九年级数学一元二次方程——握手问题、传染病问题-增长率问题练习题汇总(有答案)
初三一元二次方程应用题
![初三一元二次方程应用题](https://img.taocdn.com/s3/m/f18fbda1f121dd36a32d82cc.png)
一、握手问题例:五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?练习、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?例:某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染。
请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?练习:中国内地部分养鸡场突发禽流感疫情,某养鸡场中、一只带病毒的小鸡经过两天的传染后、鸡场共有169只小鸡遭感染患病,在每一天的传染中平均一只鸡传染了几只小鸡?三、增长率问题例:某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)练习1、某工厂一月份生产某种机器100台,计划二、三月份共生产280台。
设二、三月份每月的平均增长率为X,求增长率为多少?2、某市土地沙漠化严重,2005年沙漠化土地面积为100Km2,经过综合治理,希望到2007年沙漠化土地面积降到81 Km2,如果每年治理沙漠化土地的降低百分率相同,求每年的沙漠化土地的降低百分率。
四、利率问题例:某人将2000元按一年定期存银行。
到期后取出1000元,并将剩下的1000元及利息再按一年定期存入银行,到期后取得本息共计1091.8元。
求银行一年定期储蓄的利率是多少?练习:我村2006年的人均收入为1200元,2008年的人均收入为1452元,求人均收入的年平均增长率。
例:某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?练习1、神州行旅行社为吸引市民组团去大纵湖风景区旅游,推出如下收费标准,如果人数不超过25人,人均旅游费用为1 00元,如果人数超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元,某单位组织员工去大纵湖风景区旅游,共支付给神州旅行社旅游费用2700元,请问该单位这次共有多少员工去旅游了。
九年级数学一元二次方程――握手问题传染病问题,增长率问题练习...
![九年级数学一元二次方程――握手问题传染病问题,增长率问题练习...](https://img.taocdn.com/s3/m/3176efb064ce0508763231126edb6f1aff007146.png)
九年级数学一元二次方程――握手问题传染病问题,增长率问题练习...九年级数学一元二次方程――握手问题、传染病问题,增长率问题练习...第一部分:一元二次方程的应用(竞争和握手问题)师生共用讲学稿(5-13班)年级:9年级科目:数学写作:丁翠颖复习:9年级备课小组内容:单变量二次方程式(竞赛综合)课程类型的应用:新教学时间:2022年9月22日学习目标:1.继续探索实际问题中的数量关系,列一元二次方程解应用题的步骤.2.进一步培养学生将实际问题转化为数学问题的能力和分析解决问题的能力,培养学生应用数学的意识。
学习重点:学会用列方程的方法解决有比赛、握手、及其它问题学习困难:结合竞争和握手定律,灵活运用一元二次方程的应用题课前准备你们组有学生。
如果组长想握手一次,那么他应该和其他人握手。
如果小组中的每个人都想和其他人握手一次,那么每个人总共握手几次。
一.探究活动:(一)独立思考,解决问题例1.参加一次联欢会的每两人都握了一次手,所有人共握了10次,有多少人参加联欢会?分析:设一共有_____人参加联欢会。
每个人都应该和别人握手。
列方程得______________________________________通过解方程:答:___________________________。
实践1.应组织排球邀请赛。
每两队应该有一场比赛。
根据场地、时间等情况,赛程安排为7天,每天4场。
竞赛组织者应邀请多少队参赛?变式1:参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?2.参加足球联赛的每两支球队有两场比赛,总共90场。
有多少队参加比赛?(二)师生探究合作交流*1. 如何用40米长的绳子形成面积为75米的矩形?你能形成一个面积为1012米的矩形吗?如果可能,解释封闭方法;如果没有,请说明确切原因。
(可选)2.对于向上抛的物体,在没有空气阻力的条件下,有这样的关系式:h?vt?212gt,其22.H为上升高度,V为初速度,G为重力加速度(为方便起见,本课题中G取10m/s),t是抛出后所经历的时间,如果将一物体以v?25m/s的初速度向上抛,物体何时离抛出点20m高的地方?三、学习经历:1.在本节课中,你能说出比赛问题中比赛一场与比赛两场之间的区别了吗?这和握手问题一样吗?2.你对其他一元二次方程的应用有何看法?一元二次方程的应用(比赛综合)小测班别姓名学号聚会上每两个人握手一次。
九年级数学:一元二次方程应用题典型题型归纳
![九年级数学:一元二次方程应用题典型题型归纳](https://img.taocdn.com/s3/m/c2b15768ccbff121dd368361.png)
一元二次方程应用题典型题型归纳(一)传播与握手问题(病毒、细胞分裂等)1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
3.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。
5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?6.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?5.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.(三)商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30X,P=170—2X。
人教版九年级上册 一元二次方程的应用 同步练习
![人教版九年级上册 一元二次方程的应用 同步练习](https://img.taocdn.com/s3/m/cae1fc07240c844768eaee5c.png)
一元二次方程的应用一、知识点1、握手问题;2、感冒问题;3、增长率问题二、知识学习1、回顾知识:(1)一元二次方程解法;(2)根的判别式;(3)根与系数的关系。
2、握手问题例1、参加聚会的每两个人都握了一次手,所有人共握手10次,有多少人参加聚会?例2、一个凸多边形共有20条对角线,它是几边形?是否存在有18条对角线的多边形?如果存在,它是几边形?如果不存在,请说明理由。
3、感冒问题例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?:如果按照这样的传染速度,三轮后有多少人患流感?4、增长率问题(1)平均增长率问题例4、某新华书店计划第一季度共发行图书122万册,其中一月份发行图书32万册,二、三月份平均每月增长率相同,求二、三月份各应发行图书多少万册?例5 某商厦二月份的销售额为100万元,三月份销售额下降了20%。
商厦从四月份起改进经营措施,销售额稳步上升,五月份销售额达到135.2万元,试求四、五两个月的平均增长率.(2)非平均增长率问题例6、已知某商店3月份的利润为10万元,5月份的利润为12.32万元,5月份月增长率比4月份增加了2个百分点.求4月份的月增长率.三、检测练习1、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().A.12人B.18人C.9人D.10人2、.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程( )A. 720B.C. D.3、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?4、某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?5、参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签了45份合同,共有多少家公司参加商品交易会?6、参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场,共有多少队参加比赛?7、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?8、某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,求两次降价的百分率.9、某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份营业额达到633.6万元,求3月份到5月份营业额的平均月增长率。
九年级数学一元二次方程——握手问题、传染病问题,增长率问题练习题汇总(有答案)(可编辑修改word版)
![九年级数学一元二次方程——握手问题、传染病问题,增长率问题练习题汇总(有答案)(可编辑修改word版)](https://img.taocdn.com/s3/m/61dadf9a16fc700aba68fc7c.png)
握手问题:n 个人见面,任意两个人都要握一次手,问总共握
次手。
2
分析:一个人握手 n 1次,n 个人握手 nn 1次,是单项问题,甲与乙握手同乙与甲握手应算作一次,故总共
nn 1
握手
次。
2
赠卡问题:n 个人相互之间送卡片,总共要送 n(n 1) 张卡片。
分析:送卡片的时候,你送我一张,我也要送你一张,是双项问题,一个人送 n 1张,n 个人既全班送
nn 1张。
传播问题应用:有一人患了流感,经过两轮传染后共有 121 人患了流感,每轮传染中平均一个人传染了几个人? 设 每轮传染中平均一个人传染了 x 个人:
增长率问题:若平均变化率为 x,变化前的量是 a,经历 n 轮变化后的量是 b,则它们的数量关系可表示为
a1 xn b
【练习】
1、参加一次联欢会的每两人都握了一次手,所有人共握手 10 次,有多少人参加聚会?
nn 1
队与 A 队的比赛算为一场。故
=15
2
4、 nn 1 45 ,解得 n 10 。
2
nn 1
5、分析:同 3 题一样,这题要求两队之间都要进行两次比赛,所以总场数为 2 倍的
。
2
6、分析:从 n 边形的一个顶点出发有 n 3条对角线,n 个顶点共有 nn 3条对角线,但有重复的情况,故有
462 件,求该班共有多少学生?
9、某中学足球联赛,实行主客场赛制(既每队都作为主场与他对比赛一次)共要进行 132 场比赛,问有几支参赛
队?若改为单循环赛(既每队只与他对比赛一次),进行 66 场比赛,问有几支参赛队?
10、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是 91,每个
一元二次方程应用题传播、握手、增长率类讲练
![一元二次方程应用题传播、握手、增长率类讲练](https://img.taocdn.com/s3/m/e8ad50d158f5f61fb736665b.png)
4(1-x)2=2.56
开启
智慧
增长率与方程
17.某电冰箱厂每个月的产量都比上个月增长的百分数相同。已知 该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了 12000台,求该厂今年产量的月平均增长率为多少?
解 : 设 该 厂 今 年 产 量 的 月 平 均 增 长 率 为 x, 根 据 题 意 , 得
2、奇数个连续偶数(或奇数,自然数),一般可设中间
一个为x.如三个连续偶数,可设中间一个偶数为x,则其 余两个偶数分别为(x2)和(x+2)又如三个连续自然数,可 设中间一个自然数为 x ,则其余两个自然数分别为 (x1) 和(x 1).
增长问题的数量关系是: 一次增长:新数 = 基数×(1+增长率) 二次增长:新数 = 基数×(1+增长率)2
增长、降低率问题
设基数为a,平均增长率为x,
则一次增长后的值为 二次增长后的值为
a (1 x)
a (1 x)
2 n
依次类推n次增长后的值为
a (1 x)
设基数为a,平均降低率为x,
回顾练习: ① x2+2x+1=0 ② 3t(t+2)=2(t+2)
③ (1-2t)2-t2=2
④ (x+1)2-4(x+1)+4=0
一元二次方程应用(1)
传播类、比赛与握手问题
探究1
有一人患了流感 , 经过两轮传染后 共有121人患了流感,每轮传染中平均一 个人传染了几个人?
分 第二轮传染后 第一轮传染 1+x 1+x+x(1+x) 后 析 1 解:设每轮传染中平均一个人传染了x个人.
x x 1 10 2
初中数学一元二次方程的应用题型分类——传播问题2(附答案)
![初中数学一元二次方程的应用题型分类——传播问题2(附答案)](https://img.taocdn.com/s3/m/63fa92935f0e7cd185253675.png)
13.香香蛋糕店开业在即,老板香香要求员工通过微信转发进行宣传,于是蛋糕店开业的消息朋友圈快速流转起来.
(1)开始只有香香和员工共9个人知道开业消息,两天后知道此店开业消息的人数达到1089人,如果每个人每天转发的人数相同,那么每个人每天把消息传递了几个人?
患流感的人把病毒传染给别人,自己仍然患病,包括在总数里.设每轮传染的人数是 人,则第一轮传染了x个人,第二轮传染了(x+1)个人,依据题意列方程: ,解方程即可.
【详解】
解:设每轮传染的人数是 人,根据题意得:
,
解得: 或 (不合题意,舍去).
答:每轮传染的人数是6个人.
【点睛】
本题考查一元二次方程的应用,根据题意列出方程并解答是解题关键.
17.有一人患了流感,经过两轮传染后,共有144人患了流感.假设每轮传染中,平均一个人传染了x个人,依题意可列方程,得_____.
18.某同学患流感,经过两轮传染后,共有144名同学患流感,平均每人每轮传染_____名同学.
19.一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出_______个小分支.
15.来自武汉高校的若干个社团参加了“敢为人先,追求卓越”的城市精神的研讨会,参加研讨会的每两个社团之间都签订了一份合作协议,所有社团共签订了45份协议,共有多少个社团参加研讨会?
16.目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x个人,那么可列方程为______.
一元二次方程的实际应用(病毒传播、增长率、单(双)循环、图形面积、涨降价销售问题)含答案
![一元二次方程的实际应用(病毒传播、增长率、单(双)循环、图形面积、涨降价销售问题)含答案](https://img.taocdn.com/s3/m/0814e925640e52ea551810a6f524ccbff121cade.png)
7.(8 分 ) 树 西 瓜 经 营 户 以 2 元 / 千 克 的 进 价 购 进 一 批 小 型 西 瓜 , 以 3 元 / 千 克 的 价 格 出 售 , 每 天 可 售 出 200 千 克 , 为了 促 销 , 该 经 营 户 决 定 降 价 销 售 , 经 调 查 发 现 , 这 种 小 型 西 瓜 每 降 价 0.1 元 / 千 克 , 每 天 可 多 售 出 40 千 克 , 另 外 , 每 天 的 房 租 等 固 定 成 本 共 24 元 , 该 经 营 户 要 想 每 天 赡 利 200 元 , 应 将 每 十 克 小 型 西 瓜 的 售价 降低 多少元 ?
11.分 )(菜 8机 械 厂 七 月 份 生 产 零 件 52 万 个 , 第 三 季 度 生 产 零 件 196 万 个 、 设 该 厂八 、 九 月 份 平 均 每 月 的 增 长 率 为 z, 那 么 满 足 的 方 程 是 ?
12.(8 分 )2015 年 树 市 曾 爆 发 登 革 热 疫 情 , 登 革 热 是 一 种 传 染 性 病 毒 , 在 病 毒 传 播 中 , 若 1 个 人 悦 病 , 则 经 过 两 轮 传 染 就 共 有 144 人 悟 病 . (D) 每 轮 传 染 中 平 均 一 个 人 传 染 了 几 个 人 ? (2) 若 病 毒 得 不 到 有 效 控 制 , 按 照 这 样 的 传 染 违 度 , 三 轮 传 染 后 , 患 病 的 人 数 共 有 多 少 人 ?
6.(8分 ) 桅 商 店 销 售 枸 种 电 扇 , 每 台 进 货 价 为 150 元 , 经 市 场 调 研 , 当 每 台 售 价 为 230 元 时 , 平 均 每 天 能 售 出8 台 : 当 每 台 售 价 每 降 10 元 时 , 平 均 每 天 就 能 多 售 出 4 台 。 若 商 店 要 想 使 这 种 电 扇 的 销 售 利 润 平 均 每 天 达 到 1000元 , 则 每 台 电 扇 的 定 价 应 为 多 少 元 ?
九年级数学 第二章 一元二次方程专题训练(二)一元二次方程的实际应用作业
![九年级数学 第二章 一元二次方程专题训练(二)一元二次方程的实际应用作业](https://img.taocdn.com/s3/m/77806e9827d3240c8547eff6.png)
第四页,共二十二页。
二、增长率与利润问题 4.(2018·眉山)我市某楼盘准备以每平方 6000 元的均价对外销售,由于国务 院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产 开发商对价格经过连续两次下调后,决定以每平方 4860 元的均价开盘销售,则 平均每次下调的百分率是( C ) A.8% B.9% C.10% D.11%
第十七页,共二十二页。
解:(1)以 O 为原点,OA 所在直线为 y 轴,汽车行驶的路线为 x 轴,作出坐标系. 设当台风中心在 M 点,汽车从 N 点开始受到影响, 设运动时间是 t 小时,过 M 作 MC⊥x 轴,作 MD⊥y 轴. 则△ADM 是等腰直角三角形, AM=20 2t,则 AD=DM= 22AM=20t,M 的坐标是(20t,160-20t),N 的坐标是 (40t,0). 汽车受到影响,则 MN=120 千米, 即(40t-20t)2+(160-20t)2=1202, 整理,得 t2-8t+14=0. 解得 x1=4- 2,x2=4+ 2. 答:汽车行驶了(4- 2)小时后受到第台十八页风,共影二十响二页。
第十二页,共二十二页。
9.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为 12 m 的住房墙, 另外三边用 25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一 个 1 m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为 80 m2?
第十三页,共二十二页。
九年级数学一元二次方程——握手问题、传染病问题,增长率问题练习题汇总(有答案)
![九年级数学一元二次方程——握手问题、传染病问题,增长率问题练习题汇总(有答案)](https://img.taocdn.com/s3/m/b376e8c6a32d7375a5178042.png)
握手问题:n个人见面,任意两个人都要握一次手,问总共握()21-nn次手。
分析:一个人握手()1-n次,n个人握手()1-nn次,是单项问题,甲与乙握手同乙与甲握手应算作一次,故总共握手()21-nn次。
赠卡问题:n个人相互之间送卡片,总共要送)1n(n-张卡片。
分析:送卡片的时候,你送我一张,我也要送你一张,是双项问题,一个人送()1-n张,n个人既全班送()1-nn张。
传播问题应用:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 设每轮传染中平均一个人传染了x个人:增长率问题:假设平均变化率为x,变化前的量是a,经历n轮变化后的量是b,则它们的数量关系可表示为()bxa n=±1【练习】1、参加一次联欢会的每两人都握了一次手,全部人共握手10次,有多少人参加聚会?2、线段AB上有n个点〔含端点〕,问线段AB上共有多少条线段?3、要组织一次篮球联赛,赛制为单循环形式〔每两队之间都比赛一场〕,方案安排15场比赛,应邀请多少个球队参加比赛?4、参加一次商品交易会的每两家公司之间都签订了一份合同,全部公司签订了45份合同,共有多少家公司参加商品交易会?5、参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场,共有多少个队参加比赛?6、一个n边形,共有多少条对角线?n边形的全部对角线与它的各边共形成多少个三角形?7、某班同学毕业时都将自己的照片向全班其它同学各送一张表示留念,全班共送了1035张照片,那么全班有多少位学生?8、元旦联欢晚会,某班同学打算每位同学向本班的其他同学赠送自己制作的小礼物1件,全班制作的小礼物共有462件,求该班共有多少学生?9、某中学足球联赛,实行主客场赛制〔既每队都作为主场与他比照赛一次〕共要进行132场比赛,问有几支参赛队?假设改为单循环赛〔既每队只与他比照赛一次〕,进行66场比赛,问有几支参赛队?10、某种植物的主干长出假设干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?11、某养鸡场突发流感疫情,一只带病毒的小鸡经过两天的传染后,使鸡场共有169只小鸡感染患病,在每一天的传染中平均一只小鸡传染了几只小鸡?12、要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,方案安排15场比赛,应邀请多少个球队参加比赛?13、某厂今年一月的总产量为720万元,三月的总产量为500万元,平均每月降低率是x,列方程( )A.500(1-x)2=720B.720(1-x)2=500C.720(1-x2)=500D.720(1+x)2=50014、据某中学对毕业班同学三年来参加市级以上各项活动获奖情况的统计,初一阶段有48人次获奖,之后逐年增加,初三阶段时有183人次获奖.求这两年中获奖人次的平均年增长率.可列方程为____________________15、某经济开发区今年一月份工业产值达50亿元,三月份产值为72亿元,问二月、三月平均每月的增长率是多少?【答案】1、解:设有x个人参加聚会,每个人要握手〔x-1〕次,但每人都重复了一次。
2022九年级数学上册第二章一元二次方程专题练习八传播循环增长率问题作业课件新版北师大版202212
![2022九年级数学上册第二章一元二次方程专题练习八传播循环增长率问题作业课件新版北师大版202212](https://img.taocdn.com/s3/m/09090a163069a45177232f60ddccda38376be1c2.png)
解:(3)设该班有 x 名女生,
依题意得:1 2
x(x-1)=253,
整理得:x2-x-506=0,
第二章 一元二次方程
专题练习八 传播、循环、增长率问题
类型一 传播问题 方法指导:传播、裂变问题:若传染源为a,传播速度为x,则第一轮传 播后传播总量为a(1+x),第二轮传播后传播总量为a(1+x)2……第n轮传播后 传播总量为a(1+x)n.
1.(沁阳月考)新型冠状病毒肺炎具有人传人性,调查发现1人感染病毒后 如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,A.x(x+1)=66
B.12 x(x-1)=66
C.1 x(x+1)=66 2
D.x(x-1)=66
【变式1】某小组有若干人,新年大家互相发一条微信祝福,已知全组共发 微信56条,则这个小组的人数为__8__人.
【变式2】为了宣传垃圾分类,小明写了一篇倡议书,决定用微博转发的方 式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个 好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已 知经过两轮转发后,共有111个人参与了宣传活动,求n的值.
【变式1】(鄂州中考)目前以5G等为代表的战略性新兴产业蓬勃发展.某 市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到9.68万 户.设全市5G用户数年平均增长率为x,则x值为( A )
A.120% B.130% C.140% D.150%
【变式2】(滨州中考)某商品原来每件的售价为60元,经过两次降价后每件 的售价为48.6元,并且每次降价的百分率相同.
一元二次方程应用题汇总(传染、增长率、面积、利润、球赛、数字等问题)
![一元二次方程应用题汇总(传染、增长率、面积、利润、球赛、数字等问题)](https://img.taocdn.com/s3/m/5485212814791711cc7917d0.png)
一元二次方程应用题一、传播问题:1、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,求,,每轮感染中平均一台电脑能感染几台?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?2、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?3、甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型H1N1流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?二、增长率问题:平均增长(降低)率公式注意:(1)1与x 的位置不要调换(2)解这类问题列出的方程一般用直接开平方法 1. 某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x ,列方程为_________________2. 某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为_____________3、雪融超市今年的营业额为280万元,计划后年的营业额为403.2万元,求平均每年增长的百分率?4、市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒121元降到每盒100元,则这种药品平均每次降价的百分率为多少?5、我国土地沙漠化日益严重,西部某市2003年有沙化土地100平方公里, 到2005年已增至144平方公里。
请问:2003至2005年沙化土地的平均增长率为多少?2(1)a x b ±=三、面积问题:1、一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?2、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m。
九年级数学上册第二十一章一元二次方程第1课时用一元二次方程解决传播问题练习新版新人教版(含答案)
![九年级数学上册第二十一章一元二次方程第1课时用一元二次方程解决传播问题练习新版新人教版(含答案)](https://img.taocdn.com/s3/m/960d686bec3a87c24028c4eb.png)
九年级数学上册:21.3 实际问题与一元二次方程第1课时 用一元二次方程解决传播问题基础题知识点1 传播问题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A .8人B .9人C .10人D .11人2.鸡瘟是一种传播速度很快的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A .10只B .11只C .12只D .13只3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是111.求每个支干长出多少个小分支.知识点2 握手问题4.“山野风”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x(x +1)=210B .x(x -1)=210C .2x(x -1)=210 D.12x(x -1)=210 5.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A .x(x -1)=10 B.x (x -1)2=10 C .x(x +1)=10 D.x (x +1)2=10 6.参加一次足球联赛的每两个队之间都进行两场比赛,若共要比赛110场,则共有________个队参加比赛( )A .8B .9C .10D .117.一条直线上有n 个点,共形成了45条线段,求n 的值.知识点3 数字问题8.两个连续偶数的和为6,积为8,则这两个连续偶数是________.9.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是________.10.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数是多少?中档题11.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )A .4个B .5个C .6个D .7个12.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?13.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?14.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和是多少?15.(襄阳中考)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?综合题16.(1)n 边形(n >3)其中一个顶点的对角线有________条;(2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.参考答案基础题1.B2.C3.设每个支干长出x 个小分支,根据题意,得1+x +x 2=111.解得x 1=10,x 2=-11(舍去).答:每个支干长出10个小分支.4.B5.B6.D7.由题意得12n(n -1)=45.解得n 1=10,n 2=-9(舍去).答:n 等于10. 8.2和4 9.9810.设这个两位数的个位数字为x ,则十位数字为(x -3),由题意,得x 2=10(x -3)+x.解得x 1=6,x 2=5.当x =6时,x -3=3;当x =5时,x -3=2.答:这个两位数是36或25.中档题11.B12.设有x 家公司出席了这次交易会,根据题意,得12x(x -1)=78.解得x 1=13,x 2=-12(舍去).答:有13家公司出席了这次交易会.13.设要向x 个人发送短信.根据题意,得x(x +1)=90,解得x 1=9,x 2=-10(舍去).答:一个人要向9个人发送短信.14.设最小数为x ,则最大数为x +16,根据题意,得x(x +16)=192.解得x 1=8,x 2=-24(舍去).故最小的三个数为8,9,10,下面一行的数字为15,16,17;再下面一行三个数字尾22,23,24.所以这9个数的和为:8+9+10+15+16+17+22+23+24=144.15.(1)设每轮传染中平均每人传染了x 人,则1+x +x(x +1)=64.解得x 1=7,x 2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)64×7=448(人).答:第三轮将又有448人被传染.综合题16.(1)(n -3);(2)设这个凸多边形是n 边形,由题意,得n (n -3)2=14.解得n 1=7,n 2=-4(不合题意,舍去).答:这个凸多边形是七边形.(3)不存在.理由:假设存在n 边形有21条对角线.由题意,得n (n -3)2=21.解得n =3±1772. 因为多边形的边数为正整数,但3±1772不是正整数,故不合题意. 所以不存在有21条对角线的凸多边形.。
专题04一元二次方程握手问题、传染问题、平均增长率、图形问题(解析版)
![专题04一元二次方程握手问题、传染问题、平均增长率、图形问题(解析版)](https://img.taocdn.com/s3/m/85c60ae383c4bb4cf6ecd13c.png)
专题04握手问题、传染问题、平均增长率、图形问题【1】握手问题解题技巧:有2种类型(1)重叠类型:n支球队互相之间都要打一场比赛,总共比赛场次为m。
∵1支球队要和剩下的(n-1)支球队比赛,∴1支球队需要比(n-1)场∵存在n支这样的球队,∴比赛场次为:n(n-1)场∵A与B比赛和B与A比赛是同一场比赛,∴上述求法有重叠部分∴m=12n(n−1)(2)不重叠类型:n支球队,每支球队要在主场与所有球队各打一场,总共比赛场次为m。
∵1支球队要和剩下的(n-1)支球队比赛,∴1支球队需要比(n-1)场∵存在n支这样的球队,∴比赛场次为:n(n-1)场∵A与B比赛在A的主场,B与A比赛在B的主场,不是同一场比赛,∴上述求法无重叠∴m=n(n−1)【2】传染问题解题技巧:有2种类型(1)个体传播一轮后,依旧传染。
设a为传播前基础人数,b为传播后的人数,n为传播的轮次,p为传播过程中,平均一人传染的人数。
发现规律:传播人数:b=a(1+p)n,与增长率问题公式一致。
见例1.【3】平均增长率问题解题技巧:设a为增长(下降)基础数量,b为增长(下降)后的数量,n为增长(下降)的次数,p为增长(下降)率。
2a(1±p)a(1±p)p a(1±p)±a(1±p)p=a(1±p)23a(1±p)2a(1±p)2p a(1+p)2±a(1±p)2x=a(1±p)3发现规律:①增长时:b=a(1+p)n;②减少时:b=a(1−p)n注:①本章考察一元二次方程,通常增长(下降)次数n为2;②通常设增长(下降)率为x;③例求解得x=0.1,则表示增长(下降)10%。
【4】图形问题解题技巧:解决面积问题的关键是把实际问题数学化,把实际问题中的已知条件与未知条件归结到某一个几何图形中,然后按照几何图形的面积公式列写等式方程,使问题得以解决。
人教版九年级上册数学22.3二次函数与一元二次方程---增长率问题专题训练(word、含简单答案)
![人教版九年级上册数学22.3二次函数与一元二次方程---增长率问题专题训练(word、含简单答案)](https://img.taocdn.com/s3/m/a49e993d17fc700abb68a98271fe910ef12daeb5.png)
人教版九年级上册数学22.3二次函数与一元二次方程---增长率问题专题训练一、单选题1.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x (x >0),设2017年该产品的产量为y 吨,则y 关于x 的函数关系式为( )A .y =100(1﹣x )2B .y =100(1+x )2C .y =2100(1)x + D .y =100+100(1+x )+100(1+x )2 2.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价,设平均每次降价的百分率为x ,降价后的价格为y 元,原价为a 元,则y 与x 的函数关系为( )A .2(1)y a x =-B .2(1)y a x =-C .22(1)y a x =-D .2(1)y a x =- 3.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x 倍,两年后产品年产量y 与x 的函数关系是( )A .y =20(1﹣x )2B .y =20+2xC .y =20(1+x )2D .y =20+20x 2+20x 4.某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y =a(x -1)2C .y =a(1-x)2D .y =a(l+x)2 5.你知道吗?股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .(1+x )2=1110B .x+2x=1110C .(1+x )2=109D .1+2x=109 6.国家决定对某药品价格分两次降价,若设平均每次降价的百分比为x ,该药品的原价为36元,降价后的价格为y 元,则y 与x 之间的函数关系为( ) A .72(1)y x =- B .36(1)y x =- C .236(1)y x =- D .236(1)y x =- 7.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++ 8.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y =a (1+x )2C .y =(1﹣x )2+aD .y =a (1﹣x )2二、填空题9.某印刷厂一月份印书50万册,如果从二月份起,每月印书量的增长率都为x ,那么三月份的印书量y (万册)与x 的函数解析式是______.10.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为(0)x x >,六月份的营业额为y 万元,那么y 关于x 的函数解式是______. 11.某工厂第一年的利润是40万元,第三年的利润是y 万元,则y 与平均年增长率x 之间的函数关系式是___________.12.某学校去年对实验器材投资为2万元,预计今明两年的投资总额为y 万元,年平均增长率为 x .则y 与x 的函数解析式______________.13.某厂有一种产品现在的年产量是2万件,计划今后两年增加产量,如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y (万件)将随计划所定的x 的值而确定,那么y 与x 之间的关系式应表示为________.14.随着国内新冠疫情逐渐好转,市场对口罩的需求量越来越少,据统计,某口罩厂6月份出货量仅为4月份的40%,设4月份到6月份口罩出厂量平均每月的下降率为x ,则可列方程为___. 15.农机厂第一个月水泵的产量为50(台),第三个月的产量y (台)与月平均增长率x 之间的关系表示为___________.16.某工厂1月份的产值是200万元,平均每月产值的增长率为(0)x x >,则该工厂第一季度的产值y 关于x 的函数解析式为_________.三、解答题17.某商场将一种每件成本价为10元的商品连续加价两次后,以每件24元作为定价售出.已知第二次加价的增长率比第一次加价的增长率多10%.(1)求第一次加价的增长率;(2)该商场在试销中发现,如果以定价售出,则每天可售出100个.如果销售单价每降低1元,销售量就可以增加10件.那么当销售单价为多少元时,该商场每天销售该商品获得的利润最大?最大利润是多少?18.疫情防控期间,在线教学引发手机支架畅销.某网店手机支架1月销量为256台,2月、3月销量持续走高,3月销量达到400台(售价不变).(1)求2月、3月这两个月销售量的月平均增长率;(2)手机支架进价为每台24元,售价为每台40元.调查发现:售价每降低1元,销售量增加50台.于是开展“红4月”促销活动.当售价降低多少元时,手机支架在4月的利润最大?最大利润是多少元?19.为积极响应国家“旧房改造”工程,该市推出《加快推进旧房改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设.(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?20.为积极应对人口老龄化,让老年人老有所依、老有所安。
初三(增长率、传播问题)应用题专题训练(含答案)
![初三(增长率、传播问题)应用题专题训练(含答案)](https://img.taocdn.com/s3/m/77ec49f8fd0a79563c1e7276.png)
初三(增长率、传播问题)应用题专题训练1、一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了66次手,这次参加会议到会的人数是多少?2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?3、滨州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?4、有一种传染性疾病,蔓延速度极快.据统汁,在人群密集的某城市里,通常情况下,每人一天能传染给若干人,通过计算解答下面的问题:(1 )现有一人患了这种疾病,开始两天共有225人患上此病,求每天一人传染了几人?(2)两天后,人们有所觉察,这样平均一个人一天以少传播5人的速度在递减,求再过两天共有多少人患有此病?5、雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款元,第三天收到捐款元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?6、某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低,第二个月比第一个月提高,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?7、百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?8、随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资.尹进2008 年的月工资为2000 元,在2010 年时他的月工资增加到2420 元,他20XX年的月工资按2008 到2010 年的月工资的平均增长率继续增长.(1)尹进20XX年的月工资为多少?(2)尹进看了甲、乙两种工具书的单价,认为用自己20XX年6 月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2o11年6月份的月工资少了242 元,于是他用这242 元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给西部山区的学校.请问,尹进总共捐献了多少本工具书?9、广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售。
21.3.1 实际问题与一元二次方程(一)传播、比赛、握手问题(分层练习)(解析版)
![21.3.1 实际问题与一元二次方程(一)传播、比赛、握手问题(分层练习)(解析版)](https://img.taocdn.com/s3/m/c6f4ba9adb38376baf1ffc4ffe4733687e21fcba.png)
21.3.1 实际问题与一元二次方程(一)传播、比赛、握手问题一、单选题:1.某中学组织九年级学生篮球比赛,以班为单位,每两班之间都比赛一场,总共安排15场比赛,则共有多少个班级参赛( )A .6B .5C .4D .3【答案】A【知识点】一元二次方程的应用【解析】【解答】解:设共有x 个班级参赛,根据题意得:()1152x x -=,解得:16x =,25x =-(不合题意,舍去),则共有6个班级参赛,故答案为:A.【分析】先判断出本题是一元二次方程实际问题的“单循环”问题,直接套用公式12x x -()=总次数,列出一元二次方程求解即可。
2.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人【答案】B【知识点】一元二次方程的应用【解析】【解答】解:设参加活动的同学有 x 人,由题意得: (1)42x x -= ,解得 7x = 或 6x =- (不符题意,舍去),即参加活动的同学有7人,故答案为:B.【分析】设参加活动的同学有 x 人,从而可得每位同学赠送的贺卡张数为 (1)x - 张,再根据“共送贺卡 42 张”建立方程,然后解方程即可得.3.某小组有若干人,新年大家互相发一条微信祝福,已知全组共发微信72条,则这个小组的人数为( ) A .7人B .8人C .9人D .10人【答案】C【知识点】一元二次方程的应用【解析】【解答】解:设这个小组的人数为x 人,则每人需发送(x ﹣1)条微信,依题意得:x (x ﹣1)=72,整理得:x 2﹣x ﹣72=0,解得:x 1=﹣8(不合题意,舍去),x 2=9.故答案为:C.【分析】根据相等关系“人数×每一个人发送微信的数量= 全组共发微信的条数72”可列方程求解.4.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( ) A .12x (x+1)=110B .12x (x ﹣1)=110 C .x (x+1)=110D .x (x ﹣1)=110【答案】D【知识点】一元二次方程的应用【解析】【解答】解:设有x 个队参赛,则x (x ﹣1)=110.故答案为:D.【分析】设有x 个队参赛,根据参加一次足球联赛的每两队之间都进行两场场比赛,共要比赛110场,可列出方程.5.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请 x 个队参赛,则 x 满足的关系式为( )A .()128x x +=B .()11282x x -=C .()128x x -=D .()11282x x +=【答案】B【知识点】一元二次方程的应用【解析】【解答】解:每支球队都需要与其他球队赛(x-1)场,但2队之间只有1场比赛,∴方程为12x(x-1)=28.故答案为:B.【分析】首先计算出比赛的总场数,然后根据球队总数×每支球队比赛的场数÷2就可列出方程.6.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共互赠182件,如果全组有x名同学,则根据题意列出的方程是( )A.x(x+1)=182B.x(x-1)=182C.2x(x+1)=182D.x(x-1)=182×2【答案】B【知识点】一元二次方程的应用【解析】【解答】设全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=182.故选B.【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.二、填空题:7.某种植物的主干长出a个支干,每个支干又长出同样数目的小分支,则主干、支干和小分支的总数为 .【答案】1+a+a2【知识点】一元二次方程的应用【解析】【解答】解:设主干长出a个支干,每个支干又长出a个小分支,可得该植物的主干,支干和小分支的总数为:1+a+a2.故答案为:1+a+a2【分析】设主干长出a个支干,每个支干又长出a个小分支,则小分支为2a,所以可得总数=主干+支干+小分支。
2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-握手 贺卡 比赛问题(含答案)
![2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-握手 贺卡 比赛问题(含答案)](https://img.taocdn.com/s3/m/654ab0b1ff00bed5b8f31d39.png)
2020年人教版九年级数学上册课后练习本一元二次方程实际问题-握手贺卡比赛问题一、选择题1.在某次聚会上,每两人都握了一次手,所有人共握手10次.设有x人参加这次聚会,则列出方程正确的是( )A.x(x-1)=10B.x(x-1)=2×10C.x(x+1)=10D. x(x+1)=2×102.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次。
若设参加此会的学生为x名,据题意可列方程为()A.x(x+1)=253B.x(x-1)=253C.2x(x-1)=253D.x(x-1)=253×23.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x-1)=10B. =10C.x(x+1)=10D. =104.九年级某班在期中考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1190张卡片,设全班有x名学生,根据题意列出方程为( )A.x(x-1)=2×1190B.x(x+1)=2×1190C.x(x+1)=1190D.x(x-1)=11905.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )A.x(x+1)=1035B.x(x﹣1)=1035×2C.x(x﹣1)=1035D.2x(x+1)=10356.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出方程是( )A.x(x+1)=182B.x(x-1)=182C.x(x+1)=182×2D.x(x-1)=182×27.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为( )A.x(x-1)=90B.x(x-1)=2×90C.x(x-1)=90÷2D.x(x+1)=90二、填空题8.在一次聚会中,每两个参加聚会的人都相互握了一次手,一共握了15次手,则参加本次聚会的共有人.9.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是 .10.一次聚会中每两人都握了一次手,所有人共握手10次,则有____人参加聚会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
握手问题:n 个人见面,任意两个人都要握一次手,问总共握()2
1-n n 次手。
分析:一个人握手()1-n 次,n 个人握手()1-n n 次,是单项问题,甲与乙握手同乙与甲握手应算作一次,故总共握手()2
1-n n 次。
赠卡问题:n 个人相互之间送卡片,总共要送)1n (n -张卡片。
分析:送卡片的时候,你送我一张,我也要送你一张,是双项问题,一个人送()1-n 张,n 个人既全班送()1-n n 张。
传播问题应用:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 设每轮传染中平均一个人传染了x 个人:
增长率问题:若平均变化率为x,变化前的量是a,经历n 轮变化后的量是b,则它们的数量关系可表示为()b x a n =±1
【练习】
1、参加一次联欢会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?
2、线段AB 上有n 个点(含端点),问线段AB 上共有多少条线段?
3、要组织一次篮球联赛,赛制为单循环形式(每两队之间都比赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?
4、参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司签订了45份合同,共有多少家公司参加商品交易会?
5、参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场,共有多少个队参加比赛?
6、 一个n 边形,共有多少条对角线?n 边形的所有对角线与它的各边共形成多少个三角形?
7、某班同学毕业时都将自己的照片向全班其它同学各送一张表示留念,全班共送了1035张照片,那么全班有多少位学生?
8、元旦联欢晚会,某班同学打算每位同学向本班的其他同学赠送自己制作的小礼物1件,全班制作的小礼物共有462件,求该班共有多少学生?
9、某中学足球联赛,实行主客场赛制(既每队都作为主场与他对比赛一次)共要进行132场比赛,问有几支参赛队?若改为单循环赛(既每队只与他对比赛一次),进行66场比赛,问有几支参赛队?
10、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?
11、某养鸡场突发流感疫情,一只带病毒的小鸡经过两天的传染后,使鸡场共有169只小鸡感染患病,在每一天的传染中平均一只小鸡传染了几只小鸡?
12、要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排15场比赛,应邀请多少个球队参加比赛?
13、某厂今年一月的总产量为720万元,三月的总产量为500万元,平均每月降低率是x,列方程( )
A.500(1-x)2=720
B.720(1-x)2=500
C.720(1-x2)=500
D.720(1+x)2=500
14、据某中学对毕业班同学三年来参加市级以上各项活动获奖情况的统计,初一阶段有48人次获奖,之后逐年增加,初三阶段时有183人次获奖.求这两年中获奖人次的平均年增长率.可列方程为____________________
15、某经济开发区今年一月份工业产值达50亿元,三月份产值为72亿元,问二月、三月平均每月的增长率是多少?
【答案】
1、解:设有x 个人参加聚会,每个人要握手(x-1)次,但每人都重复了一次。
根据题意得(1)102x x -=,解得X=5或X=-4(不合题意,舍去)
答:有5人参加聚会。
2、分析:一个点与其它的点可以组成()1-n 条线段,n 点可以与其它点组成()1-n n 条线段,但A 与B 组成的线段与B 与A 给成的线段应算为一次,故一共有()2
1-n n 条线段。
3、分析:一个球队和其它球队比赛,要进行()1-n 场,那么n 个球队要进行)1n (n -场,但A 队与B 队比赛和B 队与A 队的比赛算为一场。
故
()2
1-n n =15 4、()4521=-n n ,解得10=n 。
5、分析:同3题一样,这题要求两队之间都要进行两次比赛,所以总场数为2倍的
()21-n n 。
6、分析:从n 边形的一个顶点出发有()3-n 条对角线,n 个顶点共有()3-n n 条对角线,但有重复的情况,故有
()2
3-n n 条对角线;n 边形的所有对角线与它的各边共有2)1n (n n 2)3n (n -=+-条线段,任意一条线段与另外)
2n (-个顶点形成)2n (-个三角形,()2
1-n n 条线段形成2)2n )(1n (n --个三角形,但对于一个ABC ∆来说,重复算了三次,故共形成6)2n )(1n (n --个三角形。
7、分析:送照片的时候,你送我一张,我也要送你一张。
是双项问题。
一个人送()1-n 张,n 个人既全班送()1-n n 张,()1-n n =1035
8、()4621=-n n ,解得22=n 。
9、分析:第一问是双项问题,就是A 队邀请与B 队比赛一场,B 队也要邀请与A 队比赛一场,其中一个队要参加)1n (-场,有n 个队,所以总共要进行()1-n n =132
10、解:设每个支干长出x 个小分支,
则911=⋅++x x x 。
即0902=-+x x 。
解得,x1=9,x2=-10(不合题意,舍去)。
答:每个支干长出9个小分支.
11、()16911=+++x x x 解得,12=x
12、()152
1=-n n ,解得6=n 。
13、B 14、()1831482=+x 15、20%。