简谐运动的描述

合集下载

2.1-2.2简谐运动简谐运动的描述

2.1-2.2简谐运动简谐运动的描述

简谐运动简谐运动的描述1通过实验观察,认识机械振动。

会运用理想化方法建构弹簧振子模型。

2.通过观察、分析和推理,证明弹簧振子的位移一时间图像是正弦曲线,会用图像描述简谐运动。

3经历探究简谐运动规律的过程,能分析数据、发现特点,形成结论。

4.理解振幅、周期、频率的概念,能用这些概念描述、解释简谐运动。

5.经历测量小球振动周期的实验过程,能分折数据、发现特点、形成结论。

6.了解相位、初相位。

7.会用数学表达式描述简谐运动。

考点一、弹簧振子1.机械振动:物体或物体的一部分在一个位置附近的往复运动,简称振动.2.弹簧振子:小球和弹簧组成的系统.考点二、弹簧振子的位移—时间图像(x-t图像)1.用横坐标表示振子运动的时间(t),纵坐标表示振子离开平衡位置的位移(x),描绘出的图像就是位移随时间变化的图像,即x-t图像,如图所示.2.振子的位移:振子相对平衡位置的位移.3.图像的物理意义:反映了振子位置随时间变化的规律,它不是(选填“是”或“不是”)振子的运动轨迹.考点三、简谐运动1.简谐运动:质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x -t 图像)是一条正弦曲线.2.特点:简谐运动是最简单、最基本的振动,弹簧振子的运动就是简谐运动. 3.简谐运动的图像(1)描述振动物体的位移随时间的变化规律.(2)简谐运动的图像是正弦曲线,从图像上可直接看出不同时刻振动质点的位移大小和方向、速度方向以及速度大小的变化趋势.考点四、振幅1.概念:振动物体离开平衡位置的最大距离.A=OM’=OM .2.意义:振幅是表示物体振动幅度大小的物理量,振动物体运动的范围是振幅的两倍.考点五、周期和频率1.全振动:一个完整的振动过程称为一次全振动,弹簧振子完成一次全振动的时间总是相同的. 2.周期:做简谐运动的物体完成一次全振动所需要的时间,叫作振动的周期,用T 表示.在国际单位制中,周期的单位是秒(s).3.频率:周期的倒数叫作振动的频率,数值等于单位时间内完成全振动的次数,用f 表示.在国际单位制中,频率的单位是赫兹,简称赫,符号是Hz .4.周期和频率的关系:f =1T .周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,表示振动越快.5.圆频率ω:表示简谐运动的快慢,其与周期T 、频率f 间的关系式为ω=2πT,ω=2πf .考点六、相位1.概念:描述周期性运动在一个运动周期中的状态.2.表示:相位的大小为ωt +φ,其中φ是t =0时的相位,叫初相位,或初相. 3.相位差:两个相同频率的简谐运动的相位的差值,Δφ=φ1-φ2.考点七、简谐运动的表达式x =A sin (ωt +φ0)=A sin (2πTt +φ0),其中:A 为振幅,ω为圆频率,T 为简谐运动的周期,φ0为初相。

简谐运动的描述(高中物理教学课件)完整版

简谐运动的描述(高中物理教学课件)完整版

四.简谐运动的表达式
简谐运动的表达式:x=Asin(ωt+φ)
位移 振幅
时刻 初相位
圆频率 ω=2π/T=2πf
也可以写成:x Asin(2 t )
T
相位
根据一个简谐运动的振幅、周期、初相位,可以知道做 简谐运动的物体在任意时刻的位移,故振幅、周期、初 相位是描述简谐运动特征的物理量。
三角变换
因为 2 , T 2 2 m
T
k
振动系统本身性质决 定的。
同时放开的两个小球振动步调总是 一致,我们说它们的相位是相同的;
而对于不同时放开的两个小球,我 们说第二个小球的相位落后于第一个 小球的相位。
如何定量的表示相位呢?
三.相位
1.相位:物理学中把(ωt+φ)叫作相位,其中φ 叫初相位,也叫初相。 由简谐运动的表达式x=Asin(ωt+φ)可以知道, 一旦相位确定,简谐运动的状态也就确定了。 2.相位差:两个具有相同频率的简谐运动的相位 的差值。 如果两个简谐运动的频率相同,其初相分别是φ1 和φ2,当φ1>φ2时,它们的相位差是Δφ=(ωt+φ1) -(ωt+φ2)=φ1-φ2此时我们常说1的相位比2超前 Δφ,或者说2的相位比1落后Δφ。
x甲 0.5sin(5t )cm 或者x甲 0.5sin 5tcm
x乙
0.2 sin(2.5t
2
)cm
或者x乙 0.2 cos 2.5tcm
注意: 振动物体运动的范围是振幅的两倍。
二.周期和频率
做简谐振动的振子,如果从A点开始运动,经过O点运动到Aˊ点再 经过O点回到A点,这样的过程物体的振动就完成了一次全振动。 如果从B点向左运动算起,经过O点运动到Aˊ点,再经过O点回到 B点,再经A点返回到B点时,这样的过程也是一种全振动。

2.2 简谐运动的描述

2.2 简谐运动的描述
(1)明确表达式中各物理量的意义,可直接读出振幅、圆频率、初相。
(2)
2
=2πf 是解题时常涉及到的表达式。
T
像,会使解答过程简捷、明了。
(3)解题时画出其振动图
课堂评价
1.如图所示为A、B 两个简谐运动的位移—时间图像。试根据图像写出:
⑴A 的振幅、周期;B 的振幅、周期。
⑵试写出这两个简谐运动的位移随时间变化的衡位置为点O,在B、C之间做简谐运动。B、C相
距20cm。小球经过B点开始计时,经过0.5s首次到达C点。
⑴画出小球在第一个周期内的x-t图像。
⑵求5s内小球通过的路程及5s末小球的位移。
C
考虑:①对称性
②周期性
O
B
x
总结:用简谐运动位移表达式解答振动问题的方法
⑶在时间t =0.05s时两质点的位移分别是多少?
参考答案
(1)由题图知:A 的振幅是0.5 cm,周期是0.4 s;
B 的振幅是0.2 cm,周期是0.8 s。
(2) xA=0.5sin(5πt+π)cm

xB=0.2 sin(2.5πt+ ) cm
(3) xA=-
2
4
2
cm xB =
5
0.2sin π
1
T
f
2

2f
T
3.周期与振幅关系
探究:如图是竖直悬挂的弹簧振子,向下拉开一段距离A使其做简谐运动。
⑴是否振幅A越大,运动的周期T也越大?
⑵给你一个秒表,应该如何测量周期T?请验证你的猜想。
演示:测量小球振动的周期
结论:在简谐运动中,一个确定的振动系统的周期由振动系统本身的因素决定,
与振幅无关。

简谐运动的描述

简谐运动的描述

简谐运动的描述引言简谐运动是物理学中一种重要的运动形式,它在自然界和工程领域中都有广泛的应用。

本文将对简谐运动进行详细描述,并深入探讨其特征、数学表达以及应用。

定义简谐运动是一种周期性运动,其特点是运动体沿着某个轴线上往复振动,并且振动的加速度与位移成正比,且恒定。

在简谐运动中,运动体会围绕平衡位置作周期性的振动,如弹簧振子、摆锤等。

特征简谐运动有以下几个主要特征:1.振幅(Amplitude):振幅是指运动体离开平衡位置的最大位移。

它决定了简谐运动的最大振幅。

2.周期(Period):周期是指运动体完成一次完整振动所需的时间。

它与频率的倒数成正比,可以用公式T = 1/f来表示,其中T代表周期,f代表频率。

3.频率(Frequency):频率是指运动体单位时间内振动的次数。

它与周期的倒数成正比,可以用公式f = 1/T来表示,其中f代表频率,T代表周期。

4.相位(Phase):相位是指简谐运动的偏移值,用角度来度量。

在简谐运动中,相位角随时间而变化,可以用公式θ = ωt来表示,其中θ代表相位角,ω代表角频率,t代表时间。

5.动能和势能:在简谐运动中,运动体会交替转化为动能和势能。

当运动体离开平衡位置时,具有最大位移和最大动能;当运动体接近平衡位置时,具有最小位移和最小动能,但具有最大势能。

数学表达简谐运动的数学表达可以通过以下公式得到:1.位移(Displacement):\[x(t) = A \cos(\omega t + \phi)\] 其中,x代表位移,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。

2.速度(Velocity):\[v(t) = -A \omega \sin(\omega t + \phi)\] 其中,v代表速度,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。

3.加速度(Acceleration):\[a(t) = -A \omega^2 \cos(\omega t + \phi)\] 其中,a代表加速度,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。

简谐运动的描述ppt课件

简谐运动的描述ppt课件
2.2
简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零



△ = 2( = 0,1,2, … )


(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )

A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。

简谐运动的描述

简谐运动的描述

简谐运动的描述一、简谐运动的概念和特征简谐运动是一种重要的周期性运动,它可以在自然界和人-made系统中观察到。

简谐运动的特征包括:1.周期性:简谐运动是一个重复的过程,物体会在规律的时间间隔内重复相同的运动。

2.能量守恒:简谐运动中物体的总能量保持不变,由动能和势能相互转化,但总能量始终保持恒定。

3.线性回复:简谐运动中,物体的回复力与它的偏离程度成正比,且方向相反,符合胡克定律。

4.最大回复力和最大速度的时刻不一致:简谐运动中,最大回复力与最大速度不会同时发生,它们的时刻相差1/4个周期。

二、简谐运动的数学描述简谐运动可以使用如下的数学描述:一维简谐运动的位移-时间关系:x=Acos(ωt+ϕ)其中, - A为振幅,表示物体偏离平衡位置的最大距离。

- ω为角频率,表示单位时间内的相位变化量。

- t为时间。

- φ为初相位,表示在t=0时刻的位相。

一维简谐运动的速度-时间关系:v=−ωAsin(ωt+ϕ)一维简谐运动的加速度-时间关系:a=−ω2Acos(ωt+ϕ)三、简谐运动的力学模型简谐运动可以通过一维弹簧振子来进行力学建模。

弹簧振子由一个弹簧和一个质量块组成。

当质量块受到外力扰动后,它会围绕平衡位置做简谐振动。

1.弹簧的自由长度为L,当质量块偏离平衡位置时,弹簧受到回复力,使得质量块回到平衡位置。

2.弹簧回复力与质量块的偏离程度成正比,符合胡克定律:F=−kx其中, - F为回复力的大小。

- k为弹簧的劲度系数,描述了弹簧的刚度和回复力的大小。

- x为质量块偏离平衡位置的距离。

四、简谐运动的频率和周期简谐运动的频率和周期和与力学模型中的角频率相关。

频率:简谐运动的频率表示单位时间内完成一个完整周期的次数,用hertz(Hz)作为单位,频率等于角频率除以2π。

周期:简谐运动的周期表示完成一个完整周期所需要的时间,用秒(s)作为单位,周期等于角频率的倒数。

五、简谐运动的实际应用简谐运动是自然界和人-made系统中普遍存在的一种运动形式,其应用十分广泛。

高中物理选修3-4-简谐运动的描述

高中物理选修3-4-简谐运动的描述

简谐运动的描述知识集结知识元简谐运动的振幅、周期和频率知识讲解2.相关物理量:①振幅A:振动物体离开平衡位置的最大距离。

②周期T:做简谐运动的物体完成一次全振动所需要的时间。

③频率f:单位时间内完成全振动的次数。

④相位:描述周期性运动在各个时刻所处的不同状态。

3.受力特征:①做简谐运动的质点受到的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,通常将这种力称为回复力。

②回复力:F=-kx③若质点受到的回复力为F=-kx,则质点的运动为简谐运动。

4.运动特征位移x:方向始终背离平衡位置,每经过平衡位置位移方向发生改变;远离平衡位置时位移增大,靠近平衡位置时位移减小。

速度v:每经过最大距离处速度方向发生改变,远离平衡位置时速度方向和位移方向相同,靠近平衡位置时速度方向和位移方向相反。

加速度,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动.在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

5.振动能量简谐运动过程中动能和势能相互转化,机械能守恒.振动能量与振幅有关,振幅越大,能量越大。

6.周期性:简谐运动是一种复杂的非匀变速运动,要结合牛顿运动定律、动量定理、动能定理、机械能守恒定律来分析解决简谐运动的问题。

(1)简谐运动的对称性:振动物体在振动的过程中,在关于平衡位置对称的位置上,描述物体振动状态的物理量(位移、速度、加速度、动量、动能、势能等)大小相等。

(2)简谐运动的周期性:振动物体完成一次全振动(或振动经过一个周期),描述物体振动状态的物理量(位移、速度、加速度、动量、动能、势能等)又恢复到和原来一样。

简谐运动的周期是由振动系统的特性决定的,与振幅无关。

弹簧振子的周期只决定于弹簧的劲度系数和振子的质量,与其放置的环境和方式无关。

例题精讲简谐运动的振幅、周期和频率例1.如图所示,一质点在x轴上以O为平衡位置做简谐运动,其振幅为8cm,周期为4s。

t=0时物体在x=4cm处,向x轴负方向运动,则()A.质点在t=1.0s时所处的位置为x=+4cmB.质点在t=1.0s时所处的位置为x=-4cmC.由起始位置运动到x=-4cm处所需的最短时间为sD.由起始位罝运动到x=-4cm处所需的最短时间为s例2.如图所示,一质点在平衡位置O点附近做简谐运动,若从质点通过O点时开始计时,经过0.9s质点第一次通过M点,再继续运动,又经过0.6s质点第二次通过M点,该质点第三次通过M点需再经过的时间可能是()A.1s B.1.2s C.2.4s D.4.2s例3.如图1所示,弹簧振子以O点为平衡位置,在A、B两点之间做简谐运动。

简谐运动的描述课件

简谐运动的描述课件

详细描述
能量图是用来描述简谐运动时振子的能量随时间变化的 图像。这个图像通常以时间为横坐标,以振子的能量为 纵坐标。在能量图中,我们可以看到振子的能量是如何 随时间变化的,以及在运动过程中能量的转换和损耗。
05
简谐运动的实例分析
单摆的简谐运动
定义
单摆是一种理想的物理模型,由一根固定在一端的轻杆或 细线,另一端悬挂质量块组成。
《简谐运动的描述课件》
2023-10-30
目录
• 简谐运动概述 • 简谐运动的基本概念 • 简谐运动的公式与计算 • 简谐运动的图像描述 • 简谐运动的实例分析 • 简谐运动的总结与展望
01
简谐运动概述
简谐运动的定义
简谐运动的定义
简谐运动是指物体在一定范围内周期性地来回运动,其运动轨迹呈现为正弦 或余弦函数的形状。这种运动是自然界中最简单、最基本的周期性运动之一 。
高阶效应
对于一些高阶的振动系统,除了振幅和频率的变化外,还需要考虑高阶效应的影响。高阶 效应会导致系统的响应呈现出更为复杂的特性。
未来对简谐运动的研究方向与价值
研究方向
未来对简谐运动的研究方向主要包括:研究更为复杂 的振动系统,例如多自由度振动系统和耦合振动系统 ;研究更为精细的振动模型,例如包含更多影响因素 和非线性效应的模型;研究更为高效的求解方法,例 如能够处理大规模数据和复杂情况的数值方法。
加速度与速度
加速度
在简谐运动中,振子的速度会不断变化,因此加速度也会不断变化。加速度是描述速度变化快慢的物 理量。
速度
在简谐运动中,振子的位置不断变化,因此速度也会不断变化。速度是描述物体运动快慢的物理量。
位移与回复力
位移
在简谐运动中,振子的位置会不断变化, 这种变化称为位移。位移是描述物体位置 变化的物理量。

第2节-简谐运动的描述

第2节-简谐运动的描述
4)、振子振动范围旳大小,就是振幅旳两倍2A
区别振幅和位移
对于一种给定旳振动:
1、振子旳位移是偏离平衡位置旳距离,故 时刻在变化;但振幅是不变旳。 2、位移是矢量,振幅是标量,它等于最大 位移旳数值。
想一想
振子旳运动最明显旳特点是什么?
往复性-反复性-周期性
全振动
1)、一次全振动: 振子在AA/之间振动,O为平衡位置。
在一次全振动过程中,一定是 振子连续两次以相同速度经过同一 点所经历旳过程。
看一看 两个振子旳运动快慢有何不同?
2、周期和频率
1)、描述振动快慢旳物理量
2)、周期T:做简谐运动旳物体完毕一次全振
动所需旳时间,单位:s。
3)、频率f:单位时间内完毕旳全振动 旳次数,单位:Hz。
4)、周期和频率之间旳关系:
s
s
x=10sin(2πt+π/2) (cm)
科学漫步——月相
1、伴随月亮每天在星空 中自西向东移动,在地球 上看,它旳形状从圆到缺, 又从缺到圆周期性地变化 着,周期为29.5天,这就 是月亮位相旳变化,叫做 月相。
2、伴随月亮相对于地球和 太阳旳位置变化,使它被 太阳照亮旳一面有时朝向 地球,有时背向地球;朝 向地球旳月亮部分有时大 某些,有时小某些,这么 就出现了不同旳月相。
有频率。
T 2 m k
二、简谐运动旳体现式
简谐运动旳位移-时间关系 振动图象:正弦曲线
振动方程:x Asin(t )
二、简谐运动旳体现式
相位
x Asin(t )
振幅
圆频率 2 2f 初相位
T
x Asin( 2 t ) Asin(2ft )
T
振动方程
中各量含义:

简谐运动的描述

简谐运动的描述

简谐运动的描述简谐运动的描述简谐运动是指一个物体在一个恒定的力场中做周期性的振动。

它是一种特殊的振动,具有周期性、稳定性和可预测性等特点。

简谐运动在自然界和工业生产中都有广泛应用,如弹簧振子、钟摆、电磁波等。

一、简谐运动的基本概念1.1 振幅振幅是指简谐运动中物体从平衡位置最大偏离距离。

通常用字母A表示,单位为米(m)。

1.2 周期周期是指简谐运动中物体完成一次完整振动所需要的时间。

通常用字母T表示,单位为秒(s)。

1.3 频率频率是指单位时间内完成的振动次数。

通常用字母f表示,单位为赫兹(Hz)。

1.4 相位相位是指在同一时刻内处于不同状态的两个物体之间的时间差。

相位差可以用角度来表示,通常用字母Φ表示。

二、简谐运动的数学描述2.1 速度与加速度公式对于简谐运动而言,速度和加速度分别可以用以下公式来计算:v = Aωcos(ωt + Φ)a = -Aω^2sin(ωt + Φ)其中,ω为角速度,可以用以下公式计算:ω = 2πf2.2 位移公式对于简谐运动而言,物体的位移可以用以下公式来计算:x = Acos(ωt + Φ)其中,A为振幅,Φ为相位差。

三、简谐运动的特点3.1 周期性简谐运动具有周期性,即物体在恒定的力场中做周期性的振动。

物体完成一次完整振动所需要的时间是固定的。

3.2 稳定性简谐运动具有稳定性,即物体在恒定的力场中做周期性的振动时,其运动状态是稳定并可预测的。

3.3 可预测性由于简谐运动具有稳定性和周期性,因此可以精确地预测物体在未来某一时刻所处的位置、速度和加速度等状态。

四、简谐运动的应用4.1 弹簧振子弹簧振子是一种常见的简谐振动系统。

它由一个质量和一个弹簧组成,在重力作用下进行周期性振动。

弹簧振子广泛应用于工业生产中的测量和控制系统中。

4.2 钟摆钟摆是一种通过重力驱动的简谐振动系统。

它由一个重物和一个支架组成,在重力作用下进行周期性振动。

钟摆广泛应用于时间测量、科学研究和导航等领域。

简谐运动的描述课件

简谐运动的描述课件

3
能量-时间图像
简谐运动的动能和势能都随时间周期性变化,能量图像呈余弦曲线。
简谐运动的实例
1
弹簧简谐振动
拉长或压缩一根弹簧,当松手时它就能够做简谐振动。
2
摆锤简谐运动
精密的摆锤可以做甚至可以完全描述地球自转等自然现象的简谐运动。
3
机械波简谐运动
机械波,如声波、水波等,可以在介质内传递能量,表现出简谐运动。
实际应用
简谐运动是很多实际问题的基础,例如:
1 交流电
在电路中,简谐振荡产生的正弦电流和正弦电压,让电力输送变得更加高效。
2 地震波
地震波产生的振动是整体的简谐运动。
3 其他物理现象中的简谐运动
包括建筑物、天体、量子场等物理现象。
总结
定义、特点、公式
数学图像与实例
实际应用
简谐运动作为物理学中的重要概念,有着广泛的应用。进一步地研究简谐运动有助于更好地理解能量、波、声 学、光学、电学和量子物理学等重要学科。
简谐运动的描述课件
本课程旨在介绍简谐运动的定义、特点、公式、数学图像、实例和实际应用, 并探讨其在物理学中的重要性和展望。
什么是简谐运动?
定义
一种周期性运动,物体以定常振幅、定常频率沿着一条直线或平面来回振动。
特点
周期性、振幅相等、相位相同。
简谐运动的公式
位移公式
x=Acos(ωt+φ)
速度公式
v=-Aωsin(ωt+φ)
加速度公式
a=-Aω²cos(ωt+φ)
质点简谐动的微分方程
d²x/dt²+ω²x=0
数学图像
1
正弦曲线与余弦曲线
简谐运动的位移公式可以用正弦或余弦函数表示。两者的图像均为周期性波浪线。

简谐运动的名词解释

简谐运动的名词解释

简谐运动的名词解释1.引言1.1 概述简谐运动是物理学中一个重要而基础的概念。

它描述了一个物体相对于某个平衡位置作周期性的往复运动。

这种往复运动的特点是运动物体沿着固定的轨迹,不断地交替地通过平衡位置,并且运动物体的加速度与其位置的变化成正比。

简谐运动是一种理想化的运动形式,在现实世界中广泛存在。

其应用领域涉及到物体的振动、波动以及许多其他与周期性运动相关的现象。

例如,摆钟的摆动、弹簧的振动、音乐乐器的演奏等都可以通过简谐运动来描述。

简谐运动具有许多独特的特点。

首先,简谐运动的周期是固定的,也就是说,运动物体完成一次往复运动所需的时间是恒定的。

其次,简谐运动的运动物体的速度和加速度的变化是符合正弦函数的规律的,这就意味着运动物体在运动过程中不会出现速度或加速度突然变化的情况。

最后,简谐运动是一个平稳且稳定的运动形式,运动物体始终围绕平衡位置做往复运动,不会偏离或漂浮到其他位置。

简谐运动的研究对于深入理解物体的振动和波动现象具有重要意义。

通过研究简谐运动的定义和特点,我们可以更加准确地描述和解释各种物理现象,并且能够应用简谐运动的原理来解决一些实际问题。

在接下来的文中,我们将详细阐述简谐运动的定义和特点,并介绍简谐运动在不同领域中的应用以及其所具有的重要意义。

希望通过这篇长文的阐述,读者们能够对简谐运动有更加深刻的理解,并且能够将其运用到实际问题中,为我们的生活和科学研究带来更多的价值。

1.2文章结构文章结构部分可以包括以下内容:在本篇文章中,我们将探讨简谐运动的名词解释。

为了清晰地呈现这一主题,文章将按照以下结构展开:1. 引言:首先,我们将简要介绍简谐运动的背景和相关概念,为读者提供必要的背景知识。

1.1 概述:概述简谐运动的基本含义和定义,介绍它在自然界和物理学中的广泛应用。

1.2 文章结构:详细介绍本文的整体结构和各个部分的内容安排,以便读者对全文有个整体的认识。

1.3 目的:说明本文的写作目的,即为读者提供关于简谐运动的深入了解和认识。

简谐运动的知识点总结

简谐运动的知识点总结

简谐运动的知识点总结下面是简谐运动的几个重要知识点总结:1. 简谐运动的定义简谐运动是指一个物体在恢复力的作用下,沿着直线或围绕固定轴线做周期性往复运动的一种特殊形式。

在简谐运动中,物体的加速度与位移呈线性关系,且恢复力与位移成正比。

2. 简谐运动的特征简谐运动有两个主要特征:周期性和振幅。

周期性指的是物体完成一次往复运动所需的时间,而振幅则是指往复运动的最大位移。

3. 简谐运动的数学描述简谐运动可以用正弦函数或余弦函数进行数学描述。

如果物体的位移沿着x轴方向变化,则其数学描述可以写为:x(t) = A * cos(ωt + φ),其中A是振幅,ω是角频率,t是时间,φ是初相位。

4. 弹簧振子的简谐运动弹簧振子是最典型的简谐运动系统之一。

当物体沿着弹簧的轴线上下振动时,其运动符合简谐运动的规律。

弹簧振子的周期T和角频率ω与弹簧的劲度系数k和质量m有密切关系。

5. 摆动的简谐运动摆动是另一个常见的简谐运动系统。

在重力的作用下,摆锤沿着一定的轨迹做周期性摆动,其运动也符合简谐运动的规律。

摆动的周期T和角频率ω与摆锤的长度l有密切关系。

6. 简谐运动的能量在简谐运动过程中,物体具有动能和势能,并且二者之和保持不变。

当物体位于最大位移处时,动能最大,势能最小;当位于最大位移的相反方向时,势能最大,动能最小。

7. 简谐运动的受力分析在简谐运动中,物体所受的恢复力与位移成正比,且与速度成反比。

这种受力形式被称为胡克定律,可以用F = -kx来描述,其中F是恢复力,k是弹簧或系统的劲度系数,x是位移。

8. 简谐运动的阻尼和受迫振动在实际情况下,简谐运动可能会受到阻尼和外力的影响,这时的简谐运动被称为阻尼振动和受迫振动。

阻尼振动是指系统中存在摩擦力或阻尼元件的情况,会使振动逐渐减弱直至停止;受迫振动是指系统受到外力驱动振动,外力的频率与系统的固有频率相近时,会出现共振现象。

9. 简谐运动的应用简谐运动在物理学和工程学中有广泛的应用,例如弹簧减震器、机械振动系统、音叉和声波振动等。

简谐运动课件ppt

简谐运动课件ppt

单摆的简谐运动
总结词
单摆的简谐运动是指一个质点在重力作用下做周期性振 动。
详细描述
单摆的简谐运动是指一个质点在重力作用下绕固定点做 周期性振动。当质点从平衡位置出发,受到重力的作用 向下加速运动,到达最低点时速度达到最大值,然后受 到回复力的作用开始向上减速运动,到达最高点时速度 为零。在摆动过程中,回复力与质点的位移成正比,当 质点回到平衡位置时,回复力为零,质点的速度达到最 大值。
结果
通过实验,可以观察到弹簧振子 的振动轨迹呈正弦波形,并记录
下振幅、周期等数据。
分析
根据记录的数据,可以计算出弹 簧振子的振动频率和相位差,进
一步分析简谐运动的特性。
讨论
简谐运动在现实生活中有着广泛 的应用,如钟摆、乐器振动等。 通过实验,可以深入理解简谐运 动的原理,为后续的学习和实际
应用打下基础。
简谐运动的平衡位置是指 物体受到的回复力为零的 位置,通常也是振动的中 心点。
回复力
回复力是指使物体返回平 衡位置并指向平衡位置的 力,它是使物体做简谐运 动的力。
简谐运动的特点
往复性
简谐运动是一种往复运动 ,物体在运动过程中会不 断重复往返于平衡位置和 最大位移处。
周期性
简谐运动是一种周期性运 动,其运动周期是固定的 ,与振幅和角频率有关。
实验器材与步骤
器材:弹簧振子、示波器、数据采集器、电脑 等。
011. 准备实验器材,源自弹簧振子连接到数据 采集器上。03
02
步骤
04
2. 启动实验,观察弹簧振子的振动情况, 记录振幅、周期等数据。
3. 使用示波器观察振动的波形,了解相位 的概念。
05
06
4. 分析实验数据,得出结论。

11.2简谐运动的描述

11.2简谐运动的描述

11.2
阅读课本P 阅读课本P5—P6,完成下列问题
1、振幅的定义及其物理意义 2、什么叫做全振动、周期、 什么叫做全振动、周期、 频率? 频率? 3、什么叫相位,初相位,相位差? 什么叫相位,初相位,相位差? 相位的物理意义是什么? 相位的物理意义是什么?
一、描述简谐运动的物理量
1、振幅(符号A) 振幅(符号A)
____
(3) 对于一个给定的振动,振子的位 对于一个给定的振动, 移是时刻变化的,但振幅是不变的. 移是时刻变化的,但振幅是不变的
-A≤X≤A
(4) 振幅等于最大位移的数值 振幅等于最大位移的数值.
问题1 若从振子经过C 问题1:若从振子经过C向 右起, 右起,经过怎样的运动才 叫完成一次振动? 叫完成一次振动?
π
π
科学漫步——月相 科学漫步——月相 1、随着月亮每天在星空 中自西向东移动, 中自西向东移动,在地球 上看,它的形状从圆到缺, 上看,它的形状从圆到缺, 又从缺到圆周期性地变化 着,周期为29.5天,这就 周期为29.5 29.5天 是月亮位相的变化, 是月亮位相的变化,叫做 月相。 月相。 2、随着月亮相对于地球和 太阳的位置变化, 太阳的位置变化,使它被 太阳照亮的一面有时朝向 地球,有时背向地球; 地球,有时背向地球;朝 向地球的月亮部分有时大 一些,有时小一些, 一些,有时小一些,这样 就出现了不同的月相。 就出现了不同的月相。
题1: 一个质点作简谐运动的振动 :
图像如图.从图中可以看出, 图像如图.从图中可以看出,该质点 的振幅A= 0.1 m,周期T=__ s,频 __ ,周期T 0.4 , 的振幅 开始在△ 0 内 率f= __ Hz,从t=0开始在△t=0.5s内 从 开始在 2.5 __ 路程 ___ 路程= 质点的位移0.1m,路程 0.5m .

简谐运动的描述课件

简谐运动的描述课件

思路分析:正确理解简谐运动的表达式中各个字母所代表的物
理意义是解题的关键。由简谐运动的表达式我们可以直接读出振动
的振幅 A、圆频率 ω(或周期 T 和频率 f)及初相 φ0。
解析:振幅是标量,A、B 的振幅分别是 3 m、5 m,选项 A 错误;A、

B 的周期均为 T=100 s=6.28×10-2 s,选项 B 错误;因为 TA=TB,所以
看,为什么?


1
2


答案:当 为整数或 的奇数倍时,t 时间内通过的路程仍为 ×4A,


1
2


但如果 不是整数,且余数不为 时,则路程不一定等于 ×4A。譬如,余
1
1
数为 ,则 T
4
4
内通过的路程,运动起点不同,路程就会不同,只有起点在
平衡位置或最大位移处时其通过的路程才等于一个振幅(A)。
此时对框架进行受力分析,可知弹簧向上的弹力恰等于框架的重力,
由此可得弹簧的压缩量。根据振幅的定义,找出平衡位置,则振幅可
求。
解析:框架的重力为 Mg,只有当铁球处在最高位置、弹簧被压缩、
框架受到竖直向上的弹力等于 Mg 时,框架对桌面的压力才恰好减
小为零。根据胡克定律,此时弹簧被压缩

Δl= ,铁球静止(处于平衡)
初始状态相同。
②时间特征:历时一个周期。
③路程特征:振幅的 4 倍。
④相位特征:增加 2π。
2.简谐运动中振幅和几个物理量的关系
(1)振幅和振动系统的能量:对一个确定的振动系统来说,系统能
量仅由振幅决定。振幅越大,振动系统的能量越大。
(2)振幅与位移:振动中的位移是矢量,振幅是标量。在数值上,

2 简谐运动的描述

2 简谐运动的描述

2 简谐运动的描述一、描述简谐运动的物理量1.振幅:振动物体离开平衡位置的最大距离.2.全振动(如图1所示)图1类似于O →B →O →C →O 的一个完整的振动过程. 3.周期和频率 (1)周期①定义:做简谐运动的物体完成一次全振动所需要的时间. ②单位:国际单位是秒(s). (2)频率①定义:单位时间内完成全振动的次数. ②单位:赫兹(Hz). (3)T 和f 的关系:T =1f .4.相位描述周期性运动在各个时刻所处的不同状态. 二、简谐运动的表达式简谐运动的一般表达式为x =A sin(ωt +φ).1.x 表示振动物体相对于平衡位置的位移;t 表示时间.2.A 表示简谐运动的振幅.3.ω叫做简谐运动的“圆频率”,表示简谐运动的快慢,ω=2πT=2πf (与周期T 和频率f 的关系). 4.ωt +φ代表简谐运动的相位,φ表示t =0时的相位,叫做初相位(或初相). 5.相位差若两个简谐运动的表达式为x 1=A 1sin(ωt +φ1),x 2=A 2sin(ωt +φ2),则相位差为 Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1.一、描述简谐运动的物理量 1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,称为一次全振动. (2)全振动的四个特征:①物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态相同. ②时间特征:历时一个周期. ③路程特征:振幅的4倍. ④相位特征:增加2π. 2.对周期和频率的理解(1)周期(T )和频率(f )都是标量,反映了振动的快慢,T =1f ,即周期越大,频率越小,振动越慢.(2)一个振动系统的周期、频率由振动系统决定,与振幅无关. 3.对振幅的理解(1)振动物体离开平衡位置的最大距离. (2)振幅与位移的区别 ①振幅等于最大位移的数值.②对于一个给定的振动,振动物体的位移是时刻变化的,但振幅是不变的. ③位移是矢量,振幅是标量. (3)路程与振幅的关系①振动物体在一个周期内的路程为四个振幅. ②振动物体在半个周期内的路程为两个振幅. ③振动物体在14个周期内的路程不一定等于一个振幅.例1 如图2所示,将弹簧振子从平衡位置下拉一段距离Δx ,释放后振子在A 、B 间振动,且AB =20 cm ,振子由A 首次到B 的时间为0.1 s ,求:图2 (1)振子振动的振幅、周期和频率; (2)振子由A 到O 的时间;(3)振子在5 s 内通过的路程及偏离平衡位置的位移大小.例2 (多选)(2018·嘉兴市高二第一学期期末)如图3所示为一质点的振动图象,曲线满足正弦变化规律,则下列说法中正确的是( )图3 A.该振动为简谐振动 B.该振动的振幅为10 cmC.质点在前0.12 s 内通过的路程为20 cmD.0.04 s 末,质点的振动方向沿x 轴负方向二、简谐运动表达式的理解2.从表达式x =A sin (ωt +φ)体会简谐运动的周期性.当Δφ=(ωt 2+φ)-(ωt 1+φ)=2n π时,Δt =2n πω=nT ,振子位移相同,每经过周期T 完成一次全振动.3.从表达式x =A sin (ωt +φ)体会特殊点的值.当(ωt +φ)等于2n π+π2时,sin (ωt +φ)=1,即x =A ;当(ωt +φ)等于2n π+3π2时,sin (ωt +φ)=-1,即x =-A ;当(ωt +φ)等于n π时,sin (ωt +φ)=0,即x =0.例3 (多选)一弹簧振子A 的位移x 随时间t 变化的关系式为x =0.1sin 2.5πt ,位移x 的单位为m ,时间t 的单位为s.则( )A.弹簧振子的振幅为0.2 mB.弹簧振子的周期为1.25 sC.在t =0.2 s 时,振子的运动速度为零D.若另一弹簧振子B 的位移x 随时间t 变化的关系式为x =0.2sin (2.5πt +π4),则A 滞后B π4三、简谐运动的周期性和对称性 如图4所示图4(1)时间的对称①物体来回通过相同两点间的时间相等,即t DB =t BD .②物体经过关于平衡位置对称的等长的两线段的时间相等,图中t OB =t BO =t OA =t AO ,t OD =t DO =t OC =t CO . (2)速度的对称①物体连续两次经过同一点(如D 点)的速度大小相等,方向相反.②物体经过关于O 点对称的两点(如C 与D )时,速度大小相等,方向可能相同,也可能相反. (3)位移的对称①物体经过同一点(如C 点)时,位移相同.②物体经过关于O 点对称的两点(如C 与D )时,位移大小相等、方向相反.利用简谐运动图像理解简谐运动的对称性(1)相隔Δt =⎝ ⎛⎭⎪⎫n +12T (n =0,1,2,…)的两个时刻,弹簧振子的位置关于平衡位置对称,位移等大反向,速度也等大反向。

简谐运动知识点总结

简谐运动知识点总结

引言概述:简谐运动是物理学中的一个重要概念,它在生活中随处可见。

本文将对简谐运动的知识进行总结,以帮助读者全面理解和掌握简谐运动的相关概念和特性。

正文内容:一、简谐运动的定义与描述1.简谐运动的定义:简谐运动是指物体在一个恢复力作用下沿直线或者围绕固定轴线进行的运动,其加速度与位移成正比且反向相同。

2.简谐运动的描述:简谐运动可以用位移、速度、加速度等物理量对其进行描述,其中位移随时间的变化呈正弦函数。

二、简谐运动的特性1.周期性:简谐运动具有周期性,即物体在一次完整运动中所经历的时间是一定的。

2.频率:简谐运动的频率是指单位时间内完成的运动周期数,其与周期有倒数关系。

3.振幅:简谐运动的振幅是指物体在运动过程中离开平衡位置的最大位移。

4.相位:简谐运动的相位是指物体在简谐运动中的位置关系,可以通过相位角来描述。

5.能量守恒:简谐运动中,机械能守恒,包括动能和势能的转化。

三、简谐振动的数学表达1.位移方程:简谐运动可以通过位移方程进行数学表达,一般形式为x(t)=Asin(ωt+φ),其中A为振幅,ω为角频率,φ为初相位。

2.速度和加速度方程:简谐运动的速度和加速度可以通过对位移方程分别进行一次和两次时间导数得到。

四、简谐振动的应用1.机械振动:简谐振动在机械工程中有广泛应用,如弹簧振子、钟摆等。

2.电磁振动:简谐振动在电磁学中的应用包括交流电路中的振荡器、天线振动等。

3.光学振动:简谐振动在光学中的应用包括光的偏振、干涉等现象。

4.生物振动:简谐振动在生物学中有许多应用,如心脏的收缩与舒张、呼吸等。

5.音乐演奏:音乐演奏中的乐器振动可以用简谐振动进行描述,如弦乐器、风笛等。

五、简谐振动的干扰和共振1.干扰:两个简谐振动相互作用可以产生干扰,如合成振动和干涉现象。

2.共振:当外界周期性力与物体的固有振动频率相同或接近时,会发生共振现象,产生巨大振幅。

总结:通过对简谐运动的定义与描述、特性、数学表达、应用以及干扰和共振的介绍,我们可以更全面地理解和掌握简谐运动的相关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简谐运动的描述ch ⅰ机械振动2、振动的描述(2课时)教学目标:1. 知识与技能(1)知道简谐运动的振幅、周期和频率的含义。

理解周期和频率的关系。

(2)知道振动物体的固有周期和固有频率,并正确理解与振幅无关。

(3)理解振动图像的物理意义,能利用图像求振动物体的振幅、周期及任意时刻的位移;会将振动图像与振动物体在某时刻位移与位置对应,并学会在图象上分析与位移x有关的物理量。

(4)知道简谐运动的公式表示x=asinwt,知道什么是简谐运动的圆频率,知道简谐运动的圆频率和周期的关系。

2. 过程与方法:观察砂摆演示实验中拉动木板匀速运动,让学生学会这是将质点运动的位移按时间扫描的基本实验方法。

3. 渗透物理方法的教育:提高学生观察、分析、实验能力和动手能力,从而让学生知道实验是研究物理科学的重要基础。

教学重点:振幅、周期和频率的物理意义;简谐运动图象的物理意义教学难点:理解振动物体的固有周期和固有频率与振幅无关;振动图象与振动轨迹的区别;圆频率与周期的关系教学器材:弹簧振子,音叉,课件;砂摆实验演示:砂摆、砂子、玻璃板(或长木板)教法与学法:实验观察、讲授、讨论,计算机辅助教学教学过程设计:第一课时1.新课引入上节课讲了简谐运动的现象和受力情况。

我们知道振子在回复力作用下,总以某一位置为中心做往复运动。

现在我们观察弹簧振子的运动。

将振子拉到平衡位置o的右侧,放手后,振子在o点的两侧做往复运动。

振子的运动是否具有周期性?在圆周运动中,物体的运动由于具有周期性,为了研究其运动规律,我们引入了角速度、周期、转速等物理量。

为了描述简谐运动,也需要引入新的物理量,即振幅、周期和频率。

【板书】二振幅、周期和频率(或投影)2.新课讲授实验演示:观察弹簧振子的运动,可知振子总在一定范围内运动。

说明振子离开平衡位置的距离在一定的数值范围内,这就是我们要学的第一个概念——振幅。

【板书】1、振动的振幅在弹簧振子的振动中,以平衡位置为原点,物体离开平衡位置的距离有一个最大值。

如图所示(用投影仪投影),振子总在aa’间往复运动,振子离开平衡位置的最大距离为oa或oa’,我们把oa或oa’的大小称为振子的振幅。

【板书】(1)、振幅a:振动物体离开平衡位置的最大距离。

共5页,当前第1页12345我们要注意,振幅是振动物体离开平衡位置的最大距离,而不是最大位移。

这就意味着,振幅是一个数值,指的是最大位移的绝对值。

【板书】振幅是标量,表示振动的强弱。

实验演示:轻敲一下音叉,声音不太响,音叉振动的振幅较小,振动较弱。

重敲一下音叉,声音较响,音叉振动的振幅较大,振动较强。

振幅的单位和长度单位一样,在国际单位制中,用米表示。

【板书】(2)、单位:m由于简谐运动具有周期性,振子由某一点开始运动,经过一定时间,将回到该点,我们称振子完成了一次全振动。

振子完成一次全振动,其位移和速度的大小、方向如何变化?学生讨论后得出结论:振子完成一次全振动,其位移和速度的大小、方向与从该点开始运动时的位移和速度的大小、方向完全相同。

在匀速圆周运动中,物体运动一个圆周,所需时间是一定的。

观察振子的运动,并用秒表或脉搏测定振子完成一次全振动的时间,我们通常测出振子完成20~30次全振动的时间,从而求出平均一次全振动的时间。

可以发现,振子完成一次全振动的时间是相同的。

【板书】2、振动的周期和频率(1)、振动的周期t:做简谐运动的物体完成一次全振动的时间。

振动的频率f:单位时间内完成全振动的次数(2)、周期的单位为秒(s)、频率的单位为赫兹(hz)。

【板书】(3)、周期和频率都是表示振动快慢的物理量。

两者的关系为t=1/f 或f=1/t举例来说,若周期t=0.2s,即完成一次全振动需要0.2s,那么1s 内完成全振动的次数,就是1/0.2=5s-1.也就是说,1s钟振动5次,即频率为5hz.提出问题:振子的周期或频率与什么因素有关呢?学生猜想:可能与振子的振幅、质量与弹簧的劲度系数有关,要求给出猜想理由并设计实验证明猜想。

实验1:用两个一样的弹簧振子,拉到不同的振幅,用秒表或者脉搏计时实验演示:观察两个弹簧振子,比较一下这两个振子的周期和频率。

演示实验表明,振幅不同的同一个弹簧振子,周期和频率相同。

即:同一个振子,其完成一次全振动所用时间是不变的,但振动的幅度可以调节.不同的振子,虽振幅可相同,但周期是不同的.【板书】3、简谐运动的周期或频率与振幅无关实验演示(引导学生注意听):敲一下音叉,声音逐渐减弱,即振幅逐渐减小,但音调不发生变化,即频率不变.实验2:我们继续观察两个劲度系数不同的同质量振子的运动,我们可以认识到, 弹簧振子的振动周期与弹簧的劲度系数有关,劲度系数较大时,周期较小.实验3:我们继续观察两个劲度系数相同的质量不同的振子的运动,我们用同一弹簧,拴上质量较小和较大的小球,在振幅相同时,分别测出振动的周期t2和t2′,比较后得到结论.弹簧振子的振动周期与振子的质量有关,质量较小时,周期较小.归纳说明:【板书】4、振子的周期(或频率)由振动系统本身的性质决定,称为振子的固有周期或固有频率.例如:一面锣,它只有一种声音,用锤敲锣,发出响亮的锣声, 锣声很快弱下去,但不会变调.摆动着的秋千,虽摆动幅度发生变化,但频率不发生变化.弹簧振子在实际的振动中, 会逐渐停下来,但频率是不变的.这些都说明所有能振动的物体,都有自己的固有周期或固有频率.巩固练习(投影)共5页,当前第2页123451.一物体从平衡位置出发,做简谐运动,经历了10s的时间,测的物体通过了200cm的路程.已知物体的振动频率为2hz,该振动的振幅为多大?2.a、b两个完全一样的弹簧振子,把a振子移到a的平衡位置右边10cm,把b振子移到b的平衡位置右边5cm,然后同时放手,那么:a. a、b运动的方向总是相同的. b。

a、b运动的方向总是相反的.c.a、b运动的方向有时相同、有时相反. d。

无法判断a、b运动的方向的关系.3.顶尖p5/例1、2强调对称性是解简谐运动类题目的关键。

布置作业:书p11/1~4;顶尖p7~8/1、6、7、10第2课时1、回顾图象知识引入新课同学们知道,物体的运动规律可以用数学图象来描述,你们能说出那些运动图象?学生讨论后回答:位移图象、速度图象。

引导学生说出匀速直线运动的位移s=vt,其图象是一条过原点的直线;初速度为零的匀加速直线运动的位移s=at2/2,其图象是一条过原点的抛物线如图1所示;匀速直线运动的速度不变,图象是一条平行时间轴的直线;初速度为零的匀加速直线运动的速度vt=at, 其图象是一条过原点的直线.(教师可在黑板上画出相应的图象或让学生到黑板上画出来)提问——在图1中x-t图象是抛物线,其图象的横纵坐标、原点分别表示什么?物体运动的轨迹是什么?——答:横轴表示时间;纵轴表示位移;坐标原点表示计时、位移起点。

物体运动的轨迹是直线。

因此大家要注意区分图象与轨迹。

虽然简谐运动是较复杂的机械运动,其运动规律也可以用图象表示。

本节课我们来讨论简谐运动的图象。

2、简谐运动的图象演示一:下面的木板不动,让砂摆振动。

让学生观察现象:1.砂在木板上来回划出一条直线,说明振动物体仅仅只在平衡位置两侧来回运动,但由于各个不同时刻的位移在木板上留下的痕迹相互重叠而呈现为一条直线。

2.砂子堆砌在一条直线上,堆砌的沙子堆,它的纵剖面是矩形吗?学生答:砂子不是均匀分布的,中央部分(即平衡位置处)堆的少,在摆的两个静止点下方,砂子堆的多(如图2),因为摆在平衡位置运动的最快。

讲解:质点做的是直线运动,但它每时刻的位移都有所不同。

如何将不同时刻的位移分别显示出来呢?演示二:让砂摆振动,同时沿着与振动垂直的方向匀速拉动摆下的长木板(即平板匀速抽动实验,如图3所示)。

让学生观察现象:原先成一条直线的痕迹展开成一条曲线。

讨论图线:(请同学们相互讨论)(1)图线的x、y轴(横、纵坐标)分别表示什么物理量?(2)曲线是不是质点的运动轨迹?质点做的是什么运动?(3)图象的物理意义是什么?(4)这条图线的特点是什么?请同学回答,并讨论得出正确结果。

一、简谐运动图象1.图象(如图4)。

2.x-t图线是一条质点做简谐运动时,位移随时间变化的图象。

共5页,当前第3页123453.振动图象的横坐标表示的是时间t,因此,它不是质点运动的轨迹,质点只是在平衡位置的两侧来回做直线运动。

4.振动图象是正弦曲线还是余弦曲线,这决定于t=0时刻的选择。

(提醒学生注意,t=t/4处,位移x最大,此时位移数值为振幅a,在t=t/8处,x= 半周期的简谐运动曲线,不是半圆——强调图线为正弦曲线。

)二、简谐运动图象描述振动的物理量通过图5振动图象,让同学回答直接描述量。

答:振幅为5cm,周期为4s,及t=1s,x=5cm,t=4s,x=0等。

1.直接描述量:①振幅a;②周期t;③任意时刻的位移t。

2.间接描述量:(请学生总结回答)③x-t图线上一点的切线的斜率等于v。

例:求出上图振动物体的振动频率,角频率及t=5s时的瞬时速度。

(请同学计算并回答)三、从振动图象中的x分析有关物理量(v,a,f)简谐运动的特点是周期性。

在回复力的作用下,物体的运动在空间上有往复性,即在平衡位置附近做往复的变加速(或变减速)运动;在时间上有周期性,即每经过一定时间,运动就要重复一次。

我们能否利用振动图象来判断质点x,f,v,a的变化,它们变化的周期虽相等,但变化步调不同,只有真正理解振动图象的物理意义,才能进一步判断质点的运动情况。

例:图6所示为一单摆的振动图象。

分析:①求a,f,ω;②求t=0时刻,单摆的位置;③若规定单摆以偏离平衡位置向右为+,求图中o,a,b,c,d各对应振动过程中的位置;④t=1.5s,对质点的x,f,v,a进行分析。

请几位同学分别回答四个问题。

①由振动图象知a=3cm,t=2s,f=0。

②t=0时刻从振动图象看,x=0,质点正摆在e点即将向g方向运动。

③振动图象中的o,b,d三时刻,x=0,都在e位置,a为正的最大位移处,即g处,c为负的最大位移处,即f处。

④t=1.5s,x=-3cm,由f=-kx,f与x反向,f∝x,由回复力f为正的最大值,a∝f,并与f同向,所以a为正的最大值,c点切线的斜率为零,速度为零。

由f= -kx,f=ma,分析可知:1.x>0,f<0,a<0;x<0,f>0,a>0。

2.x-t图线上一点切线的斜率等于v;v-t图线上一点切线的斜率等于a。

3.x,v,a的变化周期都相等,但它们变化的步调不同。

*可分别做出v-t和a-t的图象为余弦和反正弦函数。

及v为s-t 图的斜率,而a为v-t图的斜率。

3、简谐运动的公式如图的函数规律为正弦函数,请大家写出它的表达式——x=asin θ,其中一个周期时对应θ=2π,则t时对应=θ;因此有x=asin()。

相关文档
最新文档