虑转置即知 矩阵的秩等于它的行向量组的秩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求向量组的秩与极大无关组
对于具体给出的向量组,求秩与极大无关组的常用方法如下.
方法1 将向量组排成矩阵:
(列向量组时)或(行向量组时) (*)
并求的秩,则即是该向量组的秩;再在原矩阵中找非零的阶子式,
则包含的个列(或行)向量即是的列(或行)向量组的一个极大无关组.
方法2 将列(或行)向量组排成矩阵如(*)式,并用初等行(或列)变换化为行(或列)阶梯形矩阵(或),则(或)中非零行(或列)的个数即等于向量组的秩,且是该向量组的一个极大无关组,其中是(或)中各非零行(或列)的第1个非零元素所在的列(或行).
方法3 当向量组中向量个数较少时,也可采用逐个选录法:即在向量组中任取一个非零向量作为,再取一个与的对应分量不成比例的向量作为,
又取一个不能由和线性表出的向量作为,继续进行下去便可求得向量组的极大无关组.
对于抽象的向量组,求秩与极大无关组常利用一些有关的结论,如“若向量组(Ⅰ)可由向量组(Ⅱ)线性表示,则(Ⅰ)的秩不超过(Ⅱ)的秩”,“等价向量组有相同的秩”,“秩为的向量组中任意个线性无关的向量都是该向量组的极大无关组”等.
例1 求向量组,,,,
的秩与一个极大无关组.
解法1
,所以向量组的秩为3;又中位于1,2,4行及1,2,4列的3阶子式
故是向量组的一个极大无关组(可知;均可作为极大无关组).
法2
由于的第1,2,4个行向量构成的向量组线性无关,故是向量组的一个极大无关组.
例2 求向量组,,,的秩和一个极大无关组.

(1) 当且时,,故向量组的秩为3,且是一个极大无关组;
(2) 当时,,故向量组的秩为3,且是一个极大无关组;
(3) 当时,若,则,此时向量组的秩为2,且是
一个极大无关组.若,则,此时向量组的秩为3,且是一个极大无关组.
例3 设向量组的秩为.又设
,,
求向量组的秩.
解法1 由于,且
所以
故向量组与等价,从而的秩为.
法2 将看做列向量,则有
其中
可求得,即可逆,从而可由线性表示,故这两个向量组等价,即它们有相同的秩.
例4 设向量组(Ⅰ):和向量组(Ⅱ):的秩分别为和
,而向量组(Ⅲ):的秩为.证明:.
证若和中至少有一个为零,显然有,结论成立.若和都不为零,不妨设向量组(Ⅰ)的极大无关组为,向量组(Ⅱ)的极大无关组为,由于向量组可以由它的极大无关组线性表示,所以向量组(Ⅲ)可以由,线性表示,故
的秩。

相关文档
最新文档