4.4.2一次函数的应用(第2课时)教学设计

合集下载

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2课时)
一、教学目标
(一)知识与技能:1.理解一次函数与一元-次方程的关系;2.会用函数的方法求解一元一次方程.
(二)过程与方法:经历探索一元一次方程与一次函数的内在联系的过程,体会数形结合的数学思想.
(三)情感态度与价值观:通过教学活动,让学生学会从不同角度认识事物本质的方法,建立自信心,提高学生自主合作探究学习的意识和能力,激发学生学习的兴趣,让学生体验数学的价值.
二、教学重点、难点
重点:1.对一次函数与一元-次方程的关系的理解;2.应用函数求解一元一次方程.
难点:对一次函数与一元一次方程的关系的理解.
三、教学过程。

北师大版数学八年级上册《4.4一次函数的应用》教案

北师大版数学八年级上册《4.4一次函数的应用》教案

北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。

教材中给出了丰富的实例,为学生提供了充足的学习材料。

二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。

但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。

因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。

三. 教学目标1.了解一次函数在实际生活中的应用。

2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。

3.培养学生的动手操作能力和解决实际问题的能力。

四. 教学重难点1.教学重点:一次函数在实际生活中的应用。

2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。

五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。

六. 教学准备1.准备与一次函数应用相关的实例。

2.准备教学课件。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。

让学生思考如何用数学模型来表示这个问题。

2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。

让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。

3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。

通过这个环节,巩固学生对一次函数模型的理解和应用。

北师大版八年级数学上册4.4.2《一次函数的应用》教学案

北师大版八年级数学上册4.4.2《一次函数的应用》教学案

内容:在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?次明确一次函数图象和性质,为学习本节课在知识上作好准备第二环节初步探究内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量v(万米3)与干旱持续时间t(天)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?根据图象回答问题,有困难的可以互相交流通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力.教材和教学参考书本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育.第三环节反馈练习当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校通过创设情境,让学生进一步认识到一次函数图象的应通过小组合作总结出正确答案课件通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数s(户)与宣传时间t(天)的函数关系如图所示.根据图象回答下列问题:(1)活动开始当天,全校有多少户家庭参加了该活动?(2)全校师生共有多少户?该活动持续了几天?(3)你知道平均每天增加了多少户?(4)活动第几天时,参加该活动的家庭数达到800户?(5)写出参加活动的家庭数s与活动时间t之间的函数关系式用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.时渗透环保意识,珍惜水资源.第四环节深入探究内容:1.看图填空(1)当y=0时,x=_____;(2)直线对应的函数表达式是________________.组织学生黑板上展示用自己上个环节总结的解决应用题目的方法,进一步明确如何解决应用问题多找这类题目练习答案:(1)观察图象可知当y=0时,x=-2;(2)表达式为y=0.5x+1第五环节课堂小结总结本课知识与方法本节课主要有以下内容:1.能通过函数图象获取信息2.能利用数图缘解决简单的实际问题3.初步体会方程与函数的关系目的:引导学生自己小结本节课的知识要点及数学方法.使这节课知识系统化.感性认识上升为理性认识.对所学基础知识进行简单的检测,并对能力提出新的要求第六环节作业布置习题再一次强调知识点组织学生再一次巩固引导学生小结本课的知识及数学方法,使知识系统化8.学习效果评价设计1. 学生自我评价你在课堂上主动发言的次数及内容你参与课堂讨论的次数及内容你为本课学习做了哪些准备?除了本节课所学知识,你还知道哪些相关知识?2. 教师评价教师对学生听讲,提问回答,思维方式有无创造性等进行分组量化评价9. 本教学设计与以往或其他教学设计相比的特点本节课是北师大版义务教育教科书八年级上册第四章第四节的第2课时,主要是利用一次函数图象解决有关现实问题,与原传统教材相比,新教材更注重借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,新教材注重在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维。

4.4 一次函数的应用 北师大版八年级数学上册教案

4.4  一次函数的应用 北师大版八年级数学上册教案

4 一次函数的应用第1课时 一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【解】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时 一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案.【解】(1)设y 1的函数表达式为y =kx(x≥0).∵y 1经过点(30,720),∴30k =720.∴k =24.∴y 1的函数表达式为y 1=24x(x≥0).(2)根据图象可知x =50,把x =50代入y 1=24x 得:y 1=24×50=1 200,∴A(50,1 200)当销售量为50件时两种方案工资相同,都是1 200元.(3)设y 2的函数表达式为y 2=ax +b(x≥0),经过点(30,960),(50,1 200)∴{960=30a +b 1 200=50a +b ,解得:{a =12b =600,∴b =600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【解】设月薪y(元),月销售额为x(元).方案甲:y =1 500+110x(x≥0)方案乙:y =750+15x(x≥0)当y 甲=y 乙时,1 500+110x =750+15x ,解得x =7 500.求得y 甲=y 乙=2 250即销售额为7 500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7 500,y甲>y乙,x>7 500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图①).图②中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【解】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图③),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图③,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图③中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2nmile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。

八年级数学上册 第四章 一次函数 4 一次函数的应用 4.4.2 简单一次函数的实际应用教案

八年级数学上册 第四章 一次函数 4 一次函数的应用 4.4.2 简单一次函数的实际应用教案
例:科学家通过实验探究出,一定质量的某气体 在体积不变的情况下,压强P(千帕)随温度t(℃)变化的函数关系是P=kt+b,其图象如图.
(1)根据图象求出上述气体的压强P与温度t的函数关系式;
(2)当 压强P为200千帕时,求上述气体的温度.
解:(1)因为函数P=kt+b的图象经过点(0,100),(25,110)
让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组 长督促组员迅速完成.
教学过程
教学环节
课堂合作交流
二次备课
(修改人:)

节一
师生合作完成教材第92页“议一议”的学习与探究.
讨论:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?
课中作业
课本91页例2



典例讲解:
所以,
把①代入②得,k= ,
故所求函数关系式 为P= t+100(t≥0);
(2)当P=200时,由(1)得 t+100=200,解得t=250.
即 当压强为200千帕时,气体的温度是250℃.
课中作业
课本92页做一 做



仿例:某种拖拉机的油箱可储油40升,加满油并开始工作后,油箱中的余油量y(升)与工作时间x(小时)之间为一次函数关系如图.
(1)求y与x之间的函数关系式;
(2)一 箱油可供拖拉机工作几小时?
解:(1)设y=kx+b,根据题意,
得 ∴ ∴y=-5x+40;
(2)8小时.
课中作业
课本92页议一议
课后ห้องสมุดไป่ตู้业设计:
92页知识技能,数学理解
(修改人:)
板书设计:
一次函数的应用

八年级数学上册 4.4.2 一次函数的应用教案 (新版)北师大版

八年级数学上册 4.4.2 一次函数的应用教案 (新版)北师大版

4.4.2一次函数的应用教学目标:1.能通过函数图像获取信息,发展形象思维,培养学生的数形结合意识.2.能利用函数图像解决简单的实际问题,发展学生的数学应用能力,培养学生良好的环保意识和热爱生活的意识.3.初步体会方程与函数的关系,建立良好的知识联系.教学重点:一次函数图象的应用.教学难点:正确地根据图象获取信息,并解决现实生活中的有关问题.教法及学法指导:1.教法:“问题情境—建立模型—应用与拓展”本节课是在学生已经掌握了一次函数的图象和有关性质的基础上,对有关知识进行应用和拓展.在教学过程中,通过创设丰富的问题情境,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高学生解决实际问题的能力.另外,还可以引导学生结合图像理解函数的实际意义.2.学法:通过分析实际情景,建立函数模型,并通过观察图像来确定函数的性质,最终能够结合函数图象及其性质解决实际问题.课前准备:教具准备:多媒体课件三角板彩笔学生用具:三角板铅笔等教学过程:一、创设情境,引入新课师:水是生命之源,生活中我们处处离不开水!这里有一段有关水资源的资料,请一位同学读一下.生:今年3月22日是第20个世界水日,今年世界水日的主题是“水与粮食安全”.水是生命之源.虽然地球70.8%的面积被水覆盖,但97.5%的水是海水,既不能直接饮用也不能灌溉.在余下的2.5%的淡水中,人类真正能够利用的不足世界淡水总量的1%.生:听后,学生一篇感叹声...师:由此可见,节约用水对我们的生活有多重要.请同学们观察下面这四幅图来反映了怎样的自然现象?生1:土地在龟裂;生2:水在减少导致干旱;生3:干涸,水资源在减少,土地都裂了.师:这几位同学说得很好.造成干旱的原因既有人为因素,也有自然因素.水在枯竭,如果我们还不珍惜,最后一滴水将与血液等价.今天我们就一起针对节约用水的问题,从数学知识的角度来进行全面的分析,共同学习如何用一次函数的图象来帮助我们解决生活中的实际问题.板书课题:4.4一次函数的应用(2)设计意图:通过水资源的资料和生活中的图片引入新课比较贴近生活,可以吸引学生的注意力,增强学生的社会使命感,调动了学生学习新课的兴趣. 激发学生的学习热情,引入课题.二、合作探究,学习新知探究活动1 :师:(多媒体展示)由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间 (天)与蓄水量 (万米3)的关系如下图所示,回答下列问题:(1)上图反映的是和的函数图象.(2)水库原有蓄水量是多少?(3)干旱持续天,蓄水量为多少?连续干旱天呢?(4)蓄水量小于时,将发出严重干旱警报,干旱多少天后将发出严重干旱警报?(5)按照这个规律,预计持续多少天水库将干涸?处理方式:先让学生独立思考,试试自己能否独立完成.然后小组交流讨论,教师巡视及时启发诱导,让学生学会识图.5分钟后学生展示.师:时间到,下面哪位同学先来展示呢?生1:图像反映的是蓄水量和干旱持续时间的函数图象.生2:水库原有蓄水量1200万立方米.师:为什么?说明理由.生2:如图1因为水库原有蓄水量就是干旱开始时,水库的最高蓄水量,即当时,的值.师:第三题呢?生3:干旱持续10天,蓄水量为1000万立方米.师:你是怎么得到的答案的呢?生3:先找到10天,然后向x轴作垂线,交图象于一点,再过这一点向y轴作垂线,可以找到1000.师:(通过多媒体演示)先在横轴上找到10天,并过这一点作横轴的垂线,与图象交于一点,过这一点作纵轴的垂线,得到蓄水量为1000万立方米.如图2.师:23天呢?生:700万立方米.师:(通过多媒体演示)先在横轴上找到23天,并过这一点作横轴的垂线,与图象交于一点,过这一点作纵轴的垂线,得到蓄水量为700万立方米.师:第四题呢?生:40天.师:你能演示一下吗?生:(用实物展台演示):先在纵轴上找到400,并过这一点作纵轴的垂线,与图象交于一点,过这一点作横轴的垂线,得到40天.如图3.师:最后一问呢?生:60天.师:你是怎么得到的?生:延长直线交横轴与一点,交点的横坐标即为所求.如图4.师:大家说得非常棒,刚才我们用图象法解决了这个问题还有其它的方法吗?生:可以利用图象求出函数关系式.师:很好!这位同学想到了利用数形结合的思想解决问题,那么该怎样做呢?处理方式:学生在练习本上做,教师将一同学的解答过程通过展台进行展示.解:设一次函数关系式:把和代入中解得即:一次函数关系式:师:我们用了图象法和关系式法两种方法解决了这个问题,你能对比一下这两种方法的优缺点吗?生1:解析式法比较准确但是不直观.生2:图象法比较直观但是不够准确.师:这两个同学回答的非常好,掌声鼓励.(生响起一阵掌声!)师:大家讲的都很好!我们从本题中得到哪些反思呢?生1:通过对本题的探索,我们学会观察函数图象.生2:通过本题的画面和探索,给我们带来了很大的震撼,我们要保护环境,珍惜水资源.师:回答很好!如何解答实际情景函数图象的信息?处理方式:由学生自由发挥,集体讨论然后师生共同总结得出:1:理解横纵坐标分别表示的的实际意义.2:分析已知(看已知的是自变量还是因变量),通过作x轴或y轴的垂线,在图象上找到对应的点,由点的横、纵坐标的值读出要求的值.3:利用数形结合的思想:将“数”转化为“形”,由“形”定出“数”.教师强调:仔细观察图象,弄清横轴和纵轴表示的意义,找出图象中的特殊点是解决问题的关键.师:请同学们思考在上面的关系式里,k和b的实际意义是什么?生:经过讨论得出k表示水库每天减少的蓄水量,b表示水库干旱前的蓄水量.师:好!今天我们除了要学会利用图象信息解决实际问题也要了解k和b的实际意义.设计意图:通过生动的现实情景引入一次函数图象的应用,把整个探索过程交给小组去做,教师只作为一个协助者,让学生思考、讨论、从而得出结论,了解点的坐标的实际意义,培养了学生的识图能力.学生通过自己的观察、分析、合作,初步感受到数形结合的解题方法,同时对比掌握图形观察法与表达式计算法两种方法的优点及缺点,培养学生灵活应用不同方法解决问题的能力.跟踪练习:(出示课件):一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含有备用零钱)的关系如图:(1)农民自带的零钱有多少元?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他每千元将剩余土豆售完,这是他手中的钱是元,问他带了多少千克土豆?(问题一出,学生沸腾了.每看一条,学生都大胆回答.教师也参与其中,看他们是怎样做的,听他们是怎样说的.适时的指导一下,并收集平时比较内敛缺乏自信的几个学生,准备回答,给他们以鼓励.)学生展示:生1:农民带来的零钱是10元,从图像中我们发现所谓的零钱就是时,的值.生2: 降价前他每千克土豆出售的价格是1.2元.观察图像可知包括零钱和出售土豆的钱,所以.生3:他带了的土豆,由图像可知中包括零钱和降价前后售出的土豆钱,所以,然后再加上降价前的土豆即.设计意图:通过跟踪练习,让学生进一步体会生活中一次函数图象的应用.同时,检验学生对已学内容掌握情况,为以后的学习作铺垫.另外,通过此题要学生体会到农民的不易,号召同学们珍惜现在的生活和学习.探究活动2(多媒体展示)某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量 (升)与摩托车行驶路程 (千米)之间的关系如图所示,根据图象回答下列问题:(1)该图反映的是和关系的函数图象.其中横轴表示,纵轴表示 .(2)油箱最多可储油多少升?(3)一箱汽油可供摩托车行驶多少千米?(4)摩托车每行驶100千米消耗多少升汽油?(5)油箱中的剩余油量小于1升时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?处理方式:因为在前面探索中已向学生介绍了如何识读一次函数图象,因此本题可放手让学生自己读图、识图,完成题中的问题,然后老师组织学生在班上交流.当学生有疑问时也可请求其他学生帮助解决.在答题过程中,老师适时地书写解答过程.解:观察图象,得(1)该图反映的是油箱中的剩余油量与摩托车行驶路程之间的关系;其中横轴表示摩托车行驶路程,纵轴表示油箱中的剩余油量.(2)当x=0时,y=10,此时表示:摩托车的油箱最多可储油10升.(3)当时,,此时表示:一箱汽油最多可供摩托车行行驶500千米.(4)x从0增加到100时,y从10减少到8,因此摩托车每行驶100千米消耗2升汽油.(5)当时,,因此行驶了450千米后,摩托车将自动报警.设计意图:通过摩托车的油箱的问题进一步培养学生的识图能力,让学生能从图象中获取信息,进一步巩固用函数图像的思想解决生活中的问题.三、合作探索,再得新知师:请大家看图填空(1)当时,;(2)直线对应的函数表达式是________________.生1:观察图象可知当时,;生2:直线过和设表达式为,根据题意,得解之得:所以直线对应的函数表达式是师:请大家根据刚做的练习来思考:一元一次方程与一次函数有什么联系?(问题一出,同学议论开来,各抒己见,议论纷纷.)生1:一元一次方程的解为,一次函数包括许多点.因此是的特殊情况.生2:当一次函数的函数值为0时,相应的自变量的值即为方程的解.生3:函数与轴交点的横坐标即为方程的解.师:大家说得非常好,一元一次方程与一次函数到底有什么联系?师生总结:从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程的解;从“形”的角度看,函数与x轴交点的横坐标即为方程的解.设计意图:通过本题让学生认识到一次函数与一元一次方程的联系,让学生明晰函数与方程的关系:从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程的解;从“形”的角度看,函数与x轴交点的横坐标即为方程的解.使学生能用函数关系解决方程问题的同时也能用方程的观点来看待函数.四、总结归纳,能力提升师:本节课我们学习了哪些知识?你有什么收获呢?生1:我们学会了怎样从实际情景函数图象中获取信息.生2:我们学会了利用函数图象解决简单的实际问题.生3:我们初步认识到了方程与函数之间的联系.学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用.设计意图:培养学生的语言表达能力,让学生对本节所学的内容有个大体了解,使知识系统化,又能让学生在较短时间内及时回顾,快速复习了本节知识.五、能力检测,当堂达标师:同学们一节课,快过去了,大家表现的都很棒,现在到了检验你们的时刻了.(课件出示检测题)1.某植物天后的高度为厘米,图1中反映了与之间的关系,根据图象回答下列问题:(1)3天后该植物的高度为多少?(2)预测该植物12天后的高度;(3)几天后该植物的高度为10厘米?(4)图象对应的一次函数中,k和b的实际意义分别是什么?2.全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积,沙漠面积,土地沙漠化的变化情况如图2所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造沙漠,那么到第几年底,该地区的沙漠面积能减少到?(3)一次函数的图象如图3所示,根据图象回答:当y=0时,x=_____;方程的解是________.点拨:1.(1)3天后该植物高度为5厘米.(2)预测该植物12天后的高度为11.4厘米.(3)10天后该植物的高度为10厘米.(4)k表示植物每天生长的高度,b表示植物的原始高度.2.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于,故到第12年底,该地区的沙漠面积能减少到176万千米2.3.利用一次函数与一元一次方程的关系得:当y=0时,x=-3;方程的解是 x=-3.设计意图:1、2题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;第3题一元一次方程与一次函数联系. 及时检测学生的掌握情况,达到当堂达标的目的.六、布置作业,落实目标f1.必做题:课本92页习题4.6 第1,2题.2.选做题:课本93页习题4.6 第3题.设计意图:作业的设计突出层次性,可更好地调动不同学生的学习热情.满足不同层次学生的需要,另一方面巩固了本课所学的知识,同时也了解了学生对本课知识的掌握情况.以便为下一节课的教学做准备.板书设计:成功之处:在本节课的教学中,我坚持以学生为主体,采用自主探究、小组合作交流的教学模式.在教学过程中,首先有水资源的的资料引人,以干涸的水库为画面情境,贴近生活,引起学生的兴趣,从而激起学生的求知欲望.然后通过三个探究活动完成了对新课的认知.探究活动1先由学生小组内讨论学习,教师适当点拨,耐心地引导学生如何识图,尽量从图象上获取信息,找准图象上点的横坐标和纵坐标分别所表示的意义,使学生学会利用图象解决实际问题.对于探究活动2,我采用先独立完成,再小组讨论,然后找几名学生上台进行讲授并展示过程,使学生的问题通过学生自己解决,既培养了基础好的学生的语言表达能力,又培养了学生之间的合作交流意识,使学生在合作中得到发展,让学生成为学习的主体.探究活动3让学生认识到一次函数与一元一次方程的联系,让学生明晰函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.通过层层练习,让学生进一步体会函数与方程、数与形的关系.三个探究活动顺利的完成了本节课的目标要求.不足及努力方向:1.课堂组织语言还需要精炼;2.课堂时间把握不足,导致检测时间仓促,以后注意时间的分配要合理,更要精选题;3.为提高课堂效率应该给学生制定详细的预习计划,这样可以把课堂问题分流到课下解决,从而达到使课堂轻松顺利的目的.。

2024-2025学年北师版中学数学八年级上册4.4一次函数的应用(第2课时)教学课件

2024-2025学年北师版中学数学八年级上册4.4一次函数的应用(第2课时)教学课件

情境导入
V/ 万米3 回答下列问题:
(1)水库干旱前的蓄水量是多少?
1200
1200
1000
(2)干旱持续10天,蓄水量为多少?
800
连续干旱23天呢? 1000
(23,?)
600
400
200
0
10
20
30
40
50
t/天
情境导入
V/ 万米3 回答下列问题:
(3)蓄水量小于400时,将发生严重
1200
离开甲地 30 km.
当堂检测
3.小明骑自行车到学校去上学,学校离家20千米,
他离家的距离s(千米)和时间t(分)的关系如图所示。 根据图象回答下列问题:
(1)小明到达学校需用多长时间? (2)小明10分钟骑自行车行驶的路程是多少?
(3)小明骑车行驶15千米需 用多长时间? (4)小明骑车的速度是多少?
A.x=-1 B.x=2 C.x=0 D.x=3
解析:由函数经过点(0,1)可得b=1,再 将点(2,3)代入y=kx+1,可求出k的值为 1,故一次函数的表达式为y=x+1,再求 出方程x+1=0的解为x=-1.
方法总结:此题主要考查了一次函数与一元一次方程的关系, 关键是正确利用待定系数法求出一次函数的关系式.
当堂检测
解:(1)由图象可知小明到达学校需用40分钟. (2)由图象知小明10分钟骑车行驶5千米. (3)由图象可知小明行驶15千米需用30分钟.
(4)小明骑车40分钟, 行驶20千米,所以 他骑车的速度为
20 0.(5 千米 / 分) 40
课堂小结
从函数图象的形状判断函数类型
图象分 析方法
从x轴、y轴的实际意义去理解图象上点的坐标 的实际意义

《一次函数的应用》 示范公开课教学PPT课件【北师大版八年级数学上册】第2课时

《一次函数的应用》 示范公开课教学PPT课件【北师大版八年级数学上册】第2课时
根据图象回答下列问题: (1)一箱汽油可供摩托车行驶多少千米?
分析:函数图象与x轴交点的横坐标即为摩托车行驶的最长 路程.
解:观察图象,得:当y=0时,x=500,因此一箱汽油可供 摩托车行驶500千米.
典例精讲
(2)摩托车每行驶100千米消耗多少升汽油?
分析:x从0增加到100时,y从10开始减少,减少的数量即为 消耗的数量.
解:x从0增加到100时,y从10减少到8,减少了2,因此摩托 车每行驶100千米消耗2升汽油.
典例精讲
(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行 驶多少千米后,摩托车将自动报警?
分析:当y小于1时,摩托车将自动报警.
解:当y=1时,x=450,因此行驶了450千米后,摩托车将自 动报警.
课堂练习
4.函数y=-3x-6中,当自变量x增加1时,函数值y就( C ). A.增加3 B.增加1 C.减少3 D.减少1
5.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返 回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反 映全程h与t的关系图是( D ).
课堂练习
6.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步
课堂练习
(1)如果不采取任何措施,那么到第5年底,该地区沙漠 面积将增加多少万千米2?
解:如果不采取任何措施,那么到第5年底,该地区沙漠面 积将新增加10万千米2.
课堂练习
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在 开始,第几年底后,该地区将丧失土地资源?
解:从图象可知,每年的土地面积减少2万千米2,现有土 地面积100万千米2,100÷2=50,故从现在开始,第50年底后, 该地区将丧失土地资源.

4.4.2一次函数的应用(第2课时)教学设计

4.4.2一次函数的应用(第2课时)教学设计

4.4.2一次函数的应用(第2课时)教学设计第四章一次函数4.3.2 一次函数的应用教学设计(第2课时)一、学生起点分析学生已学习了一次函数及其图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力.二、教学任务分析本节课是北师大版义务教育教科书八年级上册第四章第四节的第2课时,主要是利用一次函数图象解决有关现实问题,与原传统教材相比,新教材更注重借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,新教材注重在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.为此,本节课的教学目标是:①能通过函数图象获取信息,解决简单的实际问题;②在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系;③通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;④通过具体问题的解决,培养学生的数学应用能力;⑤引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.三、教学过程设计本节课分为八个教学环节:第一环节:复习引入;第二环节:初步探究;第三环节:反馈练习;第四环节:深入探究;第五环节:反馈练习;第六环节:探究升级;第七环节:课堂小结;第八环节:布置作业.第一环节复习引入内容:在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?在一次函数y kx b=+中当0k>时,y随x的增大而增大,当0b>时,直线交y轴于正半轴,必过一、二、三象限;当0b<时,直线交y轴于负半轴,必过一、三、四象限.当0k时,y随x的增大而减小,<当0b>时,直线交y轴于正半轴,必过一、二、四象限;当0b<时,直线交y轴于负半轴,必过二、三、四象限.目的:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k、b的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.效果:学生通过知识回顾,再次明确一次函数图象和性质,为学习本节课在知识上作好准备.第二环节初步探究内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V(万米3) 与干旱持续时间t(天)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?(根据图象回答问题,有困难的可以互相交流.)答案:(1)当0y=,水库干旱前的蓄水量是x=,12001200万米3.(2)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值.当10t=时,V约为1000万米3.同理可知当t为23天时,V约为750万米3.(3)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t的值.当V等于400万米3时,所对应的t的值约为40天.(4)水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求.当V为0·200 100020 t (天) S (户) 0 时,所对应的t 的值约为60天.目的:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力.效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育.第三环节反馈练习:内容:当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(1)活动开始当天,全校有多少户家庭参加了该活动?(2)全校师生共有多少户?该活动持续了几天?(3)你知道平均每天增加了多少户?(4)活动第几天时,参加该活动的家庭数达到800户?(5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式答案:(1)200户;(2)全校师生共有1000户,该活动持续了20天;(3)平均每天增加了40户;(4)第15天时,参加该活动的家庭数达到800户;(5)40200S t =+ .目的:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.效果:通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同时渗透环保意识,珍惜水资源.第四环节深入探究内容:1.看图填空(1)当0y =时,______x =;(2)直线对应的函数表达式是________________.答案:(1)观察图象可知当0y =时,2x =-;(2)直线过(-2,0)和(0,1)设表达式为y kx b =+,得20k b -+=① 1b =② 把②代入①得 0.5k =∴直线对应的函数表达式是0.51y x =+2.议一议一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)答案:一元一次方程0.510x +=的解为2x =-,一次函数0.51y x =+包括许多点.因此0.510x +=是0.51y x =+的特殊情况.当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解.函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.目的:通过本题让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解;从“形”的角度看,函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.效果:通过练习,学生明晰了函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.第五环节反馈练习内容:全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失·200 100020 t (天) S (户) 0 土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,1002=50÷,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于(200176)212-÷=,故到第12年底,该地区的沙漠面积能减少到176万千米2.目的:通过土地沙漠化的问题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;同时,通过土地沙漠化的问题情景引导学生关注自己身边的生存环境.效果:通过对较复杂的问题的探究,培养了学生分析问题和解决问题的能力,并渗透德育教育.第六环节探究升级内容:(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水?(7)写出活动开展的第t 天节约的水量Y 与天数t 的函数关系.答案:(6)第20天可节约100吨水;(7)420Y t =+.目的:通过问题的层层深入,引导学生的思维向纵深发展,进一步巩固用函数的思想解决生活中的问题.效果:学生通过合作交流,解决问题,在教师的引导下,逐步加深了对一次函数图象和性质的运用.第七环节课堂小结内容:本节课主要应掌握以下内容:1.能通过函数图象获取信息.2.能利用函数图象解决简单的实际问题.3.初步体会方程与函数的关系.目的:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.效果:学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用.第八环节布置作业内容:1.课外探究在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感兴趣的问题,编制一道数学题与同学交流.2.课外作业习题4.6四、教学设计反思(1)设计理念一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面力求让学生体会数学的广泛运用,另一方面,在学科教育中渗透德育教育.(2)评价方式在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,应关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议”、“想一想”的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有道理,教师应给予鼓励和恰当的评价,帮助学生认识自我,建立自信,真正在教学的过程中发挥评价的教育功能.。

期八年级数学上册4.4一次函数的应用第2课时简单一次函数的应用教案北师大版(2021学年)

期八年级数学上册4.4一次函数的应用第2课时简单一次函数的应用教案北师大版(2021学年)

2017秋期八年级数学上册4.4 一次函数的应用第2课时简单一次函数的应用教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017秋期八年级数学上册4.4 一次函数的应用第2课时简单一次函数的应用教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017秋期八年级数学上册4.4 一次函数的应用第2课时简单一次函数的应用教案 (新版)北师大版的全部内容。

第2课时简单一次函数的应用【知识与技能】1。

能利用一次函数解决简单的实际问题。

2.了解一次函数与一元一次方程之间的关系.【过程与方法】通过生活的实例结合一次函数的图象解决问题,继续体会数形结合的思想所起的重要作用.【情感与态度】让学生深刻体会到数学知识来源于实际生产、生活的需求,反之,又服务于生产、生活的实际。

【教学重点】利用一次函数解决简单的实际问题。

【教学难点】根据一次函数图象去分析解决问题.一、创设情境,导入新课教材第91页例2上面的内容【教学说明】从生活中的实际问题出发,采用提问引发思考的方式引入,激发学生探求知识的兴趣。

二、思考探究,获取新知简单的一次函数的实际应用教师引导学生完成教材第91页例2.【教学说明】让学生体会利用一次函数的图象解决实际问题的方法.如果从图象上不能很明显得出结论,还需要求出一次函数的表达式在进行求解.做一做:教材第92页“做一做”.【教学说明】巩固加深根据一次函数图象求直线表达式,同时体会当函数值为零时自变量的取值,为下面学习一元一次方程与一次函数的关系打下了基础.讨论:一元一次方程0.5x+1=0与一次函数y=0。

八年级数学上册 4.4 一次函数的应用(第2课时)教案 (新版)北师大版

八年级数学上册 4.4 一次函数的应用(第2课时)教案 (新版)北师大版

课题:一次函数的应用(第二课时)●教学目标:知识与技能目标:进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;过程与方法目标:在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.情感与态度目标在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.●重点:一次函数图象的应用●难点:从函数图象中正确读取信息●教学流程:一、课前回顾二、指出下列格式中的k和b:注意:一次函数书写一般写成(1) y=0.5x+ 3 (2) y= - 0.18x+10求一次函数的表达式的详细步骤1.设——一次函数表达式 y=kx+b或者y=kx;2.代——将点的坐标代入y=kx+b中,列出关于K、b的方程3.解——解方程求出K、b值;4.定——把求出的k、b值代回到表达式中即可.解答实际情景函数图象信息问题的方法:法一:图象观察法法二:关系式计算法三、情境引入探究1:反映了某公司产品的销售收入与销售量的关系, L2 反映了该公司产品的销售成本与销售量的关系,根据图意填空:(1)当销售量为2吨时,销售收入=_2000____元l1 反映了公司产品的销售收入与销售量的关系。

l1对应的函数表达式是y=1000xl2 反映了该公司产品的销售成本与销售量的关系,根据图意填空:(2)当销售量为2吨时,销售成本=__ 3000________元l2 反映了公司产品的销售成本与销售量的关系。

l2对应的函数表达式是y=500x+2000。

(3)当销售量为6吨时,销售收入=6000元,销售成本=5000元,利润=1000 元。

(4)当销售量为4吨时,销售收入等于销售成本。

(4)当销售量大于4吨时,该公司赢利(收入大于成本);当销售量小于4吨时,该公司亏损(收入小于成本);练习1:甲、乙两地相距40 km,小明8:00 点骑自行车由甲地去乙地,平均车速为8 km/h;小红10:00坐公共汽车也由甲地去乙地,平均车速为40 km/h.设小明所用的时间为x(h),小明与甲地的距离为y1(km),小红离甲地的距离为y2(km).(1)分别写出y1,y2与x之间的函数表达式;(2)在同一个直角坐标系中,画出这两个函数的图象,并指出谁先到达乙地.(1)解小明所用时间为x h,由“路程=速度×时间”可知y1 = 8x,自变量x 的取值范围是0≤x≤5由于小红比小明晚出发2 h,因此小红所用时间为(x- 2)h. 从而y2= 40(x- 2),自变量x 的取值范围是2≤x≤3.(2)解将以上两个函数的图象画在同一个直角坐标系中,过点M(0,40)作射线l 与x轴平行,它先与射线y2 = 40(x - 2)相交,这表明小红先到达乙地.四、自主思考探究2:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶。

数学北师大版八年级上册4.4.2一次函数应用第二课时说课稿

数学北师大版八年级上册4.4.2一次函数应用第二课时说课稿

4.3.2《一次函数的图象和性质》第二课时说课稿一、设计理念新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。

它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

二、教材分析本节课选自北师大版八年级上册的第四章第三节《一次函数的图象》第2课时。

本节课在学生已经掌握了一次函数的概念以及表达式的基础之上,通过探究活动,进行一次函数的图象及性质的研究,这是本节课的一个重点和难点问题,学生在学习的过程中体会“数形结合”思想的重要性,也为后续函数相关知识的学习和经验的积累起到重要的引领作用。

三、学情分析学生在生活和课本知识上对变量之间的关系已经有了初步的了解,在上节课已经经历了正比例函数的图象绘制和性质探究过程,并初步具备利用类比的方法进行探究一次函数性质的能力基础。

我校八年级的学生思维已经从具体思维向抽象思维发展,具有初步的数形结合思想,学生具有一定的探索意识,敢于表达自己的观点和想法,这都为开展本次数学学习活动打下了基础。

但我校学生存在动手能力差,计算能力弱等特点,因此在本节课的教学中,将重难点进行了分解。

四、教法与学法(一)教法分析数学教学是数学活动的教学,是师生之间、学生之间的交往互动与共同发展的过程。

针对八年级学生的认知水平与心理特征,本节课选择由浅入深提出问题、分析问题、解决问题的流程进行教学。

引导全体学生自主探索,合作交流。

充分体现教师是教学活动的组织者,引导者,合作者,学生才是学习的主体。

基本的教学程序是:“引导激发----动手实践----合作探究----学以致用”几部分组成。

(二)学法分析本节课在对学生进行学法指导上,主要是引导学生主动探索发现新的数学结论,进而培养学生数学学习的良好习惯,培养学生们的创新精神,使他们体会到数学问题解决的严密性和规范性。

一次函数的应用(2)

一次函数的应用(2)

一次函数的应用(2)一、教案背景1、本节课是一次函数应用第二课时,在上一节课学生已经接触了一次函数应用的有关问题。

2、学生课前准备:(1)学生在同一坐标系内画出y1=x-3,y2=2x两函数图像。

(2)学生找一些关于可用一次函数来解决的实际问题。

二、教学课题1、能让学生通过函数的图像获取信息,发展学生的形象思维和抽象思维的能力。

2、学会用一次函数的数学模型去解决实际问题的方法,从而发展数学应用能力。

3、进一步感受“数缺形时少直观,形缺数时难入微”这一数形结合思想。

三、教材分析本节课是苏教版八年级第五章一次函数应用的第二课时,主要是向学生传授将生活中实际问题转化成数学问题(建立一次函数),从而让学生体会到“学以致用”的快乐感,并通过用方程来解决函数问题,进而建立良好的知识联系,深刻感受“数缺形时少直观,形缺数时难入微”这一数形结合思想。

四、教学方法通过创设情境,初步让学生感受数学源于生活,服务于生活,让学生在经历思考、分析讨论、交流等活动过程中学会合作,敢于创新,乐于发表自己的思路,从而发展学生运用数学的能力。

五、教学过程(一)情境创设多媒体展示两个情境问题1、“选择”问题某公司准备与汽车租赁公司签订租车合同。

以每月用车路程x KM计算,甲汽车租赁公司的月租费是y1元,乙汽车租赁公司的月租金y2元。

如果y1、y2与x之间的关系如图,那么:⑴每月用车路程多少时,租用两家汽车租赁公司的车所需费用相同?⑵每月用车路程多少范围内,租用甲家汽车租赁公司的车所需费用较少?⑶如果每月用车的路程约为2300km,那么租用哪家的车所用费用较少?2、“数形结合”思想问题已知y1=x-3,y2=2x,试比较y1与y2的大小。

(二)探索活动探索活动一:学生阅读情境创设一内容,围绕下面几个问题进行探索与思考。

(1)你知道交点所表示的实际意义吗?(2)当x取小于2000的数值时与其对应的函数值y1,y2之间的大小关系如何?当x取大于2000的数值时呢?试利用图像说明理由。

八年级数学下册《一次函数的应用》教案、教学设计

八年级数学下册《一次函数的应用》教案、教学设计
2.互动交流:鼓励学生提问,解答学生的疑问,促进课堂互动。
“如果大家对一次函数的性质和应用有任何疑问,请大胆提出来。我们可以一起讨论,共同解决问题。”
3.总结反馈:在小组讨论的基础上,总结一次函数的性质和应用,加深学生的理解。
(四)课堂练习
1.设计习题:根据一次函数的知识点,设计不同类型的习题,让学生进行课堂练习。
1.思维能力:学生具备一定的逻辑思维能力,能够理解抽象的数学概念,但部分学生对函数概念的理解尚显不足,需要进一步引导和巩固;
2.学习兴趣:学生对数学学科的兴趣有所差异,部分学生对函数学习充满热情,另一部分学生可能对函数概念感到困惑,需要激发兴趣;
3.学习方法:学生在学习过程中,对探究、合作等学习方法有所了解,但实际操作中仍需教师引导,提高学习效率;
1.重点:一次函数的定义、性质、图像及其在实际问题中的应用。
2.难点:
(1)理解一次函数图像的斜率与截距的几何意义;
(2)建立一次函数模型解决实际问题,尤其是涉及两个变量之间的线性关系问题;
(3)对一次函数图像的绘制和解读,以及从图像中分析一次函数的性质。
(二)教学设想
1.教学方法:
(1)采用情境教学法,通过实际问题引入一次函数的概念,让学生在具体情境中感知数学知识;
"请同学们认真完成课本上的练习题,特别是涉及到一次函数图像绘制和性质分析的问题,这些题目将帮助你们巩固基础知识。"
2.实践应用题:结合生活实际,设计一个一次函数模型解决实际问题,并撰写解题报告。
"选择一个你们生活中的问题,比如计算商品的打折价格、分析速度和时间的关系等,运用一次函数的知识建立模型,并详细记录解题过程,形成解题报告。"
“数学知识来源于生活,我们要学会用数学的眼光看待生活中的问题。一次函数作为解决实际问题的有力工具,希望同学们能够掌握好。”

4.4 一次函数的应用(2)教案(公开课)

4.4 一次函数的应用(2)教案(公开课)

一次函数的应用(2)教学目标:1.能通过函数图像获取信息,发展形象思维,培养学生的数形结合意识.2.能利用函数图像解决简单的实际问题,发展学生的数学应用能力,培养学生良好的环保意识和热爱生活的意识.3.初步体会方程与函数的关系,建立良好的知识联系.教学重点:一次函数图象的应用.教学难点:正确地根据图象获取信息,并解决现实生活中的有关问题.教学过程:一、引入新课水是生命之源,生活中我们处处离不开水!这里有一段有关水资源的资料:今年3月22日是第20个世界水日,今年世界水日的主题是“水与粮食安全”.水是生命之源.虽然地球70.8%的面积被水覆盖,但97.5%的水是海水,既不能直接饮用也不能灌溉.在余下的2.5%的淡水中,人类真正能够利用的不足世界淡水总量的1%.造成干旱的原因既有人为因素,也有自然因素.水在枯竭,如果我们还不珍惜,最后一滴水将与血液等价.今天我们就一起针对节约用水的问题,从数学知识的角度来进行全面的分析,共同学习如何用一次函数的图象来帮助我们解决生活中的实际问题.板书课题:4一次函数的应用(2)二、学习新知由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间(天)与蓄水量(万米3)的关系如下图所示,回答下列问题:t V(1)水库原有蓄水量是多少?(2)干旱持续天,蓄水量为多少?连续干旱天呢?(3)蓄水量小于时,将发出严重干旱警报,干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续多少天水库将干涸?处理方式:先让学生独立思考,试试自己能否独立完成.然后小组交流讨论,教师巡视及时启发诱导,让学生学会识图.5分钟后学生展示.解:(一)(1)原有需水量1200万立方米;(2)干旱持续10天,蓄水量为1000万立方米,连续干旱23天后为700万立方米;(3)40天;(4)60天.(二)设一次函数关系式:把和代入中解得 即:一次函数关系式:我们用了图象法和关系式法两种方法解决了这个问题,你能对比一下这两种方法的优缺点吗?解析式法比较准确但是不直观.图象法比较直观但是不够准确.v 3万米103万米234003万米v kt b =+(0,1200)()40,400v kt b =+120040400b k b =⎧⎨+=⎩201200k b =-⎧⎨=⎩201200v t =-+1:理解横纵坐标分别表示的的实际意义.2:分析已知(看已知的是自变量还是因变量),通过作x 轴或y 轴的垂线,在图象上找到对应的点,由点的横、纵坐标的值读出要求的值.3:利用数形结合的思想:将“数”转化为“形”,由“形”定出“数”.例某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量(升)与摩托车行驶路程(千米)之间的关系如图所示,根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100千米消耗多少升汽油?(4)油箱中的剩余油量小于1升时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?处理方式:因为在前面探索中已向学生介绍了如何识读一次函数图象,因此本题可放手让学生自己读图、识图,完成题中的问题,然后老师组织学生在班上交流.当学生有疑问时也可请求其他学生帮助解决.在答题过程中,老师适时地书写解答过程.解:观察图象,得(1)当x =0时,y =10,此时表示:摩托车的油箱最多可储油10升.(2)当时,,此时表示:一箱汽油最多可供摩托车行行驶500千米.(3)x 从0增加到100时,y 从10减少到8,因此摩托车每行驶100千米消耗2升汽油.(4)当时,,因此行驶了450千米后,摩托车将自动报警.设计意图:通过摩托车的油箱的问题进一步培养学生的识图能力,让学生能从图象中获取信息,进一步巩固用函数图像的思想解决生活中的问题.yx 0y =500x =1y =450x =三、合作探索师:请大家看图填空(1)当时,;(2)直线对应的函数表达式是________________.解:(1)观察图象可知当时,;(2)直线过和设表达式为,根据题意,得解之得:所以直线对应的函数表达式是思考:一元一次方程与一次函数有什么联系?总结:从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程的解;从“形”的角度看,函数与x 轴交点的横坐标即为方程的解. 通过本题让学生认识到一次函数与一元一次方程的联系,让学生明晰函数与方程的关系:从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程0y =______x=0y =2x =-()-2,0()0,1y kx b =+⎩⎨⎧==+-102b b k ⎩⎨⎧==15.0b k 0.51y x =+0.510x +=0.51y x =+0.51y x =+0.510x +=0.51y x =+0.510x +=y kx b =+的解;从“形”的角度看,函数与x 轴交点的横坐标即为方程的解.使学生能用函数关系解决方程问题的同时也能用方程的观点来看待函数.四、总结归纳我们学会了怎样从实际情景函数图象中获取信息.我们学会了利用函数图象解决简单的实际问题.我们初步认识到了方程与函数之间的联系.五、能力检测1.全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积,沙漠面积,土地沙漠化的变化情况如图1所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造沙漠,那么到第几年底,该地区的沙漠面积能减少到?2.一次函数的图象如图2所示,根据图象回答:当y=0时,x =_____; 方程的解是________.解:1.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万0kx b +=y kx b =+0kx b +=2100万千米2200万千米24万千米2176万千米y kx b =+0kx b +=千米2,实际每年改造面积2万千米2,由于,故到第12年底,该地区的沙漠面积能减少到176万千米2.2.利用一次函数与一元一次方程的关系得:当y=0时,x =-3; 方程的解是 x =-3.六、布置作业1.必做题:课本习题第1,2题.2.选做题:课本习题第3题.(200176)212-÷=y kx b =+0kx b +=0kx b +=。

北师大八年级上册数学教案4-4-2

北师大八年级上册数学教案4-4-2

第2课时【教学目标】知识与技能进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题.过程与方法在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.情感态度与价值观1.在解决实际问题过程中,进一步发展学生分析问题、解决问题的能力和数学应用意识.2.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.【重点难点】重点:一次函数图象的应用.难点:从函数图象中正确读取信息.【教学过程】一、创设情境内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V(万m3)与干旱持续时间t(天)的关系如图所示,根据图象回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天,蓄水量是多少?干旱持续23天呢?(3)蓄水量小于400万m3时,将发生严重干旱警报.干旱持续多少天后将发出严重干旱警报?(4)按照这个规律,预计干旱持续多少天水库将干涸?(根据图象回答问题,有困难的可以互相交流.)目的:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力.效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育.二、探究归纳我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶.图中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12 n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数s=k1t+b1与 s=k2t+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?解:(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min内,A行驶了2 n mile,B行驶了5 n mile,所以B的速度快.(3)延长l1,l2,如图,可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B 能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2 n mile/min,快艇B的速度是0.5 n mile/min.目的:培养学生的识图能力和探究能力,调动学生学习的自主意识.通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.三、交流反思1.能通过函数图象获取信息.能利用函数图象解决简单的实际问题.2.初步体会方程与函数的关系.将知识系统化,感性认识上升为理性认识.四、检测反馈1.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系?(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?2.内容:观察甲、乙两图,解答下列问题:(1)填空:两图中的( )图比较符合传统寓言故事《龟兔赛跑》中所描述的情节.(2)根据(1)中所填答案的图象填写下表:项目线型主人公(龟或兔)到达时间(分)最快速度(米/分)平均速度(米/分)l1l2(3)根据(1)中所填答案的图象求:①龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围);②乌龟经过多长时间追上了兔子,追及地距起点有多远的路程?五、布置作业P92 习题4.6 T1,2六、板书设计4.4 一次函数的应用(2)例题讲解学生板演练习七、教学反思函数是研究现实世界变化规律的一个重要模型,是初中阶段数学学习的一个重要内容.在本节教学设计中,进一步体现了“问题情境——建立数学模型——应用与拓展”的模式.让学生从实际问题中抽象出函数及一次函数的概念、图象、性质,进而利用一次函数及其图象解决有关现实问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章一次函数4.3.2 一次函数的应用教学设计(第2课时)一、学生起点分析学生已学习了一次函数及其图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力.二、教学任务分析本节课是北师大版义务教育教科书八年级上册第四章第四节的第2课时,主要是利用一次函数图象解决有关现实问题,与原传统教材相比,新教材更注重借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,新教材注重在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.为此,本节课的教学目标是:①能通过函数图象获取信息,解决简单的实际问题;②在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系;③通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;④通过具体问题的解决,培养学生的数学应用能力;⑤引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.三、教学过程设计本节课分为八个教学环节:第一环节:复习引入;第二环节:初步探究;第三环节:反馈练习;第四环节:深入探究;第五环节:反馈练习;第六环节:探究升级;第七环节:课堂小结;第八环节:布置作业.第一环节复习引入内容:在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?在一次函数y kx b=+中当0k>时,y随x的增大而增大,当0b>时,直线交y轴于正半轴,必过一、二、三象限;当0b<时,直线交y轴于负半轴,必过一、三、四象限.当0k时,y随x的增大而减小,<当0b>时,直线交y轴于正半轴,必过一、二、四象限;当0b<时,直线交y轴于负半轴,必过二、三、四象限.目的:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k、b的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.效果:学生通过知识回顾,再次明确一次函数图象和性质,为学习本节课在知识上作好准备.第二环节初步探究内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.蓄水量V(万米3) 与干旱持续时间t(天)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?(根据图象回答问题,有困难的可以互相交流.)答案:(1)当0y=,水库干旱前的蓄水量是x=,12001200万米3.(2)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值.当10t=时,V约为1000万米3.同理可知当t为23天时,V约为750万米3.(3)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t的值.当V等于400万米3时,所对应的t的值约为40天.(4)水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求.当V为0·200 100020 t (天) S (户) 0 时,所对应的t 的值约为60天.目的:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力. 效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育. 第三环节 反馈练习:内容:当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(1)活动开始当天,全校有多少户家庭参加了该活动?(2)全校师生共有多少户?该活动持续了几天?(3)你知道平均每天增加了多少户?(4)活动第几天时,参加该活动的家庭数达到800户?(5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式答案:(1)200户;(2)全校师生共有1000户,该活动持续了20天; (3)平均每天增加了40户;(4)第15天时,参加该活动的家庭数达到800户;(5)40200S t =+ .目的:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.效果:通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同时渗透环保意识,珍惜水资源.第四环节 深入探究内容:1.看图填空(1)当0y =时,______x =;(2)直线对应的函数表达式是________________.答案:(1)观察图象可知当0y =时,2x =-;(2)直线过(-2,0)和(0,1)设表达式为y kx b =+,得20k b -+=① 1b =② 把②代入①得 0.5k =∴直线对应的函数表达式是0.51y x =+2.议一议一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)答案: 一元一次方程0.510x +=的解为2x =-,一次函数0.51y x =+包括许多点.因此0.510x +=是0.51y x =+的特殊情况.当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解. 函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.目的:通过本题让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解;从“形”的角度看,函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.效果:通过练习,学生明晰了函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.第五环节 反馈练习内容:全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失·200 100020 t (天) S (户) 0 土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,1002=50÷,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于(200176)212-÷=,故到第12年底,该地区的沙漠面积能减少到176万千米2.目的:通过土地沙漠化的问题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;同时,通过土地沙漠化的问题情景引导学生关注自己身边的生存环境.效果:通过对较复杂的问题的探究,培养了学生分析问题和解决问题的能力,并渗透德育教育.第六环节 探究升级内容:(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水?(7)写出活动开展的第t 天节约的水量Y 与天数t 的函数关系.答案:(6)第20天可节约100吨水;(7)420Y t =+.目的:通过问题的层层深入,引导学生的思维向纵深发展,进一步巩固用函数的思想解决生活中的问题.效果:学生通过合作交流,解决问题,在教师的引导下,逐步加深了对一次函数图象和性质的运用.第七环节课堂小结内容:本节课主要应掌握以下内容:1.能通过函数图象获取信息.2.能利用函数图象解决简单的实际问题.3.初步体会方程与函数的关系.目的:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.效果:学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用.第八环节布置作业内容:1.课外探究在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感兴趣的问题,编制一道数学题与同学交流.2.课外作业习题4.6四、教学设计反思(1)设计理念一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面力求让学生体会数学的广泛运用,另一方面,在学科教育中渗透德育教育.(2)评价方式在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,应关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议”、“想一想”的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有道理,教师应给予鼓励和恰当的评价,帮助学生认识自我,建立自信,真正在教学的过程中发挥评价的教育功能.。

相关文档
最新文档