求矩阵的广义逆例题简单
合集下载
第4章 矩阵的广义逆

定义 3 设 A 为一个 m n 复矩阵,若有一个 n m 复矩阵 G 存在, 使( 1 )成立,即 AGA A ,则称 G 为 A 的一个 {1}-广义逆,记为
G A{1} 或 G A{1} ,也称 G 为 A 的一个减号广义逆,记为 G A , 即有 AA A A . (5)
A为列满秩
7
推论 设 A C mn , 则
(1) A左可逆的充要条件是 N ( A) {0};
( 2) A右可逆的充要条件是 R( A) C m .
证 充分性:N ( A) {0}
rank ( A) n
必要性: A左可逆
Ax 0只有零解
A为列满秩
1 ALபைடு நூலகம்A En
x N ( A)
由于 M-P 的 4 个方程都各有一定的解释,并且应用起来各有方 便之处,所以出于不同的目的,常常考虑满足部分方程的 G ,总之, 按照定义 2 可推得,满足 1 个,2 个,3 个,4 个 M-P 方程的广义逆 矩阵共有 15 类,即
1 2 3 4 C4 C4 C4 C4 15 .
使得
AGb b ( b R( A))
m n
则称G为A的广义逆矩阵 , 记为G A .
定理1设 A C
, 则A 存在广义逆矩阵A 的
充要条件是存在 G C nm , 使其满足AGA A
14
定理1 设 A C
m n
, 则A 存在广义逆矩阵A 的
nm
充要条件是存在 G C
15
由AGA A可得: AGAx0 Ax0 b 即,AGb b, 说明x Gb是方程 Ax b 的解. G是A的减号逆 , G A . m n nm 设 A C , 且 A C 是A的一个广义 推论 1 逆矩阵A , 则
矩阵论广义逆矩阵

(1) ;(2) .
解(1)例4.9已求得
于是
(2)
由于 的惟一性,它所具有的一些性质与通常逆矩阵的性质相仿,归纳如下.
定理6.12设 ,则
(1) ;
(2) ,
(3) ,其中λ∈C,且 如式(6.3);
(4) ;
(5) ;
(6) ;
(7) , ;
(8)当U和V分别是m阶与n阶酉矩阵时,有
(9) 的充分必要条件是rankA=m;
则对任意 矩阵
是A的{1}-逆;当L=O时,X是A的{1,2}-逆.
证因为
容易验证,由式(6.1)给出的矩阵X满足AXA=A.所以X∈A{1}.
当L=O时,易知式(6.1)的矩阵X还满足XAX=A,故X∈A{1,2}.
证毕
需要指出的是,式(6.1)中矩阵L任意变化时,所得到的矩阵X并非是满足AXA=A的所有矩阵,即只是A{1}的一个子集.
则有
A=( )=AB( )=ABW
证毕
在式(6.1)中取L=O,即有X∈A{1,2},此时rankX=r=rankA.这个结论具有一般性.
定理6.8设 ,则 的充分必要条件是rankX=rankA.
证若X∈A{1,2},则有
rankA=rank(AXA)≤rankX=rank(XAX)≤rankA
即rankX=rankA.
第六章广义逆矩阵
当A是n阶方阵,且detA≠0时,A的逆矩阵 才存在,此时线性方程组Ax=b的解可以简洁地表示为x= .近几十年来,由于解决各种问题的需要,人们把逆矩阵的概念推广到不可逆方阵或长方矩阵上,从而产生了所谓的广义逆矩阵.这种广义逆矩阵具有通常逆矩阵的部分性质,并且在方阵可逆时,它与通常的逆矩阵相一致;而且这种广义逆矩阵可以给出线性方程组(包括相容的和矛盾的方程组)各种“解”的统一描述.
解(1)例4.9已求得
于是
(2)
由于 的惟一性,它所具有的一些性质与通常逆矩阵的性质相仿,归纳如下.
定理6.12设 ,则
(1) ;
(2) ,
(3) ,其中λ∈C,且 如式(6.3);
(4) ;
(5) ;
(6) ;
(7) , ;
(8)当U和V分别是m阶与n阶酉矩阵时,有
(9) 的充分必要条件是rankA=m;
则对任意 矩阵
是A的{1}-逆;当L=O时,X是A的{1,2}-逆.
证因为
容易验证,由式(6.1)给出的矩阵X满足AXA=A.所以X∈A{1}.
当L=O时,易知式(6.1)的矩阵X还满足XAX=A,故X∈A{1,2}.
证毕
需要指出的是,式(6.1)中矩阵L任意变化时,所得到的矩阵X并非是满足AXA=A的所有矩阵,即只是A{1}的一个子集.
则有
A=( )=AB( )=ABW
证毕
在式(6.1)中取L=O,即有X∈A{1,2},此时rankX=r=rankA.这个结论具有一般性.
定理6.8设 ,则 的充分必要条件是rankX=rankA.
证若X∈A{1,2},则有
rankA=rank(AXA)≤rankX=rank(XAX)≤rankA
即rankX=rankA.
第六章广义逆矩阵
当A是n阶方阵,且detA≠0时,A的逆矩阵 才存在,此时线性方程组Ax=b的解可以简洁地表示为x= .近几十年来,由于解决各种问题的需要,人们把逆矩阵的概念推广到不可逆方阵或长方矩阵上,从而产生了所谓的广义逆矩阵.这种广义逆矩阵具有通常逆矩阵的部分性质,并且在方阵可逆时,它与通常的逆矩阵相一致;而且这种广义逆矩阵可以给出线性方程组(包括相容的和矛盾的方程组)各种“解”的统一描述.
第六章 广义逆矩阵

55Eliakim Hastings Moore(1862-1932), 美国数学家, 是二十世纪初美国数学的奠基人, 曾任美国数学会主席. 56Sir Roger Penrose(1931-), 著名英国数学家, 物理学家, 哲学家. 1988 年 Wolf 奖得主. 与 Stephen Hawking (霍 金) 合作证明了广义相对论的奇点存在性.
100
= 0 1 0 .
000
由 例 6.1.3 可知, α 在 L 上的正交投影向量为
100
1
1
PLα = 0 1 0 0 = 0 .
000
1
0
(实际上 PLα 无需计算即可“猜”到, 为什么?)
定义 6.1.1 设矩阵 A ∈ Cm×n, 若矩阵 X ∈ Cn×m 满足 Penrose 方程组 (6.0.4), 则称 X 为 A 的一个 Penrose 广义逆 (矩阵).
(1) AXA = A
(2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA
(6.0.4)
则称 X 是矩阵 A ∈ Cm×n 的广义逆矩阵. 方程组 (6.0.3) 与 (6.0.4) 分别称为 Moore 方程组 与 Penrose 方程组. 注意, Moore 方
程组虽然只有两个方程, 却涉及了四个矩阵, 其中除了 A 之外, 其余三个均是未知的 (尽 管矩阵 PR(A) 仅与 A 有关), 而 Penrose 方程组尽管有四个方程, 但却仅涉及两个矩阵! 因 此 Penrose 方程组更易于研究和应用. 历史的进展正是如此, 自 Penrose 的广义逆矩阵的论文发
其中, X 的列是子空间 L 的任意一组基. 特别, 若 α1, α2, · · · , αr 是 L 的一组标准正交基,
100
= 0 1 0 .
000
由 例 6.1.3 可知, α 在 L 上的正交投影向量为
100
1
1
PLα = 0 1 0 0 = 0 .
000
1
0
(实际上 PLα 无需计算即可“猜”到, 为什么?)
定义 6.1.1 设矩阵 A ∈ Cm×n, 若矩阵 X ∈ Cn×m 满足 Penrose 方程组 (6.0.4), 则称 X 为 A 的一个 Penrose 广义逆 (矩阵).
(1) AXA = A
(2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA
(6.0.4)
则称 X 是矩阵 A ∈ Cm×n 的广义逆矩阵. 方程组 (6.0.3) 与 (6.0.4) 分别称为 Moore 方程组 与 Penrose 方程组. 注意, Moore 方
程组虽然只有两个方程, 却涉及了四个矩阵, 其中除了 A 之外, 其余三个均是未知的 (尽 管矩阵 PR(A) 仅与 A 有关), 而 Penrose 方程组尽管有四个方程, 但却仅涉及两个矩阵! 因 此 Penrose 方程组更易于研究和应用. 历史的进展正是如此, 自 Penrose 的广义逆矩阵的论文发
其中, X 的列是子空间 L 的任意一组基. 特别, 若 α1, α2, · · · , αr 是 L 的一组标准正交基,
矩阵分析第八章

((AAH)(AAH)+)H=((AAH)+)H(AAH)H=(AAH)+(AAH) = (A+)HA+(AAH)=(A+)H(A+A)AH=(A+)H(A+A)HAH = (A+)HAH(A+)HAH=(AA+)H(AA+)H=AA+AA+ = A(A+A)HA+=(AAH)(A+)HA+=(AAH)(AAH)+ ((AAH)+(AAH))H=(AAH)H((AAH)+)H=(AAH)(AAH)+ = (AAH)(A+)HA+=A(A+A)HA+=AA+AA+ = (AA+)H(AA+)H=(A+)HAH(A+)HAH=(A+)H(A+A)HAH = (A+)H(A+A)HAH=(A+)HA+(AAH)=(AAH)+(AAH) (3)的证明与(2)类似, 略.
0 −1 Q 0
例 2:设A−是A∈Cm×n的一个广义逆, 则对任意的V∈Cn×m, W∈Cn×m,
X = A − + V ( Em − AA − ) + ( E n − A − A)W
也是A的一个广义逆矩阵. 证明: AXA = AA − A + AV ( E m − AA − ) A + A( E n − A − A)WA
“⇐” 设A−满足AA−A = A 且 rankA = rankA−, 则: rankAA− = rankA = rankA− ⇒ dim N(AA−) = dim N(A−) 又因为N(AA−) ⊃ N(A−), 从而 N(AA−) = N(A−). 由 AA−A = A ⇒ AA− − AA−AA− = 0 ⇒ ⇒ AA−(E− AA−) = 0 ⇒ A−(E− AA−) = 0 A− = A−AA−
矩阵的广义逆及其应用.ppt

高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
(6) 若F是列满秩矩阵,则 F (F H F )1 F H
(7) 若G是行满秩矩阵,则 G GH (GGH )1
(8) 若矩阵A的满秩分解为A FG,则有 A G F ;
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
第五章 矩阵的广义逆
§1 广义逆矩阵 一、矩阵的广义逆
设A Rnn,对于线性方程组 Ax b,当A可逆时, 方程组有唯一解:x A1b.
若矩阵 A不可逆时,如何求解方程组 Ax b?
更一般,当矩阵 A Rmn不是方阵时,如何讨论 方程组 Ax b的解, 其中x Rn,b Rm ? 为了分析和解决上述问题,引入广义逆的概念.
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
定理2:设A Rmn,b Rm,x Rn,若性方程组 Ax b 是相容的,即方程组Ax b 有解,则其
通解为: x Ab (In A A)t,t是任意n 1向量. 证明:首先证明t Rn,x Ab (In A A)t是 方程组的解,然后证明方程组的任一解x,均可 表示成x Ab (In A A)t的形式.
A
1
1
1
2
(3)(1)3
0
3 3 2 4
0
1 2 4
0
1
2
0 4 8
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
1
A
0
0
1 2 4 (1)(2)2 1 1 0 0
第五章 矩阵的广义逆
§1 广义逆矩阵
(6) 若F是列满秩矩阵,则 F (F H F )1 F H
(7) 若G是行满秩矩阵,则 G GH (GGH )1
(8) 若矩阵A的满秩分解为A FG,则有 A G F ;
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
第五章 矩阵的广义逆
§1 广义逆矩阵 一、矩阵的广义逆
设A Rnn,对于线性方程组 Ax b,当A可逆时, 方程组有唯一解:x A1b.
若矩阵 A不可逆时,如何求解方程组 Ax b?
更一般,当矩阵 A Rmn不是方阵时,如何讨论 方程组 Ax b的解, 其中x Rn,b Rm ? 为了分析和解决上述问题,引入广义逆的概念.
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
定理2:设A Rmn,b Rm,x Rn,若性方程组 Ax b 是相容的,即方程组Ax b 有解,则其
通解为: x Ab (In A A)t,t是任意n 1向量. 证明:首先证明t Rn,x Ab (In A A)t是 方程组的解,然后证明方程组的任一解x,均可 表示成x Ab (In A A)t的形式.
A
1
1
1
2
(3)(1)3
0
3 3 2 4
0
1 2 4
0
1
2
0 4 8
高等工程数学 理学院 杨文强
第五章 矩阵的广义逆
§1 广义逆矩阵
1
A
0
0
1 2 4 (1)(2)2 1 1 0 0
广义逆矩阵求法

B I r 0 0 0 Q D 0 Q 0
所以形如(3)的每一个矩阵都是矩阵方程(1)的解。 为了说明(3)是矩阵方程(1)的通解,现在任取 (1)的一个解 ,则由(1)和(2)得
X G
因为
I r 0 I r 0 I r 0 P QGP 0 0 Q P 0 0 Q 0 0
1 0 1 2 ,那么 A 1 0 0 2
1 设 A 1
B O 设 A ,其中 B 是可逆矩阵,则 O O
B 1 O A O O
如果 A是一个可逆矩阵,那么 A A
1
1 2 ,那么 A 1 2
伪逆矩阵
定义:设 A C mn,若 A C nm ,且同时有
AA A A ,
H
A AA A
( AA ) AA ,
( A A) A A
H
则称 A 是 A 的伪逆矩阵。上述条件称为 Moore- Penrose 方程。 例:
1 设 A 0
广义逆矩阵
定理:设 阵方程
A 是数域 K 上一个s n 矩阵,则矩
AXA A
(1)
总是有解。如果 rank( A) r ,并且
I r 0 (2) A P Q 0 0 其中 P 与 Q 分别是 s 阶、n 阶可逆矩阵,则矩
阵方程(1)的一般解(通解)为
I r B 1 (3) X Q P C D 其中 B, C , D 分别是任意 r ( s r ), (n r ) r,
Ir Q C
1
0 1 P 0 0 1 P 0
5.1Moore-penrose广义逆矩阵

注意到若V是内积空间,则子空间U有唯一正交补
间U上的投影变换PU ,U 由唯一决定,称 PU ,U 为正交投影,
简记为 PU 于是作为逆矩阵的推广我们希望TBA 与 TAB 是正交
投影变换!
于是提出问题:对A是n阶矩阵,则构作 F n 上的 线性变换
TA F n F n x Ax
那么矩阵A满足什么条件TA 才是正交投影变换呢? 我们引入一个概念 定义2 n阶矩阵A若满足 A 2 A 且 A H A, 则
5.1
† A Moore-penrose 广义逆矩阵
一 Moore-penrose 广义逆矩阵的定义
二 Moore-penrose 广义逆矩阵存在性与性质
三 Moore-penrose 广义逆矩阵求法
一 Moore-penrose 广义逆矩阵的定义
(一)传统可逆定义的缺点
对矩阵A若存在矩阵B满足 AB BA E
不到,为得到逆矩阵在任意矩阵上推广,我们放弃
与 TAB 是整个空间上的恒等映射要求,只要求它们 各自是在 span 1 , , n 与 span 1 , m 上的恒等映射!
TAB
注意到
Im TBA span 1 , m F n , Im T AB span 1 , , n F m
Im T A , Im T A , 各自正交规范基以顺序形成 F n 的一个基,
将其做成矩阵U,则U是酉矩阵且 U H AU diag(1, 1, 0, , 0) 即 A U diag(1, 1, 0, , 0)U H , 由此可得 A H A, 且 A H A。
(四) Moore-penrose 广义逆矩阵的定义
第6章广义逆矩阵及其应用

充分性 设G满足GAAT AT .
GAA G A G
T T T T
(GA)(GA)T (GA)T 两边取转置则有 (GA)(GA)T (GA) (GA)T (GA) (GA)T AT AT 两边取转置则有
AGA A
又 GAAT AT
例1.7
1 1 设A 2 2
则称G为A的一个最小范数广义逆.记为Am- = G。 最小范数广义逆A-m的计算方法 (1)当A为行(或列)满秩时,
1 Am AR AT ( AAT )1 1 (或Am AL ( AT A)1 AT
( 2)当rankA r min{ m, n}时,将 A作满秩分解 A BC,
1 1 BL ( BT B)1 BT , CR CT (CC T )1 1 1 于是, Ar CR BL
例1.4
1 2 1 设A 求 A 0 1 2 r . 5 4 1 T T 1 1 6 2 A A A ( AA ) A 是行满秩的,故 r R 解 14 3 8 1 2 例1.5 设A 2 1 求Ar . 1 1 1 T 1 T A A ( A A ) A L 解 A是列满秩的,故 r 1 4 7 1 11 7 4 1
1 Al AR AT ( பைடு நூலகம்AT )1 1 (或Al AL ( AT A)1 AT
( 2)当rankA r min{ m, n}时,将 A作满秩分解 A BC,
1 1 Al CR BL 1 T 1 1 T ) ( B( BT B)1 BT )T ( AAl )T ( BCCR BL ) ( BBL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求矩阵的广义逆例题简单
假设我们有一个2x2的矩阵A:
\[
A = \begin{bmatrix}
1 & 1 \\
1 & 1 \\
\end{bmatrix}
\]
我们可以计算出这个矩阵的行列式:
\[
\det(A) = |A| = 1(1) - 1(1) = 0
\]
因为行列式为0,所以矩阵A不可逆。
我们称这样的矩阵为奇异矩阵。
那么,矩阵A的广义逆是什么呢?广义逆是一个与方阵的逆相对应的概念,可以应用于任何一个矩阵。
在这个例子中,矩阵A的广义逆可以通过计算伪逆来获得:
\[
A^+ = \frac{1}{\det(A)} \cdot \text{adj}(A)
\]
其中,\(\text{adj}(A)\)表示矩阵A的伴随矩阵。
对于我们的例子,\(\text{adj}(A)\)可以计算如下:
\[
\text{adj}(A) = \begin{bmatrix}
1 & -1 \\
-1 & 1 \\
\end{bmatrix}
\]
然后,我们可以计算广义逆:
\[
A^+ = \frac{1}{\det(A)} \cdot \text{adj}(A) = \frac{1}{0} \cdot \begin{bmatrix}
1 & -1 \\
-1 & 1 \\
\end{bmatrix} = \text{undefined}
\]
由于行列式为0,我们的广义逆的计算结果是未定义的。
这也是为什么奇异矩阵没有逆矩阵或者广义逆的原因。