结构力学静定拱 三铰拱
合集下载
第3章静定结构受力分析三铰拱
将以上两式代入上方程得 :
FN FQ0 sin FH cos
FQ FQ0 cos FH sin
(2)
M M 0 FH y
概念:
上式即为用相应简支梁的内力 表示的拱的内力式。当将上式 用作拱的内力计算公式时,可 以叫做公式法。
3.拱的内力图特征和制作
分析
由式2可知,在竖向荷载作用 下静定拱内力与相应简支梁
例1 图(a)所示三铰拱的拱轴 为半圆形。计算截面K1、K2的 内力。
FP=10kN
R=4m
(a)
解 1)求支座反力
竖 MA 0
向 FBy
1 [q R 2R
R 2
FP (R
R cos )] 11.33kN()
反 MB 0
力 FAy
1 [q R 2R
力与前规定相同;弯矩以使 拱的下侧受拉为正;
以图示三铰刚架为例说明拱的内 力计算的一般方法。
FH F Ay
FH
F By FN0
解:
截开指定截面K,取左侧为隔 离体,见下页图(c)(d),截 面上的内力均按规定的正方 向示出 。
M FN
FH
FQ
FAy
(c)
M0 0
FQ0
(d)
在轴力和剪力的两个正交方 向上建立投影方程,并建立 关于截面形心的力矩方程, 即得:
内力及拱水平反力有关。其
中拱水平反力对应确定的荷
载是一常数。此外,拱轴力
和剪力还与所计算截面外法
线与x轴的夹角a有关。
结论
拱轴上内力有以下3个特点:
1
不管是在均布荷载下还是在集 中荷载下,拱的三个内力图都 是曲线图形。
FN FQ0 sin FH cos
FQ FQ0 cos FH sin
(2)
M M 0 FH y
概念:
上式即为用相应简支梁的内力 表示的拱的内力式。当将上式 用作拱的内力计算公式时,可 以叫做公式法。
3.拱的内力图特征和制作
分析
由式2可知,在竖向荷载作用 下静定拱内力与相应简支梁
例1 图(a)所示三铰拱的拱轴 为半圆形。计算截面K1、K2的 内力。
FP=10kN
R=4m
(a)
解 1)求支座反力
竖 MA 0
向 FBy
1 [q R 2R
R 2
FP (R
R cos )] 11.33kN()
反 MB 0
力 FAy
1 [q R 2R
力与前规定相同;弯矩以使 拱的下侧受拉为正;
以图示三铰刚架为例说明拱的内 力计算的一般方法。
FH F Ay
FH
F By FN0
解:
截开指定截面K,取左侧为隔 离体,见下页图(c)(d),截 面上的内力均按规定的正方 向示出 。
M FN
FH
FQ
FAy
(c)
M0 0
FQ0
(d)
在轴力和剪力的两个正交方 向上建立投影方程,并建立 关于截面形心的力矩方程, 即得:
内力及拱水平反力有关。其
中拱水平反力对应确定的荷
载是一常数。此外,拱轴力
和剪力还与所计算截面外法
线与x轴的夹角a有关。
结论
拱轴上内力有以下3个特点:
1
不管是在均布荷载下还是在集 中荷载下,拱的三个内力图都 是曲线图形。
结构力学5三铰拱课件
拱架搭设
根据设计要求,选用合适的材料搭设拱架;
施工流程与工艺要求
02
01
03
拱体安装
按照从两端向跨中的顺序,对称安装拱体构件;
拱顶合拢
在拱顶设置临时支撑,确保拱体稳定;
施工监测
对施工过程进行实时监测,确保施工安全和质量。
施工流程与工艺要求
工艺要求 拱架搭设应符合设计要求,确保稳定性和承载力;
拱体安装应保证构件对接准确,避免出现错位和扭曲;
施工流程与工艺要求
01
临时支撑设置应合理,确保拱体 在合拢过程中保持稳定;
02
施工监测应实时进行,及时发现 和解决施工中的问题。
安装方法与注意事项
安装方法 采用分段吊装法,将拱体分成若干段,分别吊装到位;
对接安装时,应保证对接位置准确,避免出现错位和扭曲;
安装方法与注意事项
• 合拢时,应设置临时支撑,确保拱体稳定。
结构力学5三铰拱课件
目
CONTENCT
录
• 三铰拱概述 • 三铰拱的力学分析 • 三铰拱的设计与计算 • 三铰拱的施工与安装 • 三铰拱的维护与加固
01
三铰拱概述
定义与特点
定义
三铰拱是一种静定结构,由两个 固定端和三个铰链支承构成。
特点
拱顶在竖向荷载作用下主要承受 压力,并通过铰链传递水平推力 ,保持拱的平衡。
保持三铰拱的清洁,避免 积尘、腐蚀等影响其使用 寿命的因素。
紧固与润滑
对三铰拱的连接部位进行 紧固,对活动部位进行润 滑,确保其正常运转。
常见问题与处理方法
1 2
结构损伤
如发现三铰拱出现裂纹、变形等损伤,应立即采 取措施进行修复或更换。
连接松动
根据设计要求,选用合适的材料搭设拱架;
施工流程与工艺要求
02
01
03
拱体安装
按照从两端向跨中的顺序,对称安装拱体构件;
拱顶合拢
在拱顶设置临时支撑,确保拱体稳定;
施工监测
对施工过程进行实时监测,确保施工安全和质量。
施工流程与工艺要求
工艺要求 拱架搭设应符合设计要求,确保稳定性和承载力;
拱体安装应保证构件对接准确,避免出现错位和扭曲;
施工流程与工艺要求
01
临时支撑设置应合理,确保拱体 在合拢过程中保持稳定;
02
施工监测应实时进行,及时发现 和解决施工中的问题。
安装方法与注意事项
安装方法 采用分段吊装法,将拱体分成若干段,分别吊装到位;
对接安装时,应保证对接位置准确,避免出现错位和扭曲;
安装方法与注意事项
• 合拢时,应设置临时支撑,确保拱体稳定。
结构力学5三铰拱课件
目
CONTENCT
录
• 三铰拱概述 • 三铰拱的力学分析 • 三铰拱的设计与计算 • 三铰拱的施工与安装 • 三铰拱的维护与加固
01
三铰拱概述
定义与特点
定义
三铰拱是一种静定结构,由两个 固定端和三个铰链支承构成。
特点
拱顶在竖向荷载作用下主要承受 压力,并通过铰链传递水平推力 ,保持拱的平衡。
保持三铰拱的清洁,避免 积尘、腐蚀等影响其使用 寿命的因素。
紧固与润滑
对三铰拱的连接部位进行 紧固,对活动部位进行润 滑,确保其正常运转。
常见问题与处理方法
1 2
结构损伤
如发现三铰拱出现裂纹、变形等损伤,应立即采 取措施进行修复或更换。
连接松动
结构力学三铰拱宣讲
三铰位置拟定,合理拱轴唯一拟定
设计时只能根据主要荷载选择近似合理拱轴 一种合理轴线只相应一种荷载,荷载布置变化,合理拱轴 亦变化。
第四节 三铰拱旳合理轴线
a. 三铰拱在均匀水压力作用下,合理轴线为一圆弧
R FN const q
第四节 三铰拱旳合理轴线
b. 在填土重量作用下,三铰拱旳合理轴线是一悬链线
第三部分 三铰拱
学习内容
三铰拱旳构成特点及其优缺陷; 三铰拱旳反力和内力计算及内力图旳绘制; 三铰拱旳合理拱轴线。
学习目旳和要求
目旳:实际工程中拱旳形式越来越多,了解拱旳受力特征, 对指导设计和构造选型是非常必要旳。
要求:熟练掌握三铰拱旳反力和内力计算。 了解三铰拱旳内力图绘制旳环节。 掌握三铰拱合理拱轴旳形状及其特征。
第三节 竖向荷载作用下三铰拱旳内力特点
绘弯矩图
36
40 48 40
M
0 K
FH y
MK
M
0 K
FH y
综合弯矩图是两种弯矩图叠加旳成果(注意是竖标旳叠加, 或称代数叠加),即两个曲线所夹部分,可见弯矩很小。三 铰拱弯矩下降旳原因完全是因为推力造成旳。
第三节 竖向荷载作用下三铰拱旳内力特点
三铰拱在竖向荷载作用下旳弯矩由两部分构成,水平反力 产生负弯矩,能够抵消一部分正弯矩,与简支梁相比拱旳弯 矩、剪力较小,轴力较大(压力),应力沿截面高度分布较均 匀。
FAx=FBx =FH • 荷载与跨度一定时,水平推力与矢高成反
比,且总是正旳,故称内推力。扁拱旳水
FH= MC0 / f 平推力不小于陡拱。
• 该组结论仅适合于平拱,且承受竖向荷载。
2 竖向荷载作用下拱内力计算
截面旳外法线(即该处切线)与水平方向旳倾角φk要求左 半拱为正,右半拱为负。拱截面弯矩一般以内侧受拉为正,
设计时只能根据主要荷载选择近似合理拱轴 一种合理轴线只相应一种荷载,荷载布置变化,合理拱轴 亦变化。
第四节 三铰拱旳合理轴线
a. 三铰拱在均匀水压力作用下,合理轴线为一圆弧
R FN const q
第四节 三铰拱旳合理轴线
b. 在填土重量作用下,三铰拱旳合理轴线是一悬链线
第三部分 三铰拱
学习内容
三铰拱旳构成特点及其优缺陷; 三铰拱旳反力和内力计算及内力图旳绘制; 三铰拱旳合理拱轴线。
学习目旳和要求
目旳:实际工程中拱旳形式越来越多,了解拱旳受力特征, 对指导设计和构造选型是非常必要旳。
要求:熟练掌握三铰拱旳反力和内力计算。 了解三铰拱旳内力图绘制旳环节。 掌握三铰拱合理拱轴旳形状及其特征。
第三节 竖向荷载作用下三铰拱旳内力特点
绘弯矩图
36
40 48 40
M
0 K
FH y
MK
M
0 K
FH y
综合弯矩图是两种弯矩图叠加旳成果(注意是竖标旳叠加, 或称代数叠加),即两个曲线所夹部分,可见弯矩很小。三 铰拱弯矩下降旳原因完全是因为推力造成旳。
第三节 竖向荷载作用下三铰拱旳内力特点
三铰拱在竖向荷载作用下旳弯矩由两部分构成,水平反力 产生负弯矩,能够抵消一部分正弯矩,与简支梁相比拱旳弯 矩、剪力较小,轴力较大(压力),应力沿截面高度分布较均 匀。
FAx=FBx =FH • 荷载与跨度一定时,水平推力与矢高成反
比,且总是正旳,故称内推力。扁拱旳水
FH= MC0 / f 平推力不小于陡拱。
• 该组结论仅适合于平拱,且承受竖向荷载。
2 竖向荷载作用下拱内力计算
截面旳外法线(即该处切线)与水平方向旳倾角φk要求左 半拱为正,右半拱为负。拱截面弯矩一般以内侧受拉为正,
5三铰拱
(1)计算支座反力
VA VA
26983 11kN 12 2 6 38 9 VB VB 9 kN 12
(2)内力计算
y2
以截面2为例
4f 44 x l x 312 3 3m l2 12 2
dy dx
x 3
MC 11 6 2 6 3 H 7.5kN f 4
(b)带拉杆三铰拱
§5-1
三铰拱的支座反力和内力
一、支座反力 与同跨度同荷载对应简支梁比较
a1
d P1 a2
D
b1
c
f l2
b2
P2
HB
MA 0
1 VB Pa 1 1 P 2 a2 l
VB VB
VA VA
HA
y
MB 0
VA
x
VA
1 Pb 1 1 P 2b2 l
H
y C1e
C2 e
x
-26-
H H qc y a , 代入原方程, a 设其特解 q y x A ch x B sh x c H H qc x 0 , y 0 A 设 x 0, y 0 B 0 q y c ch x 1 悬链线 H
30 x 20( x 2) 1 y2 x2 20 2
CB段(4,8):
30x 20( x 2) 10( x 4) 2 / 2 1 2 5 y3 x x2 20 4 2
由各段的拱轴方程,可绘出该拱的合理拱轴。
例3、设三铰拱承受均匀分布的水压力,试证明其合理轴线是圆弧曲线。
l1
第3章 三铰拱
(二) 对称三铰拱的数解法
1. 计算支座反力
图示三铰拱中,共有 四个反力: VA、HA、VB、HB。 根据整体的平衡 条件可建立三个 平衡方程: ∑MA=0 ∑MB=0 ∑X=0 再取中间铰一侧隔离 体, ∑ MC=0, 由这四个方程可 解出四个反力。
由∑MB= 0,得: VAl-P1b1- P2b2-…= 0 VA= (P1b1 + P2b2 + …)/ l V0A 由∑MA= 0,得: VB= (P1a1+ P2a2+…)/ l V0B 把两个竖向反力VA 、VB与相应简支梁支座反力V0A 、 V0B 相比,可知竖向荷载作用下,对称三铰拱的竖向反力与 其相应简支梁的反力完全相同。
两个投影方程可用拱轴在该点的法线n和切线t为 投影轴。
∑n = 0 ,得: QD = VA cosφD -P1 cosφD -P2 cosφD -H sinφD = (V0A-P1-P2) cosφD -H sinφD
= Q0D cosφD -H sinφD
∑t = 0 ,得: ND = VA sinφD - P1 sinφD -P2 sinφD +H cosφD = (V0A-P1-P2) sinφD +H cosφD
由∑X= 0,得: HA= HB = H 中间铰左侧隔离体 ∑MC=0 得:
∑ MC =
VAl1-P1(l1 - a1) - P2(l1 - a2) - P3(l1 - a3)- H f = 0 得: H=[VAl1-P1(l1 - a1)- P2(l1 - a2)- P3(l1 - a3)] / f 因 VA = V0A ,得:H= M0C / f M0C为相应简支梁截面C的弯矩。
最后根据本例的已知条件,进行具体计算。
VA=VB= V0A = q l / 2= 4× 16 / 2 = 32kN H = (q l 2 / 8) / f = (4× 162 / 8) / 4 = 32kN
结构力学第4章静定拱(f)
FH
FH
由边界条件
x 0, y 0 : x 0, y 0 :
A qc
B0
合理拱轴线的方程为
y qc (cosh x 1)
FH
§4-3 三铰拱的合理拱轴线
例4-3 试求三铰拱在垂直于拱轴线的均布荷载作用下的合理 拱轴线。
解:由图a,荷载为非竖向荷载。
思路:假定拱处于无弯矩状态,根据平衡 条件推求合理拱轴线方程。
Fi ai l
Fx 0 FAH FBH FH
相应简支梁
取左半拱为隔离体
MC 0
FH
FAV l1 F1(l1 a1) f
可 得
FAV FBV
FA0V FB0V
FH
M
0 C
f
三铰拱的反力只与 荷载及三个铰的位置有 关,与拱轴线形状无关;
推力FH 与拱高 f 成反比。
§4-2 三铰拱的计算
§4-2 三铰拱的计算
2、内力的计算
压力为正
任一截面的轴力等于该截面一 侧所有外力在该截面法线方向 上的投影代数和。
FN FAV sin FH cos F1 sin (FAV F1) sin FH cos FS0 sin FH cos
相应简支梁
§4-2 三铰拱的计算
2、内力的计算
区别拱与梁的主要标志:推力的存在与否。
§4-1 概述
拉杆拱: 拱两支座间的拉杆代替支座承受水平推力
拉杆做成折线形可获得较大空间
高跨比:f/l
平拱: 两拱趾在同一水平线上 斜拱: 两拱趾不在同一水平线上
§4-2 三铰拱的计算
1、支座反力的计算
由拱的整体平衡
M B 0 FAV
Fibi l
M A 0 FBV
第3章 三铰拱
1 1 2 1 M qlx qx ql x x 2 ql x x 8f l 2
M = M0 -Hy = 0 可见,拱内无弯矩。
(3) 任一截面的剪力
dy 4 f 8 f 4f 2 x 由于 y 2 l x x dx l l l dy 4f 8f sin tg cos cos 2 x cos dx l l Q Q 0 cos H sin
1 ql 2 ql x x y 2 8f
令 M= 0,
1 ql 2 ql x x y0 2 8f
得合理拱轴方程: 4f y 2 l x x l
可见,合理拱轴方程是二次抛物线,与前 例所给的拱轴方程完全一致。 要使拱处于无弯矩状态,只有在恒载作用 情况下才有可能做到。工程实际中的结构,往 往同时受恒载和活载的共同作用,而活载是时 而出现,时而消失的(如人群、风雪荷载等), 或是移动的(如吊车、车辆荷载等),这就很难 使拱内完全不出现弯矩。 设计中以正常使用情况下经常出现的荷载 为依据,选择一个拱轴,使之弯矩尽量减少。
例中,已知二次抛物线拱在全跨受竖向均布 荷载作用下,各截面均无弯矩。现假设拱轴方程y 为未知,但三个铰的位置已定,铰C在拱顶处, 如图示。 现按照上述方法,求其合理拱轴方程。
由平衡条件可求出三铰拱的反力。 任一截面的弯矩为:
2 1 1 ql M M 0 Hy ( qlx qx2 ) y 2 2 8f
两个投影方程可用拱轴在该点的法线n和切线t为 投影轴。
∑n = 0 ,得: QD = VA cosφD -P1 cosφD -P2 cosφD -H sinφD = (V0A-P1-P2) cosφD -H sinφD
= Q0D cosφD -H sinφD
M = M0 -Hy = 0 可见,拱内无弯矩。
(3) 任一截面的剪力
dy 4 f 8 f 4f 2 x 由于 y 2 l x x dx l l l dy 4f 8f sin tg cos cos 2 x cos dx l l Q Q 0 cos H sin
1 ql 2 ql x x y 2 8f
令 M= 0,
1 ql 2 ql x x y0 2 8f
得合理拱轴方程: 4f y 2 l x x l
可见,合理拱轴方程是二次抛物线,与前 例所给的拱轴方程完全一致。 要使拱处于无弯矩状态,只有在恒载作用 情况下才有可能做到。工程实际中的结构,往 往同时受恒载和活载的共同作用,而活载是时 而出现,时而消失的(如人群、风雪荷载等), 或是移动的(如吊车、车辆荷载等),这就很难 使拱内完全不出现弯矩。 设计中以正常使用情况下经常出现的荷载 为依据,选择一个拱轴,使之弯矩尽量减少。
例中,已知二次抛物线拱在全跨受竖向均布 荷载作用下,各截面均无弯矩。现假设拱轴方程y 为未知,但三个铰的位置已定,铰C在拱顶处, 如图示。 现按照上述方法,求其合理拱轴方程。
由平衡条件可求出三铰拱的反力。 任一截面的弯矩为:
2 1 1 ql M M 0 Hy ( qlx qx2 ) y 2 2 8f
两个投影方程可用拱轴在该点的法线n和切线t为 投影轴。
∑n = 0 ,得: QD = VA cosφD -P1 cosφD -P2 cosφD -H sinφD = (V0A-P1-P2) cosφD -H sinφD
= Q0D cosφD -H sinφD
结构力学 三铰拱
9 / 13
À
第四章 静定拱
试求图示对称三铰拱在均布荷载作用下的合理拱轴线
q y A x q f C B
FH=ql2/8f M0=qlx/2-qx2 /2 =qx(l-x)/2 y=M0/FH=4fx(l-x)/l2
l
x
抛物线À
10 / 13
第四章 静定拱
荷载布置改变,合理拱轴亦 改变 荷载确定、拱脚位置确定, 则顶铰位置决定水平反力, 因此,有无限多个相似图形 可作合理拱轴 三铰位置确定,合理拱轴唯 一确定 设计时只能根据主要荷载选 择近似合理拱轴
第四章 静定拱 §4-1 概述
三铰拱(three-hinges arch)的构成
拱顶 拱轴线 拱高 拱址 起拱线 拱跨 拱址
1 / 13
ÀБайду номын сангаас
第四章 静定拱
1)拱的分类
三铰拱 拉杆拱1
两铰拱
无铰拱
拉杆拱2
斜拱
2 / 13
À
第四章 静定拱
2)拱的受力特点
FP
曲梁
FP • 在竖向荷载作用下 会产生水平推力。
6 / 13
À
第四章 静定拱
拱的内力图
− y ⎤⎧M ⎫ ⎧M ⎫ ⎡1 0 ⎪ 0⎪ ⎪ ⎪ ⎢ ⎥ ⎨FS ⎬ = ⎢0 cosϕ − sinϕ⎥⎨ FS ⎬ ⎪F ⎪ ⎢0 sinϕ cosϕ ⎥⎪ F ⎪ ⎦⎩ H ⎭ ⎩ N⎭ ⎣
0
由于拱轴线是弯曲的,所以内力图都是曲线形 的,内力图要通过逐点描图的方法绘制。
拱
• 由于水平推力的存 在,使得拱内弯矩大 大减小。
3 / 13
À
第四章 静定拱 §4-2 三铰拱的计算
第三章 静定结构--三铰拱
拱结构的缺点:由于推力的存在,所以对基础的要求较高; 拱轴的曲线形状不便于施工(有时为减轻拱对基础的压力, 常使用拉杆布置)
4、 三铰拱的合理轴线
使拱在给定荷载下各截面弯矩都等于零的拱轴线,被称为
与该荷载对应的合理拱轴
M M 0 FH y 0
y
M0 FH
M0 MC0
f
只限于三铰平拱受 竖向荷载作用
FAy AF0 AyFra biblioteka1 P1
a2 C
f
l1 l
P1
C
X 0
b1 P2
x l2
P2
b2 F l Pb Pb 0
Ay
11
22
FAy
P1 b1
l
P2b2
B FBx
FBy
Pibi l
F0 Ay
mA 0
FBy
Piai l
F0 By
B
mc 0
F0 By
FH
•
•
内力图均不再为直线; 集中力作用处,剪力图将发 生突变; 集中力偶作用处,弯矩图将 发生突变; 上述公式仅适合于平拱,且 承受竖向荷载情况; 拱的内力仍然有FS=dM/ds
例题:三铰拱所受荷载如图所示,拱的轴线为抛物线方程
y
4f l2
xl
x
计算其反力并绘制内力图
q=2kN·m C
3、竖向荷载作用下三铰拱的内力特点
三铰拱在竖向荷载作用下的弯矩由两部分组成,水平反 力产生负弯矩,可以抵消一部分正弯矩,与简支梁相比拱的 弯矩、剪力较小,轴力较大(压力),应力沿截面高度分布 较均匀。
4、 三铰拱的合理轴线
使拱在给定荷载下各截面弯矩都等于零的拱轴线,被称为
与该荷载对应的合理拱轴
M M 0 FH y 0
y
M0 FH
M0 MC0
f
只限于三铰平拱受 竖向荷载作用
FAy AF0 AyFra biblioteka1 P1
a2 C
f
l1 l
P1
C
X 0
b1 P2
x l2
P2
b2 F l Pb Pb 0
Ay
11
22
FAy
P1 b1
l
P2b2
B FBx
FBy
Pibi l
F0 Ay
mA 0
FBy
Piai l
F0 By
B
mc 0
F0 By
FH
•
•
内力图均不再为直线; 集中力作用处,剪力图将发 生突变; 集中力偶作用处,弯矩图将 发生突变; 上述公式仅适合于平拱,且 承受竖向荷载情况; 拱的内力仍然有FS=dM/ds
例题:三铰拱所受荷载如图所示,拱的轴线为抛物线方程
y
4f l2
xl
x
计算其反力并绘制内力图
q=2kN·m C
3、竖向荷载作用下三铰拱的内力特点
三铰拱在竖向荷载作用下的弯矩由两部分组成,水平反 力产生负弯矩,可以抵消一部分正弯矩,与简支梁相比拱的 弯矩、剪力较小,轴力较大(压力),应力沿截面高度分布 较均匀。
第三章-静定结构----三铰拱
∑ M0 = 0 N D ⋅ R − N E ( R + dR ) = 0 ND = NE = N
这表明拱在法向均布荷载作用下处于无弯矩状态时,截面的轴力为一常数。
∑y=0
q ⋅ dS + 2 N ⋅ sin
dϕ =0 2 N = − qR
q ⋅ Rd ϕ + N ⋅ d ϕ = 0
R=−
N q
因N为一常数,q也为一常数,所以任一点的曲率半径R也是常数,即拱轴为圆弧。
绘制内力图
0
y
13.300 10.958 9.015 7.749 7.500 7.433 6.796 11.235 11.665 11.700 1.421 3.325 3.331 1.060 0.600 0.472 1.000 0.003 0.354
0.600
0.000
A
1
1.125 1.500 1.125
P2
f H
VA
VB
f = 1 → 10 l
曲线形状:抛物线、圆、悬链线……..
三铰拱的支座反力和内力 一、支座反力 与同跨度同荷载对应简支梁比较 支座反力
a1
d P1 a2
D
b1
c
f l2 l
b2
P2
HB
∑ MAP2 a2 ) 1 l
VB = VBo
o VA = VA
2
y2
q=2kN .m
6m x
0.000 0.375 4.500
3
ϕ2
4 5
6m
6
0.375
7 B 8
P=8kN
0.000
M图 kN.m
N图 kN
Q图 kN
拱的合理轴线 在固定荷载作用下,使拱处于无弯矩状态的轴线称为合理 轴线。由上述可知,按照压力曲线设计的拱轴线就是合理轴线。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。
这表明拱在法向均布荷载作用下处于无弯矩状态时,截面的轴力为一常数。
∑y=0
q ⋅ dS + 2 N ⋅ sin
dϕ =0 2 N = − qR
q ⋅ Rd ϕ + N ⋅ d ϕ = 0
R=−
N q
因N为一常数,q也为一常数,所以任一点的曲率半径R也是常数,即拱轴为圆弧。
绘制内力图
0
y
13.300 10.958 9.015 7.749 7.500 7.433 6.796 11.235 11.665 11.700 1.421 3.325 3.331 1.060 0.600 0.472 1.000 0.003 0.354
0.600
0.000
A
1
1.125 1.500 1.125
P2
f H
VA
VB
f = 1 → 10 l
曲线形状:抛物线、圆、悬链线……..
三铰拱的支座反力和内力 一、支座反力 与同跨度同荷载对应简支梁比较 支座反力
a1
d P1 a2
D
b1
c
f l2 l
b2
P2
HB
∑ MAP2 a2 ) 1 l
VB = VBo
o VA = VA
2
y2
q=2kN .m
6m x
0.000 0.375 4.500
3
ϕ2
4 5
6m
6
0.375
7 B 8
P=8kN
0.000
M图 kN.m
N图 kN
Q图 kN
拱的合理轴线 在固定荷载作用下,使拱处于无弯矩状态的轴线称为合理 轴线。由上述可知,按照压力曲线设计的拱轴线就是合理轴线。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。 从结构优化设计观点出发,寻找合理轴线即拱结构的优化选型。
第三章静定结构受力分析三铰拱
(1)求反力:Fy (2)列弯矩方程
(3)令M (x) 0 y
qL A FV B 2
M (x) Fy Ax
1 FH
(Fy Ax
1 2
12qFxHq2x)2q8q8LFfL2fH2
y
(1 2
qLx
1 2
qx2
)
4f L2
(L x)x
结论:均布荷载作用下,合理拱轴线方程为抛物线。
§3-3 三铰拱
a2
b2
F =F YA
YA0
F =F XA
XB
=FH
FYB0
M
0 c
[FYA0
l 2
l P1( 2
a1)]
FH= MC0 / f
§3-3 三铰拱
结论: ①简支梁不存在水平推力,三铰结构水平推力不为零;
②对于平拱、竖向反力与拱高无关; 平拱
③反力与拱轴线形式无关,只与三个铰的位置有关;
④水平推力与拱高成反比。
例2:求集中荷载作用下的合理拱轴线
(1)求反力:Fy A FyB 1.5P
(2)求合理拱轴线
FH
1 (1.5P 2a P a) a
2P
AD段 : M (x)
DC段 : M (x)
1.5Px FH y
1.5Px P(x a)
0
FH
y
y0
3x 4
y
(直线)
1 (0.5Px 2P
Pa)
§3-3 三铰拱
MK
M
0 K
FH y
FQK
FQ
0 K
cos FH
sin
FNK
F Q
0 K
sin FH
cos
结构力学——三铰拱
FAy A
F0 Ay
a1 P1
a2 C
f
l1 l
P1
C
X 0
b1 P2
x l2
P2
b2 F l Pb Pb 0
Ay
11
22
FAy
P1 b1
l
P2b2
B FBx
FBy
Pibi l
F0 Ay
mA 0
FBy
Piai l
F0 By
B
mc 0
F0 By
FAy FP1
FAy0
FSK0 MK0
由 Fn 0
FNK FSK0sin FHcos
第二节 竖向荷载作用下三铰拱的受力分析
1 竖向荷载作用下拱反力计算 2 竖向荷载作用下指定截面内力计算
关于内力
M 1
F S
0
FN 0
0
cos sin
拱结构的优点:选用耐压性能好而抗拉性能差的砖石、混 凝土材料,节省用料,重量轻,可用于大跨、大空间结构。
拱结构的缺点:由于推力的存在,所以对基础的要求较高; 拱轴的曲线形状不便于施工(有时为减轻拱对基础的压力, 常使用拉杆布置)
第四节 三铰拱的合理轴线
使拱在给定荷载下各截面弯矩都等于零的拱轴线,被称为
例题:给定对称三铰拱铰的位置(l , f)和荷载形式(均布荷载
),求其合理拱轴线形状。 q
f l
q
x
ql2/8
M
0 C
1 ql 2 8
FH
1 8f
ql 2
M 0 1 qlx 1 qx2 1 qx(l x)
F0 Ay
a1 P1
a2 C
f
l1 l
P1
C
X 0
b1 P2
x l2
P2
b2 F l Pb Pb 0
Ay
11
22
FAy
P1 b1
l
P2b2
B FBx
FBy
Pibi l
F0 Ay
mA 0
FBy
Piai l
F0 By
B
mc 0
F0 By
FAy FP1
FAy0
FSK0 MK0
由 Fn 0
FNK FSK0sin FHcos
第二节 竖向荷载作用下三铰拱的受力分析
1 竖向荷载作用下拱反力计算 2 竖向荷载作用下指定截面内力计算
关于内力
M 1
F S
0
FN 0
0
cos sin
拱结构的优点:选用耐压性能好而抗拉性能差的砖石、混 凝土材料,节省用料,重量轻,可用于大跨、大空间结构。
拱结构的缺点:由于推力的存在,所以对基础的要求较高; 拱轴的曲线形状不便于施工(有时为减轻拱对基础的压力, 常使用拉杆布置)
第四节 三铰拱的合理轴线
使拱在给定荷载下各截面弯矩都等于零的拱轴线,被称为
例题:给定对称三铰拱铰的位置(l , f)和荷载形式(均布荷载
),求其合理拱轴线形状。 q
f l
q
x
ql2/8
M
0 C
1 ql 2 8
FH
1 8f
ql 2
M 0 1 qlx 1 qx2 1 qx(l x)
结构力学之三铰拱
0 Q
FS
I l/2
FVB
【例2】求图示三铰拱式屋架在竖向荷载作用下的支反力和内力。 解: (1) 计算支座反力
q
0 VB
FH 0, FV A F , F V B F
0 VA
y FH FVA
A
C
x
f
B FVB
0 MC (2)计算拉杆内力: S F f
(3)计算拱身内力
钢拉杆(拉力FS) l/2 l/2 l
(2) 由于推力的存在(前两式右边第二项),拱与相应简 支梁相比:其截面上的弯矩和剪力将减小。弯矩的降低, 使拱能更充分地发挥材料的作用。
(3) 在竖向荷载作用下,梁的截面内没有轴力,而拱的截
面内轴力较大,且一般为压力(拱轴力仍以拉力为正、压 力为负)
三铰拱的内力图
1.画三铰拱内力图的方法 描点法。 2.画三铰拱内力图的步骤 1)计算支座反力 2)计算拱圈截面的内力(可以每隔一定水平距离取 一截面,也可以沿拱轴每隔一定长度取一截面)。 3)按各截面内力的大小和正负绘制内力图。 注: 1)仍有Q=dM/ds 即剪力等零处弯矩达极值; 2)M、Q、N图均不再为直线; 3)集中力作用处Q 图将发生突变; 4)集中力偶作用处M 图将发生突变。
0 FVA
l/2
FCx
I
FCy
C
FP3
F B I
FS
0 MC
FS
l/2
f
FVB
(3)计算拱身内力
在无拉杆三铰拱的内力计算式中,只须用FS去取代FH, 即可得出有水平拉杆拱身内力计算式为
M M FS y
0
I
FCy
C
FCx
FP3
F B
FS
I l/2
FVB
【例2】求图示三铰拱式屋架在竖向荷载作用下的支反力和内力。 解: (1) 计算支座反力
q
0 VB
FH 0, FV A F , F V B F
0 VA
y FH FVA
A
C
x
f
B FVB
0 MC (2)计算拉杆内力: S F f
(3)计算拱身内力
钢拉杆(拉力FS) l/2 l/2 l
(2) 由于推力的存在(前两式右边第二项),拱与相应简 支梁相比:其截面上的弯矩和剪力将减小。弯矩的降低, 使拱能更充分地发挥材料的作用。
(3) 在竖向荷载作用下,梁的截面内没有轴力,而拱的截
面内轴力较大,且一般为压力(拱轴力仍以拉力为正、压 力为负)
三铰拱的内力图
1.画三铰拱内力图的方法 描点法。 2.画三铰拱内力图的步骤 1)计算支座反力 2)计算拱圈截面的内力(可以每隔一定水平距离取 一截面,也可以沿拱轴每隔一定长度取一截面)。 3)按各截面内力的大小和正负绘制内力图。 注: 1)仍有Q=dM/ds 即剪力等零处弯矩达极值; 2)M、Q、N图均不再为直线; 3)集中力作用处Q 图将发生突变; 4)集中力偶作用处M 图将发生突变。
0 FVA
l/2
FCx
I
FCy
C
FP3
F B I
FS
0 MC
FS
l/2
f
FVB
(3)计算拱身内力
在无拉杆三铰拱的内力计算式中,只须用FS去取代FH, 即可得出有水平拉杆拱身内力计算式为
M M FS y
0
I
FCy
C
FCx
FP3
F B
结构力学(第二章)-三铰拱课件
稳定性分析对于结构的整体稳定性和安全性具有 重要意义。
03
三铰拱的设计与优化
设计原则与步骤
确定设计要求
明确三铰拱的设计目标,如承载能力、稳定性、 经济性等。
截面设计
根据计算出的内力和弯矩,设计三铰拱的截面尺 寸和形状。
结构分析
对三铰拱进行受力分析,计算出各截面的内力和 弯矩。
稳定性分析
对三铰拱进行稳定性分析,确保其在承载过程中 不会发生失稳。
3D打印技术
3D打印技术能够实现复杂结构的快速 、精确制造,为三铰拱的原型制作和 试验提供便利。
未来发展方向与趋势
跨学科融合
结构力学与材料科学、计算机科 学、人工智能等学科的交叉融合,
将推动三铰拱在理论和实践上的 创新。
绿色与可持续发展
在未来的发展中,三铰拱的设计和 建造将更加注重环保和可持续发展, 如采用可再生材料和节能技术。
智能化与自动化
随着智能化和自动化技术的发展, 三铰拱的设计、建造和监测将趋向 于智能化和自动化,提高效率和安 全性。
THANK YOU
感谢聆听
案例分析与实践
案例一
某桥梁的三铰拱设计,通过优 化设计,提高了桥梁的承载能 力和稳定性。
案例二
某工业厂房的三铰拱设计,采 用轻量化设计,降低了结构的 自重。
案例三
某大型场馆的三铰拱设计,通 过参数优化,实现了结构的优 化和美观。
04
三铰拱的施工与维护
施工工艺与要点
01
02
03
04
施工准备
确保施工场地安全,检查施工 材料质量,制定施工计划和安
100%
建筑工程
在建筑工程中,三铰拱可用于大 型工业厂房、仓库、展览馆等建 筑的屋盖结构。
03
三铰拱的设计与优化
设计原则与步骤
确定设计要求
明确三铰拱的设计目标,如承载能力、稳定性、 经济性等。
截面设计
根据计算出的内力和弯矩,设计三铰拱的截面尺 寸和形状。
结构分析
对三铰拱进行受力分析,计算出各截面的内力和 弯矩。
稳定性分析
对三铰拱进行稳定性分析,确保其在承载过程中 不会发生失稳。
3D打印技术
3D打印技术能够实现复杂结构的快速 、精确制造,为三铰拱的原型制作和 试验提供便利。
未来发展方向与趋势
跨学科融合
结构力学与材料科学、计算机科 学、人工智能等学科的交叉融合,
将推动三铰拱在理论和实践上的 创新。
绿色与可持续发展
在未来的发展中,三铰拱的设计和 建造将更加注重环保和可持续发展, 如采用可再生材料和节能技术。
智能化与自动化
随着智能化和自动化技术的发展, 三铰拱的设计、建造和监测将趋向 于智能化和自动化,提高效率和安 全性。
THANK YOU
感谢聆听
案例分析与实践
案例一
某桥梁的三铰拱设计,通过优 化设计,提高了桥梁的承载能 力和稳定性。
案例二
某工业厂房的三铰拱设计,采 用轻量化设计,降低了结构的 自重。
案例三
某大型场馆的三铰拱设计,通 过参数优化,实现了结构的优 化和美观。
04
三铰拱的施工与维护
施工工艺与要点
01
02
03
04
施工准备
确保施工场地安全,检查施工 材料质量,制定施工计划和安
100%
建筑工程
在建筑工程中,三铰拱可用于大 型工业厂房、仓库、展览馆等建 筑的屋盖结构。
结构力学之三铰拱课件
桥梁工程
三铰拱广泛应用于桥梁工程中, 如公路桥、铁路桥和立交桥等。
100%
工业建筑
三铰拱适用于工业建筑中的大型 厂房、仓库等结构,能够承受较 大的竖向荷载和水平荷载。
80%
公共建筑
三铰拱也适用于公共建筑中,如 体育馆、会展中心等大型建筑, 能够提供大跨度和高承载能力的 结构体系。
02
三铰拱的力学分析
定位与调整
在吊装完成后,对三铰拱的位 置和角度进行调整,确保其符 合设计要求三铰拱的各个部件连接牢 固、可靠。
防腐与涂装
在施工完成后,对三铰拱进行 防锈蚀处理和涂装,提高其耐 久性和美观度。
施工安全
安全措施
在施工过程中,采取一系列安全措施,如设置安全警示标志、配 备安全带和安全帽等,确保施工人员的安全。
在基础上按照设计要求拼装三铰拱的各个部件,确保 拱体的几何尺寸和位置准确。
04
固定与调整
通过焊接或螺栓连接等方式将拱体固定在基础上,并 进行必要的调整,确保拱体的稳定性和承载能力。
05
施工监测
在施工过程中,对三铰拱的各项参数进行监测,确保 施工质量和安全。
安装技术
01
02
03
04
吊装方法
根据三铰拱的重量和尺寸,选 择合适的吊装机械和吊装方法 ,确保吊装过程中的安全和质 量。
三铰拱的特点
稳定性好
由于三铰拱具有静定结构的特点,因此其稳定性较 好,不易发生侧向失稳或扭转失稳。
承载能力强
三铰拱的承载能力较强,能够承受较大的竖向荷载 和水平荷载。
适用范围广
三铰拱适用于各种类型的建筑结构,如桥梁、厂房 、仓库等,尤其适用于需要承受较大荷载和跨度的 结构。
三铰拱的应用场景
三铰拱广泛应用于桥梁工程中, 如公路桥、铁路桥和立交桥等。
100%
工业建筑
三铰拱适用于工业建筑中的大型 厂房、仓库等结构,能够承受较 大的竖向荷载和水平荷载。
80%
公共建筑
三铰拱也适用于公共建筑中,如 体育馆、会展中心等大型建筑, 能够提供大跨度和高承载能力的 结构体系。
02
三铰拱的力学分析
定位与调整
在吊装完成后,对三铰拱的位 置和角度进行调整,确保其符 合设计要求三铰拱的各个部件连接牢 固、可靠。
防腐与涂装
在施工完成后,对三铰拱进行 防锈蚀处理和涂装,提高其耐 久性和美观度。
施工安全
安全措施
在施工过程中,采取一系列安全措施,如设置安全警示标志、配 备安全带和安全帽等,确保施工人员的安全。
在基础上按照设计要求拼装三铰拱的各个部件,确保 拱体的几何尺寸和位置准确。
04
固定与调整
通过焊接或螺栓连接等方式将拱体固定在基础上,并 进行必要的调整,确保拱体的稳定性和承载能力。
05
施工监测
在施工过程中,对三铰拱的各项参数进行监测,确保 施工质量和安全。
安装技术
01
02
03
04
吊装方法
根据三铰拱的重量和尺寸,选 择合适的吊装机械和吊装方法 ,确保吊装过程中的安全和质 量。
三铰拱的特点
稳定性好
由于三铰拱具有静定结构的特点,因此其稳定性较 好,不易发生侧向失稳或扭转失稳。
承载能力强
三铰拱的承载能力较强,能够承受较大的竖向荷载 和水平荷载。
适用范围广
三铰拱适用于各种类型的建筑结构,如桥梁、厂房 、仓库等,尤其适用于需要承受较大荷载和跨度的 结构。
三铰拱的应用场景
第2章3静定结构受力分析-三铰拱
FH
B FBy
M KM K 0FHyK
F Q KF A ycosK F PicosKF HsinK
F A y F Pi cosKF HsinK
F Q 0KF Ay F Pi
FP1 FP2 FPi
C
(c) A
K
FPn B
F Q K F Q 0 K c o sK F H sinK
6
4.5 3
7.5kN m
其余各截 面内力计 算与上述 步骤相同, 可列表计 算。
FQ3 FQ03 cos FH sin 4 0.832 4.5 0.555 0.83kN
FN3 FQ03 sin FH cos 4 0.555 4.5 0.832 5.96 kN
2. 4 三铰拱受力分析
12m
3m FBy=10kN
(a)
y3
4f l2
xl x
44 122
3
12
3
3
m
tan 3
dy dx
4f l2
l
2x
44 122
12
2
3
0.667
3 33.7o, sin 0.555, cos 0.832
M
L 3
M
0 3
L
FH y3
43
4.5 3
1.5kN m
M
R 3
M
0 3
R
FH
y3
43
FAyFA 0y,
FByFB 0y,
FHM fC 0 反比。
2. 4 三铰拱受力分析
例题 2-8 试求图示等高三铰拱的支座反力。
解: MA0
F B y 1 0 m 8 0 k N 2 .2 5 m 4 0 k N 2 .5 m 1 0 k N 7 .5 m 3 0 k N /m 5 m 2 .5 m 2 0 k N m 0
第三章静定结构受力分析三铰拱
第三章静定结构受力分析三铰拱三铰拱是指拱脚处设置了三个支座,可以在三个方向(横向、纵向和垂直)上无约束移动。
在受力分析中,三铰拱是一个非常重要的结构。
本文将对三铰拱的受力分析进行详细介绍。
三铰拱的受力分析首先需要了解其受力形式。
三铰拱受力主要包括水平向力和垂直向力。
水平向力主要来自于拱腹对拱脚的水平压力,而垂直向力主要来自于拱腹对拱脚的垂直压力。
在分析中,我们需要计算拱脚处的支座反力和弯矩大小。
首先,我们考虑横向受力平衡。
根据平衡条件,拱脚处的水平向力和法线向力之和为零。
即:∑Fx=0∑Fy=0其中,∑Fx表示水平向力的总和,∑Fy表示垂直向力的总和。
在接下来的分析中,我们假设拱脚处三个支座的反力分别为F1、F2和F3、由于三铰拱的支座可以自由移动,在计算反力时需要考虑拱腹对支座的约束力。
接下来,我们考虑拱腹对支座的约束力。
根据平衡条件,拱腹受到的约束力可以通过对整个拱腹的受力分析来得到。
我们将拱腹切割成多个小段,每个小段的受力可以看做静定问题。
对于每个小段,我们可以分别计算其水平向力和垂直向力。
在计算过程中需要注意,由于拱脚处的支座反力的未知,我们需要通过整个拱腹的受力平衡来解算这些未知。
最后,我们通过将每个小段的受力结果进行积分,得到拱脚处支座反力的大小和作用点位置。
在进行受力分析时,还需要考虑拱腹的几何特征,如拱的形状、拱腹曲线的方程等。
这些特征对于计算拱脚处的支座反力非常重要。
总的来说,三铰拱的受力分析是一个复杂而重要的过程。
通过考虑拱腹对支座的约束力,我们可以计算得到拱脚处支座反力的大小和作用点位置。
这些结果对于设计和分析三铰拱结构非常有帮助。
静定结构的内力—三铰拱(建筑力学)
愈大)。
三铰拱
(2)截面内力的计算
① 截面内力的正负规定
轴力以压力为正;剪力以有使截面产生顺时针转动的趋势者为正;弯矩
以拱内侧纤维受拉者为正。
② 任意截面的内力计算
设K截面形心的坐标分别为xK、yK,K截面的法线与x轴
的夹角为φK,且左半拱的φK为正值,右半拱的φK为负值。
取三铰拱的K截面以左
部分为隔离体,得
FNE FQ0E sin E Fx cosE 134kN
三铰拱
4 三铰拱的合理拱轴线
若拱的所有截面上的弯矩都为零,这样的拱轴线为合理拱轴线。
三铰拱在竖向荷载作用下任意截面上的弯矩为
MK
M
0 K
Fx yK
由 M M 0 Fx y 0 得
M0
合理拱轴线方程为: y
Fx
M 0——代梁在该竖向荷载作用下的弯矩方程
三铰拱
C B
C
C
A
B
A
B
l
有拉杆的三铰拱
两铰拱
(c)
(a)
梁式结构在竖向荷载作用下是不会产生推力的。
C
A B
B
A
B
曲梁
三铰拱
2 三铰拱的组成
拱顶
拱轴线
f 矢高
拱趾
拱趾
l 跨度
拱顶:拱的最高点
拱趾:支座处
跨度:两支座之间的水平距离,用l表示
矢高:拱顶到两拱趾间联线的竖向距离,用f 表示 高跨比 f/l 是拱的一个重要的几何参数 工程实际中,高跨比在1/10 ~ 1之间,变化的范围很大
Fx
M
0 C
f
ql 2 f
8 ql 2 8f
合理拱轴的方程为
第六章-静定结构3拱
F0Ay
(b)
F0By
(3)轴 力 由∑Fiτ = 0, FNK= - FAY sinφ + FP1 sinφ - FAx cosφ
= - (F0AY - FP1 ) sinφ - Fx cosφ
FNK = - (F0QK sinφ + Fx cosφ)
3、内 力 图
—— 点绘法。
FP1
MK K
FNKm
yf
a1 x
bx1
B FBX
la
lb
(a)
FBY
FP1
MK K
FNKm
φ
τ
பைடு நூலகம்
m
y FQK
A
n
FAX
x
FAY (d)
= (F0AY - FP1 ) cosφ - Fx sinφ
φ —— 截面倾角(取锐角),tanφ = dy / dx
A
FQK = F0QK cosφ - Fx sinφ
FP1
FP2
C0 (代梁) B
l=16m
8m
8m
0.00 6.25 15.00 6.25 0.00
3.75 5.00 3.75 0.00
x
Ay
f=4m
Kφ
C
m
y a=4 FP=10KN
三、合理拱轴线
在一定荷载作用下 使拱处于均匀受压状态的 轴线——合理拱轴线。
y
a2
b2
FP1 K C K` FP2
yf
FAX A a1 x
bx1
FAY =(FP1 b1 + FP2 b2 )/ l
b1
B FBX FBY =(FP1a1 + FP2a2 )/ l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
YA0
a2
b2 YB0
第6页/共8页
三、三铰拱的合理拱轴线
(reasonable axis of arch)
M M0H y0
y M0 H
只限于三铰平拱受 竖向荷载作用
使拱在给定荷载下只 产生轴力的拱轴线,被 称为与该荷载对应的合 理拱轴
在竖向荷载作用下,三 铰拱的合理拱轴线的纵 坐标与相应简支梁弯矩 图的竖标成正比。
第7页/共8页
试求图示对称三铰拱在均布荷载作用下 的合理拱轴线
MC0=ql2/8 H=ql2/8f
M0=qlx/2-qx2 /2 =qx(l-x)/2
y=4fx(l-x)/l2
第8页/共8页
抛物线
XA且与拱轴l/线2 的形状l/有2x 关。
YA
QK M K P1
NK
P1
M
0 K
YA 由于推力的l 存在,拱Y的B
YA0
QK0
弯矩比相应简支梁的弯矩要
小。 P1
A
KC
P2
B
三铰拱在竖向荷载作用
MK
M
0 K
Hy
QK
Q
0 K
cos
H
sin
下轴向a1受压。 b1
NK Q 0Ksin H cos
第四章 静定拱受力分析
第1页/共8页
拱 (arch)
一、概述
杆轴线为曲线 在竖向荷载作 用下不产生水
平反力。
1.拱的定义 这是拱结构吗?
曲梁
拱--杆轴线为曲
线,在竖向荷载 作用下会产生水
拱
平推力的结构。
第2页/.拱的分类
静定拱
三铰拱
拉杆
超静定拱
拉杆拱
超静定拱
两铰拱
P2
力与矢Y高A0 成反比.
B
a1
YA0
a2
YB=YB0 XA=XB =H
b1
b2
YB0
H
1 f
[YA
l 2
P1
(
l 2
a1)]
M
0 c
[YA0
l 2
l P1( 2
a1)]
YA=YA0
H= MC0 / f
第5页/共8页
二、y三铰P1拱的K 数C解法
----内力计算 P2
载及A 三三个x铰铰拱y的的位内f 置力有不关但,与B而荷 XB X A
无铰拱 斜拱
高差h
第3页/共8页
拱 (arch)
一、概述
4.拱的有关名称 顶铰
拱肋 拱趾铰
拱肋 矢高 拱趾铰
跨度
第4页/共8页
二、三铰拱的数解法 ----支反力计算
P1
C
P2
三铰拱的竖向反 力与其等代梁的
A
XA
l/2
YA
等代梁
A
P1
f
l/2 l
C
B XB 反H力相等;水平反
YB
无力Y关与A .拱荷轴载线与形跨M状度c0 一定时,水平推