向量组的秩和极大线性无关组
线性代数课件 第三章——向量 3 向量组的秩、向量空间简介
, m
, m 线性无关; , m 线性表示.
ii) V中任意向量都可由 1 , 2 ,
§3 向量组的秩、向量空间简介
注.向量空间V的维数实际上就是向量组的秩.
dim L(1 , 2 , , m ) R{1 , 2 , , m }.
定理5:设V是向量空间,若dimV=r,则V中任意r+1
, m 线性
, s )是 L(1 , 2 ,
, m ) 的子空间.
பைடு நூலகம்
§3 向量组的秩、向量空间简介
2.基变换与坐标变换
定义4. 向量空间V的一个极大线性无关组称为V的一 个基,基所含向量的个数称为V的维数,记作dimV. 规定:零向量空间没有基,维数定义为0. 判别.设 1 , 2 , , m是V中m个向量,则 1 , 2 , 是V的一个基的充要条件是 i) 1 , 2 ,
向量都线性相关.
推论:设V是向量空间,若dimV=r,则V中任意r个
线性无关的向量组都是V的一个基.
§3 向量组的秩、向量空间简介
定义5. 若 1 , 2 , , m是向量空间V的一个基,则
V中任意向量 可唯一表示为
k1 k2 , m ) k m
k11 k2 2
第三章 向量
§1 n维向量的线性相关性 §2 线性相关性的结论、极大线性无关组 §3 向量组的秩、向量空间简介 §4 向量的内积
一、向量组的秩 二、向量空间简介
一、向量组的秩
定义1 向量组 1 , 2 , , m 的极大无关组所含向量
的个数,称为该向量组的秩,记作 R{1 , 2 , 规定:零向量组的秩为0.
4 (1,2, k ,6)T , 5 (1,1,2,4)T , 求向量组1 , 2 , 3 , 4 , 5
线性代数 第3.4节 向量组的极大线性无关组(修改)
, s 线性无关 r (1 , 2 , , s 线性相关 r (1 , 2 ,
, s ) s , s ) s
(3)如果向量组 1 , 2 , 线性表示,则
, s 可以由向量组 1 , 2 , , s ) r ( 1 , 2 , , t )
定义4:
矩阵的行向量组的秩,就称为矩阵的行秩; 矩阵的列向量组的秩,就称为矩阵的列秩。
1 0 例2:讨论矩阵 A 0 0
(1) 矩阵A的行秩为3
矩阵A的行向量组是
1 2 0 0
3 1 1 4 0 5 0 0
的行秩和列秩
1 2 3 4
(1,1, 3,1) (0, 2, 1, 4) (0, 0, 0, 5) (0, 0, 0, 0)
1 2
向量组的等价关系具有以下三个性质:
(1)自反性:一个向量组与其自身等价; (2)对称性:若向量组 A 与 B 等价,则 B 和 A 等价; (3)传递性:A 与 B 等价, B 与 C 等价,则 A 与 C 等价。
定理1: 设 1 , 2 , (1) 向量组 1 , 2 , (2) s t 则向量组
, s )
2 4 2 1 2 1 , 2 , 3 的 例如: 向量组 1 3 5 4 1 4 1
秩为2。
注:
(1)零向量组的秩为0。 (2)向量组 1 , 2 , 向量组 1 , 2 ,
0 5 0 3 2 6 1 3 2 3 A 2 0 1 5 3 1 6 4 1 4 1 6 4 1 4 1 1 0 4 3 2 0 1 5 3 3 2 0 5 0
向量组的秩的定义
向量组的秩的定义向量组的秩为线性代数的基本概念,它表示的是一个向量组的极大线性无关组所含向量的个数。
由向量组的秩可以引出矩阵的秩的定义。
一个向量组的极大线性无关组所包含的向量的个数,称为向量组的秩;若向量组的向量都是0向量,则规定其秩为0。
定理根据向量组的秩可以推出一些线性代数中比较有用的定理1、向量组α1,α2,···,αs线性毫无关系等价于r{α1,α2,···,αs}=s。
2、若向量组α1,α2,···,αs可被向量组β1,β2,···,βt线性表出,则r{α1,α2,···,αs}小于等于r{β1,β2,···,βt}。
3、等价的向量组具备成正比的秩。
4、若向量组α1,α2,···,αs线性无关,且可被向量组β1,β2,···,βt线性表出,则s小于等于t。
5、向量组α1,α2,···,αs可以被向量组β1,β2,···,βt线性表出来,且s\uet,则α1,α2,···,αs线性相关。
6、任意n+1个n维向量线性相关。
矩阵的秩有向量组的秩的概念可以引出矩阵的秩的概念。
一个m行n列的矩阵可以看做是m个行向量构成的行向量组,也可看做n个列向量构成的列向量组。
行向量组的秩成为行秩,列向量组的秩成为列秩,容易证明行秩等于列秩,所以就可成为矩阵的秩。
矩阵的秩在线性代数中有着很大的应用,可以用于判断逆矩阵和线性方程组解的计算等方面。
1求下列向量组的秩与一个极大线性无关组
习题4.31.求下列向量组的秩与一个极大线性无关组: (1)[]12,1,3,1T α=-, []23,1,2,0Tα=-,[]31,3,4,2T α=-,[]44,3,1,1Tα=-.(2)[]11,1,1,1T α=, []21,1,1,1Tα=--, []31,1,1,1Tα=--,[]41,1,1,1Tα=---.(3)[]11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14Tα=,[]41,1,2,0T α=-,[]52,1,5,6Tα=.分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组.解 (1) []123423141133113301123241000010210000αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组.(2) []123411111111111101011111001111110001αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥---⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组.(3) []1234510312103121301101101217250001042140600000ααααα⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组.2.计算下列向量组的秩,并判断该向量组是否线性相关. (1)[]11,1,2,3,4T α=-,[]23,7,8,9,13Tα=-,[]31,3,0,3,3T α=----,[]41,9,6,3,6Tα=-.(2)[]11,3,2,1T β=--, []22,1,5,3T β=-,[]34,3,7,1Tβ=-, []41,11,8,3Tβ=---,[]52,12,30,6Tβ=-.解 (1) []123413111311173901122806000039330000413360000αααα--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦所以该向量组的秩为2, 小于向量的个数4, 所以线性相关.(2)[]123451241212412313111201548257830001111313600000βββββ----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦所以该向量组的秩为3, 小于向量的个数5, 所以线性相关.3.设[]11,2,1T α=-, []22,4,T αλ=, []31,,1Tαλ=.(1) λ取何值时1α,2α,3α线性相关? λ取何值时1α,2α,3α线性无关? 为什么? (2)λ取何值时3α能经1α,2α线性表示? 且写出表达式.解 (1)[]1231211212402211002αααλλλλ⎡⎤⎡⎤⎢⎥⎢⎥=−−→+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当2λ≠且2λ≠-时, 矩阵的秩为3与向量个数相同, 所以此时该向量组线性无关.当2λ=或2λ=-时, 矩阵的秩为2小于向量个数, 所以此时向量组线性相关. (1) 当2λ=时, 秩([]12αα)=秩([]123ααα)=2, 此时3α能经1α,2α线性表示.表达式的系数为方程组[]123X ααα=的解, 而此时该方程组的解为120,1.2x x =⎧⎪⎨=⎪⎩所以表达式为3α=212α. 当2λ=-时, 秩([]12αα)=1, 秩([]123ααα)=2, 两者不相等, 所以不能线性表示.当2λ≠且2λ≠-时, 秩([]12αα)=2, 秩([]123ααα)=3, 两者不相等,所以不能线性表示.4.下述结论不正确的是( ),且说明理由.(A) 秩为4的4×5矩阵的行向量组必线性无关. (B) 可逆矩阵的行向量组和列向量组均线性无关. (C) 秩为r(r<n)的m ×n 矩阵的列向量组必线性相关. (D) 凡行向量组线性无关的矩阵必为可逆矩阵.解 (A) 正确. 如果行向量组线性相关则行向量组的秩必小于行向量的个数4, 即矩阵的行秩小于4, 而矩阵的行秩等于矩阵的秩, 因此矩阵的秩小于4, 这与矩阵的秩为4矛盾! 所以行向量组必线性无关.(B) 正确. 可逆矩阵必为满秩矩阵, 即n n ⨯的可逆矩阵的秩为n , 而矩阵的秩等于行秩和列秩, 所以矩阵的行秩=列秩=n , 因此行向量组的秩和所含向量个数相同, 据此可知该行向量组必线性无关; 同理列向量组也必线性无关.(C) 正确. 列向量组含有n 个向量, 又由于列向量组的秩(即列秩)等于矩阵的秩r , 而r<n , 即列向量组的秩小于向量组所含向量的个数, 据此列向量组必线性相关.(D) 设111001A ⎡⎤=⎢⎥⎣⎦, 易知该矩阵的行向量组线性无关, 但是它不是方阵, 所以不是可逆矩阵. 所以该选项不正确.综上所述应选D.。
线性代数 3-6 第3章6讲-极大线性无关组和秩(2)
0 0
1 0
1 0
1 4
0
B
4
(3) 将其余向量用该极大无关组线性表示.
0 0 0 0
0
化为梯形阵后每个阶梯选一个向量得一个极大无关组:1,2,5 ;
(3) 把矩阵B继续作初等行变换:
1 0 3 2 1 1 0 3 2 1 1 0 3 1 0
B 0 1 1 1
0
0
1
1
1
0 0
1
1
1
0
0 0 0 4 4 0 0 0 1 1 0 0 0 1 1
所以向量组1,
,
2
, n 与向量组e1,e2,
,en等价.
5
本讲内容
01 极大线性无关组和向量组的秩 02 向量组的秩和矩阵的秩的关系
二、向量组的秩和矩阵的秩的关系
定理3.7 设A是一个m n矩阵,则A 的秩等于A 的行秩,也等于A 的列秩.
记1,
,
2
, n
是A
的列向量组 (m
维),1,2,
,m是A
的行向量组 (n
维),
则
r( A)
r
(1,
,
2
,n )
r
(1,
,
2
,m ).
7
二、向量组的秩和矩阵的秩的关系
例3 求向量组的秩与极大无关组:
1 (1,1, 4)T ,2 (1, 0, 4)T ,3 (1, 2, 4)T ,4 (1,3, 4)T .
1 1 1 1 1 1 1 1
解
A 1,2,3,4 1 0 2 3 0 1 1 2
b11
b1s
AB (1, 2,, s )=(1,2,, Nhomakorabean
3.3 向量组的极大无关组与秩
矩阵 C的列向量组能由 A的列向量组线性表示,
因此r ( C ) r ( A). 又因为 C T B T AT ,由上段证明知 r ( C T ) r ( B T ), 25 即r ( C ) r ( B).
练习
1.求下列向量组的秩:
T T (1) 1 (2, 1, 1) , 2 (5, 4, 2, ) , 3 (3, 6, 0) T T ( 3 , 1 , 0 , 2 ) ( 1 , 1 , 2 , 1 ) (2) 1 , , 2 3 (1, 3, 4, 4) T .
20
得
1 1 3 2 , 2 1 2 .
1 1 0 0 1 1 0 0 1 0 0 1
1 0 1 2 2 3 1 1 2 2 , 0 0 0 0 0 0
2 0 1 1 而 ( 1 , 2 , 1 , 2 ) 3 1 3 1
9
定理3.10
若向量组A可由向量组B线性表示,则
r(A) ≤ r(B)。 推论 若向量组A与向量组B等价,则 r(A) = r(B)。
10
回顾
α1 α2
αm
矩阵A既对应一个行向量组,又对应一 个列向量组: 其中 i ( a i 1 , a i 2 , , a in ), i 1, , m a1 j 1 a2 j 2 j 1, 2, , n
28
23
则r 1 1 , 2 2 , , n n r t r ( A) r ( B) r ( A B) r ( A) r ( B)
r i 1 , i 2 , ir , j 1 , j 2 , jt
向量组的秩
把向量组中所有向量考察一遍,即可得到 该向量组的一个极大线性无关组.这个方 法称为逐个“扩充法”。
例3.3.3 设向量组α1=(0,0,-1,1), α2= (1,1,-1,0), α3=(2,2,-1,-1)α4=(-1,-1,0, 0),求它 的一个极大线性无关组及该向量组的秩。
解 由于α1≠0,保留α1;又α2≠kα1,即α1 与α2线性无关,保留α2;因α3=2α2-α1,所以 α1,α2, α3线性相关,
解 由于α1,α2线性无关,α3= 2α1-α2, 所以α1,α2是该向量组的的一个极大线性无 关组。显然α1,α3与α2,α3也是这个向量组的 极大线性无关组。
从这个例子可以看出,一个线性相关 的非零向量组,一定存在极大线性无关组, 并且它的极大线性无关组不是唯一的。那 么,同一个向量组的不同的极大线性无关 组所含向量的个数是否相同? 下面将回答 这一问题。
即C的列向量组可由A的列向量组线性表 出,由定理3.3.3及3.3.4知,
R(C) R(A)
又
R(C) R(AB) R(( AB)T ) R(BT AT ) R(BT ) R(B)
故
R(AB) min R(A), R(B)
定理 3.3.1 如果向量组α1,α2, …,αm中的每一个向量均可由向量组 β1, β2, …, βr线性表出,并且m>r,那么向量组线 性相关。
证设
i (ai1, ai2 ,, ain ) (i 1,2,, m),
j (b j1, b j2 ,, b jn ) ( j 1,2,, r)
例3.3.2 设向量组α1,α2, …,αm的秩为 r,试证α1,α2, …,αm中任意r个线性无关的 向量均为该向量组的一个极大线性无关组。
向量组的极大线性无关组
推论 向量组的任意两个极大无关组之间等价
定理2.9 如果向量组
1 ,
2,...,
可 由 向 量 组
s
1 , 2 , ...,t线 性 表 出 ,并 且 s t,则 向 量 组 1 ,2,...,s线 性 相 关 .
例2 设 1,2,3与 1,2是 Rn中 的 两 个 向 量 组 ,
例1 考虑R4中的向量组
1 (1,2,1,2)T,2 (2,4,1,1)T,3 (2,4,2,4)T, 4 (1,2,2,1)T其中线性无关的 最部 多分 可组 以
包含多少个向量?
定义2.11 如 果 一 个 向 量 组 的 部 分 组 1 ,2 ,3 ,..., r
r(1,2,...,s)
注:
1 、 向 量 组 1 , 2 , , s 线 性 无 关 r 1 , 2 , , s = s . 2 、 向 量 组 1 , 2 , , s 线 性 相 关 r 1 , 2 , , s s .
例
定理2.10 如 { 1 ,2 果 ,3 ,.s . } .{ ,1 ,2 ,.t} .则 .,,
{ 1 ,2 ,3 ,. . . ,s } { 1 ,2 ,3 ,. . . ,s }
( 2 ) 对 称 性 : 如 果 {1 ,2 ,3 ,...,s } {1 ,2 ,...,t} 则 {1 ,2 ,..t} . { ,1 ,2 ,..s} .,;
满 足 以 下 两 个 条 件
( 1 ) 1 ,2 ,3 ,...,r 线 性 无 关 ;
(2) 向量组中的每个向量都可以表示为1,2, 3,...,r的线性组合,也就是说,将向量组中 任意一个向量添加到部分组1,2, ...,r中,得 到的向量组都线性相关,则称1,2,3,...,r
3-2 向量组的秩和最大无关组
充分性: 若 R( A, B ) R( A) r , 则 a1,…, ar 为(A, B)的一 个最大无关组, 当然向量组 B 可由 a1,…, ar 线性表示, 从而向量组 B 可由向量组 A 线性表示.
首页 上页 返回 下页 结束 铃
定理3 向量组 B 可由向量组 A 线性表示的充要条件是
向量组的秩 设 A 为一向量组, A 中线性无关向量组所含向量个 数的最大值 r, 称为向量组 A 的秩, 记为 R(A).
规定{0}的秩为 0. 提示: 当 s n 时, n 维向量组 a1,…, as 线性相关. 这是因为 R ( a 1 , , a s ) n s
首页 上页 返回 下页 结束 铃
§3.2 向量组的秩和最大无关组
一、向量组的秩和最大无关组 二、等价向量组
首页
上页
返回
下页
结束
铃
一、向量组的秩和最大无关组
设 A 为一 n 维向量组( A {0}), A 中任一线性无关 向量组所含向量个数不多于 n 个. A 中线性无关向量组所含向量个数存在最大值: 存在正整数 r, 使得 A 中有 r 个向量线性无关, 而 A 中任意多于 r 个向量(若存在的话)线性相关.
T T T T T 若 x 满足 (A A)x 0, 则有 x (A A)x 0, (Ax) (Ax) 0, T
从而 Ax 0. 综上可知 Ax 0 与 (A A)x 0 同解, 设其解集为 S,
T
x 为 n 元未知量, 则有
R( A A) R( A) n - R(S )
证明向量组 a1, a2 与向量组 b1, b2, b3 等价. 证明 记 A (a1, a2), B (b1, b2, b3),
向量组的极大无关组与秩的定义
复习
向量组的等价
1.定义1: 设有两个 n 维向量组 (I ) : 1,2 ,,r (II ) : 1, 2 ,, s
若向量组(I )中每个向量都可由向量组(II)线性
表示,则称向量组(I )可由向量组(II)线性表示;
若向量组(I )与向量组(II)可以互相线性表示,
则称向量组(I )与向量组(II)等价。
向量组的极大无关组 定义1:设 向量组T 的部分向量组1,2 ,,r 满足
(i) 1,2,,r线性无关 (ii) T 中向量均可由1,2,,r线性表示。
或T 中任一向量. ,1,2 ,,r线性相关。 则称1,2 ,,r是向量组T 的一个极大线性
无关组,简称极大无关组。
极大无关组的含义有两层:1无关性; 2.极大性。
as1
a12 a22
as2
a1s 1 a2s 2
ass s
a11
K
a21
as1
a12 a22
as2
a1s a2s
ass
证明: 若r(K) s,则1, 2 ,, s线性无关。
r(K) s K可逆 1,2,,s可由1, 2,, s表示 1,2,,s与1, 2,, s等价。
1
2
C
s
12
s
O
O
.
r
O
r r(A) r(C) s.
推论1:若向量组1,2 ,,r可由向量组 1, 2 ,, s 线
性表示,且r >s,则向量组1,2,,r线性相关。
推论2:任意两个线性无关的等价向量组所含向量的个 数相等。
定理2:一个向量组的任意两个极大无关组所含向量的 个数相等。
若向量组(I )线性无关,且可由向量组(II )线性表
向量组的秩
6
二、向量组的秩与矩阵的秩的关系
回顾: 回顾:我们前面对于矩阵的秩的讨论 将矩阵化为阶梯形矩阵, 将矩阵化为阶梯形矩阵,求出非零行的行数 问题:矩阵的秩与其行( 问题:矩阵的秩与其行(列)向量组的秩之间的关 系?? 矩阵A的行向量组的秩称为行秩 行秩, 定义 矩阵A的行向量组的秩称为行秩, 矩阵A的列向量组的秩称为列秩。 矩阵A的列向量组的秩称为列秩。 列秩 矩阵A的秩=行秩=列秩= 定理 矩阵A的秩=行秩=列秩=向量组的秩
r ( A) ≤ r ( B )
例 证
证明 r ( AB ) ≤ min{ r ( A), r ( B )}
记C m ×n = Am× s Bs×n
b11 M [β 1 ,...β n ] = [α1 ,...α s ] bs 1
... b1n M bsn
根据向量的对应关系, 的列向量均可由 的列向量均可由A 根据向量的对应关系,C的列向量均可由 的列向量线性表示。 的列向量线性表示。 因此, 因此,r(C)≤r(A) 同样,可证 同样,可证r(C)≤r(B)
k1 k1α 1 + k 2α 2 + .. + k sα s = (α 1 ,...,α s ) M ks
k1 = ( β 1 ,... β t ). At × s M = 0 k s
19
x1 M =0 有非零解. 所以只需要证明 At × s 有非零解 xs
k1α 1 + k2α 2 + .. + k sα s = 0
线性表示, 因为 α 1 , α 2 ,L, α s 由 β 1 , β 2 ,L, β t 线性表示, 则
极大线性无关组知识点总结
极大线性无关组知识点总结1. 引言极大线性无关组是线性代数中的重要概念之一,它在矩阵理论、线性方程组求解、向量空间等领域有着广泛的应用。
本文将从基本概念、性质、求解方法等方面对极大线性无关组进行详细介绍和总结。
2. 基本概念2.1 极大线性无关组的定义极大线性无关组是指一个向量组中的向量集合,满足其中的向量是线性无关的,并且再添加任意一个向量就会导致线性相关。
2.2 线性相关与线性无关线性相关是指向量组中存在不全为零的线性组合等于零向量的情况。
线性无关是指向量组中不存在非零的线性组合等于零向量的情况。
3. 极大线性无关组的性质3.1 极大线性无关组的向量个数极大线性无关组的向量个数等于向量组的秩(矩阵中的列秩或行秩)。
3.2 极大线性无关组的存在性任意一个向量组都存在一个极大线性无关组。
3.3 极大线性无关组的扩充一个线性无关向量组的极大线性无关组可以通过添加新的向量来扩充。
4. 求解极大线性无关组的方法4.1 初等变换法利用矩阵的初等行变换或初等列变换,将向量组转化为行阶梯形矩阵或列阶梯形矩阵,然后选取非零行或非零列对应的向量即可得到极大线性无关组。
4.2 矩阵的秩通过计算矩阵的秩,可以得到向量组的秩,从而确定极大线性无关组的向量个数,再通过初等变换等方法选择对应的向量。
5. 应用领域5.1 线性方程组的求解通过求解线性方程组的极大线性无关组,可以简化线性方程组的求解过程。
5.2 向量空间的基极大线性无关组可以作为向量空间的一组基,用于表示向量空间中的任意向量。
5.3 矩阵的秩矩阵的秩可以通过求解矩阵的极大线性无关组来确定,进而用于计算矩阵的特征值、特征向量等。
6. 总结极大线性无关组是线性代数中的重要概念,它具有一系列的性质和求解方法。
通过对极大线性无关组的研究和应用,可以简化线性方程组的求解过程,确定向量空间的基,计算矩阵的秩等。
在实际应用中,了解和掌握极大线性无关组的相关知识,对于理解和解决与线性代数相关的问题具有重要的意义。
6--向量组的极大无关组与秩的求法
a11 a21 K as1
a12 a1s a22 a2 s . as 2 ass
则1 , 2 ,, s线性无关 r ( K ) s. 则1 , 2 ,, s线性相关 r ( K ) s.
1 0 0 0 1 1 1 2
1 (1,0,0,3), 2 (1,1, 1, 2), 3 (1, 2, a 3, a), 4 (0,1, a, 2).
0 a 1 0 a 1
1 1 0 0
1 a 2, 0 A a 2 0 0
6向量组的极大无关组与秩的求法求法秩秩的向量组秩的向量组的极大无关组向量组的秩无关组向量的秩
向量组的秩的求法
行秩:矩阵行向量组的秩;列秩:矩阵列向量组的秩。 定理4 :矩阵的行秩与列秩相等,为矩阵的秩。 推论:向量组的秩与该向量组所构成的矩阵的秩相等。
这实际上给出了一个求向量组秩的方法:先将向量组构成一个矩 阵,然后求矩阵的秩,这个秩就是向量组的秩。 例1:求向量组的秩。
0 1 1 1 0 0 1 1 1 0 1 0 1 2 1 1 0 1 2 1 , , a 1 0 0 a 1 1 a 1 0 0 0 1 1 1 0 0 0 a 2 3 0 0 0 0 1 0 r (1 , 2 , 3 , 4 ) 3, 2 1 1 , 2 , 4为极大无关组。 , 3 1 r (1 , 2 , 3 , 4 ) 3, 0 0 1 , 2 , 3为极大无关组。
2 1 1 0 0
1 2 0 . 4 0
1 , 2 , 3 , 4线性相关。
r (1 , 2 , 3 ) 3, 1 , 2 , 3是一个极大无关组。
4.3 向量组的极大无关组与向量组的秩
1 1 2 一次行 B = 2 A= ① r r ③ kr ② k r i j i m m
则显然有
1, 2 ,, m 1 , 2 ,, m
行秩(A)=行秩(B)。
所以,初等行变换不改变矩阵的行秩与列秩。 类似有: 定理2.12 初等列变换不改变矩阵的行秩与列秩。
定理4 初等列变换不改变矩阵的行秩与列秩。 定理5 初等变换不改变矩阵的行秩与列秩。 定理6
① 将向量组以列向量构成矩阵
② 对矩阵A 施以初等行变换化为行最简形矩阵;
A = (1, 2 ,, s ) ;
行
A = (1, 2 ,, s ) B = ( 1, 2 ,, s )
③ 所得矩阵的列向量组中基本单位向量对应 位置的向量即为所求 极大无关组,即
1, 2 ,, s 的极大无关组对应
2 n ) 则称向量组 1, 2 ,, m 为矩阵A的行向量组;
则称向量组 1, 2 ,, n 为矩阵A的列向量组。
1.矩阵的行秩与列秩 定义2 矩阵A的行向量组的秩,称为A的行 秩,记为行秩A); 矩阵A的列向量组的秩,称为A的列秩,记 为列秩A)。 例如,矩阵
r ( A) = 2 ,
推论3 向量组中任两个极大无关组等价。 【由等价的传递性】 推论4 向量组的极大线性无关组所含向量的 个数唯一。 【上节定理5?】 【称这个唯一的数为向量组的秩】
【称这个唯一的数为向量组的秩】 3. 向量组的秩 (1)秩的概念 定义2 向量组 1, 2 ,, s 的极大无关组 所含向量的个数称为该向量组的秩, 记为
1 0 1 1 A= 0 1 3 2
行秩A)=2, 列秩A)=2
向量组的极大无关组与向量组的秩
若
k 11 2 2 r r
0 ( k 1 1 ) 1 ( k 2 2 ) 2 ( k r r ) r
因 a1,a2,,ar线性无关,
3
k1 k2 k3
1 0 1
所以
4 13
上一页 31 下一页
同理可求得
5123
□
一个向量由它所在的向量组中的极大无关组线性表示,其线性表达式是否唯 一呢?我们有下面的命题.
命题12.12 一个向量由它所在向量组中极大无关组线性表示,其表达式唯一.
证 设 a1,a2, ,ar是向量组T中的一个极大无关组, 是向量组T中任意
则必有
k 1 1 k 2 2 k r r 0
即
k 11 ,k 22 , ,k rr
所以,由 a1,a2, ,ar线性表示的表达式唯一.
am1x1 am2x2 amnn 0
上面的齐次线性方程组可写成 1 ,2 , ,n X 0 , ( 这 X x 1 , x 2 里 , x n ')
现设
1 , 2 , , n 经 过 初 1 ,等 2 , 行 , n变换
由命题12.1知
1 ,2 , ,n X 0 与 1 ,2 ,n X 0
同解.所以向量组 a 1 ,a 2 , ,a n 与 1 , 2 , , n的线性相关性相同.
□
由此我们知道,矩阵A的秩就是列向量组T中极大线性无关组所含向量的个数.
又会命题11.11显然下面的命题成立.
11234
00 0 0 0
由命题12.11知,向量组的秩等于3,且 1,2,3 就是一个极大无关组.下面球4 ,5
线性代数 3-5 第3章5讲-极大线性无关组和秩(1)
解
(1)
1,
2,
3
1,2,3
1
1
1
1
1
1 40
1 1 1 1 1 1 1
1 1 11
2
0
1,
2,3
1,
2,3
1
1
1
1,
2,
3
1 2
1 2
1 1 1
0
1
2
1
2
0
1
2 9
极大线性无关组和向量组的秩(1)
1 1 2 3 已知向量1,2,3分别可由1,2,3线性表示,即 2 1 2 3
由线性相关性的性质3.6推论得 r2 r;1
反过来,因为1,2 , ,m可由1, 2 , , s线性表示, 即1,2 , ,m的极大无关组可由1, 2 , , s的极大无关组线性表示,
由线性相关性的性质3.6推论得 r1 r2.
, s ) r2.
推论
设向量组1, 2 ,
,
s
线性无关,且可由向量组1,
6
极大线性无关组和向量组的秩(1)
定理3.6 等价的向量组有相同的秩.
证 设向量组1,2 , ,m与1, 2 , , s等价,记r(,1 ,2 ,m ) r,1 r(1, 2, 因为1, 2 , , s可由1,2 , ,m线性表示, 即1, 2 , , s的极大无关组可由1,2 , ,m的极大无关组线性表示,
线性代数(慕课版)
第三章 向量与向量空间
第五讲 极大线性无关组和秩(1)
主讲教师 |
本讲内容
01 极大线性无关组和向量组的秩(1)
极大线性无关组和向量组的秩(1)
向量组的极大无关组
定义3.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
极大线性无关组 定义
• 定义:向量组T中如果有一部分组α1,α2,···,αr满足: 1.α1,α2,···,αr线性无关; 2.任取向量组T中β,有α1,α2,···,αr,β线性相关。 则称α1,α2,···,αr为向量组T的一个极大线性无关向量组, 简称为极大无关组
3
6
9
7
9
0
0
0
0
0
得到R(A)=3,故最大无关组含有3个向量,取1,2,4列,故 a1, a2, a4
为列向量最大无关组。
•注意:只要分别取不在同一阶梯上的列向量即可,可以125列,134列
都是最大无关组,这里为了方便去只取124列
•剩下3,5列用线性表式:3,5列单独写出来
1 4
•例题:设矩阵
2 1 1 2
4
求矩阵A的列向量组的一个最大无关
4
3
6
9
7
9
组,并把不是组最大无关组的列向量用最大无关线性表示
2 1 1 1 2 1 0 1 0 4
•解: A
1
1
2
1
4
r
0
1
1
0
3
(先化为行最简)
4 6 2 2 4 0 0 0 1 3
• 定理: 1.设a1,a2,…,ar与b1,b2,…,bs是两个向量组,如果 (1)向量组a1,a2,…,ar可以经b1,b2,…,bs线性表出(2)r>s;
那么向量组a1,a2,…,ar必线性相关。 2.只含零向量的向量组没有极大无关组; 3.一个线性无关向量组的极大无关组就是其本身
.
极大线性无关组 例题
1
3此 矩阵对对应
0 3
0
0
a1, a2, a5的系数,因此只写最后一步即可,得到 a3 a1 a2 a5 4a1 3a2 3a4
.
第四节
•向量组的秩定义+定理 •向量组的极大线性无关组定义+例题
.
•定义:向量组的秩表示的是一个向量组的极大线性无关组 所含向量的个数。
向量组的秩定义+ 定理
•定理: 1.矩阵的秩等于列向组的秩,也等于行向量组的秩
(但在求极大无关组的时候一定要用列向量)
2.向量组 b1,b2, bl能由向量组 a1, a2, am线性表示的充 分必要条件是: