一图象分割定义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一图象分割定义

图象分割:将图象表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图象中的目标,背景进行标记、定位,然后将目标从背景或其他伪目标中分离出来。

二图象分割的研究现状

图象分割是图象处理中的一项关键技术,也是一经典难题,自20世纪70年代起一直受到人们的高度重视,至今已提出了上千种分割算法。但发展至今仍没有找出一个通用的分割理论,现提出的分割算法大都是针对具体问题的,并没有一种适合所有图象的通用分割算法。另外,也还没有制定出判断分割算法好坏和选择适用分割算法的标准,这给图象分割技术的应用带来许多实际问题。

三对图象分割现状的思考

基于图象分割的研究现状,我们在图象分割技术的应用上存在着许多实际问题。首先,在需要解决一个具体的图象分割问题的时候,往往发现难于找到一个非常适用的现成方法。其次,图象分割问题可以说既是一个数学问题,也是一个心理学问题。如果不利用关于图象或所研究目标的先验知识,任何基于某种数学工具的解析方法都很难取得很好的效果。因此,在更多的时候,人们倾向于重新设计一个针对具体问题的新算法来解决所面临的图象分割问题。这在只有个别图象样本的时候,利用各种先验知识,设计具有针对性的算法来实现较好的分割相对容易。但是,当需要构建一些使用的机器视觉系统时,(比如虚拟眼),所面对的将是具有一定差异性,数量庞大的图象库,此时如何很好地利用先验知识,设计一个对所有待处理图象都实用的分割算法是一件非常困难的任务。最后,由于缺乏一个统一的理论作为基础,同时也缺乏对人类视觉系统(humen vision system,HVS)机理的深刻认识(人们对视觉机理的研究还没成熟),构造一种能

够成功应用于所有图象的统一的图象分割算法,至少在目前还是难以实现的。(至少要完全明白视觉机理之后吧?)

那么退而求其次,一种取而代之的策略是针对不同特点的图象使用不同的分割方法,以期都能获得满意的分割结果。遗憾的是,迄今还没有一个完善的理论来指导如何根据图象的特点来选择合适的方法。现实中在分割一幅图象时,多是依据经验和直觉去选择方法,通过反复尝试来找到一种最佳方案。与计算机科学的确定性和准确性相比,图象分割更象是一种艺术行为,有经验的人才可以选用出适当的方法,使不同的图象都得到最佳的分割效果。但是,当要处理的图象十分庞大,分割就象是流水线上的一道简单工序时,这种行为艺术就显得无能为力了。而随着多媒体技术和Web技术的发展,包括图象,音频和视频等信息的多媒体数据的大量涌现,多媒体数据已经广泛用于Internet和企事业信息系统中,而且越来越多的商业活动,事物就秒度月毫和信息表现中都将包括多媒体数据,自然也就包括了大量的图象。例如基于内容的图象检索(content based image retrieval,CBIR)的广泛应用,往往是以图象分割作为基础的。

四图象分割的应用

图象分割的应用非常广泛,几乎出现在有关图象处理的所有领域,并设计各种类型的图象。主要表现在:

1 医学影象分析:通过图象分割将医学图象中的不同组织分成不同的区域,以便更好的帮助分析病情,或进行组织器官的重建等。如脑部MR图象分割,将脑部图象分割成灰质,白质,脑脊髓等脑组织;血管图象的分割,听过分割重建血管的三为图象;腿骨CT切片的分割等等。

2 军事研究领域:通过图象分割为目标自动识别提供特征参数。如合成孔径雷达图象中目标的分割,小目标检测大呢感等都需要首先进行图象分割。

限,则阈值化是区域相关的。基于点相关的阈值化方法有P-tile方法,直方图凹形分析法,最大类间方差法,最大熵法以及矩不变门限法等。基于区域相关的分割方法有直方图转换法,基于二阶灰度统计的方法,松弛法以及基于过度区提取的分割方法等。

阈值分割的优点是计算简单,运算效率高,速度快。全局阈值对于灰度相差很大的不同目标和背景能进行有效的分割,当图象的灰度差异不明显或不同目标的灰度值范围有重叠时,应采用局部阈值或动态阈值分割法;另一方面,这种方法只考虑象素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。在实际应用中,阈值法通常和其他方法结合使用。

2 基于区域的分割

基于区域的分割技术有两种基本形式:区域生长和分裂合并。前者是从单象素出发,逐渐合并以形成所需的分割结果。后者是从整个图象出发,逐渐分裂或合并以形成所需要的分割结果。与阈值方法不同,这类方法不但考虑了象素的相似性,还考虑了空间上的邻接性,因此可以有效地消除孤立噪声的干扰,具有很强的鲁棒性。而且,无论是分裂还是合并,都能将分割深入达到象素级,因此可以保证较高的分割精度。

区域生长算法先对每个要分割的区域找一个种子象素作为生长的起点,然后将种子象素邻域内与种子象素有相似性的象素合并到在种子象素集合。如此往复,直到再也没有象素可以被合并,一个区域就形成了。显然,种子象素,生长准则,终止条件是算法的关键。算法的高效性和准确性也是研究的重点。然而,种子点的选取并不容易,有人试图通过边缘检测来确定种子点,但是,由于边缘检测算法本身的不足,并不能避免遗漏重要的种子点。

生长法的优点是计算简单,与阈值分割类似,也很少单独使用。缺点是1)它需要人工交互获得种子点,这样使用者必须在每个需要抽取出的区域植入一个种

子点。2)也对噪声敏感,导致抽取出的区域有空洞或者在局部体效应的情况下将分开的区域连接起来。

在区域合并方法中,输入图象往往分为多个相似的区域,然后类似的相邻区域根据某种判断准则迭代进行合并。在区域分裂技术中,整个图象先被看成一个区域,然后区域不断被分裂成四个矩形区域,直到每个区域内部都是相似的。分裂合并算法则是从整个图象开始不断的得到各个区域,再将相邻的具有相似性的区域合并得到分裂结果。分裂合并方法的研究重点是分裂和合并规则的设计。它选择种子点的麻烦,但也有自身的不足。一方面,分裂如果不能深达象素级就会降低分割精度;另一方面,深达象素级的分裂会增加合并的工作量,从而大大提高其时间复杂度。另外分裂合并技术可能会使分割区域的边界破坏。

3 基于边缘的分割

基于边界的分割方法是利用不同区域间象素灰度不连续的特点检测出区域间的边缘,从而实现图象分割。边界的象素灰度值变化往往比较剧烈。首先检测图象中的边缘点,在按一定策略连接成轮廓,从而构成分割区域。边缘检测技术可以按照处理的顺序分为串行边缘检测及并行边缘检测。在穿性边缘检测中,当前象素点是否属于欲检测的边缘取决于先前象素的验证结果;而在并行边缘检测技术中,一个象素点是否属于欲检测的边缘,取决于当前正在检测的象素点以及该象素点的一些相邻象素点,这样该模型可以同时用于检测图象中的所有象素点。

最简单的边缘检测方法是并行微分算子法,它利用相邻区域的象素值不连续的性质,采用一阶或二阶导数来检测边缘点,近年来还提出了基于曲面拟合的方法,基于边界拟合的方法,基于反应-扩散方程的方法,串行边界查找,基于形变模型的方法。

相关文档
最新文档