高中数学集合总结题型分类完美解析
集合知识点及题型归纳总结(含答案)
![集合知识点及题型归纳总结(含答案)](https://img.taocdn.com/s3/m/1a1c3a66cfc789eb172dc86c.png)
集合知识点及题型归纳总结知识点精讲一、集合的有关概念 1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 空集:不含有任何元素的集合,记作∅. 2.集合与集合之间的关系 (1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB 或B A .空集是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.IA{|IA x x =1.交集由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂,即{}|A B x x A x B ⋂=∈∈且.2.并集由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,即{}|A B x x A x B ⋃=∈∈或.3.补集已知全集I ,集合A I ⊆,由I 中所有不属于A 的元素组成的集合,叫做集合A 相对于全集I 的补集,记作IA ,即{}|I A x x I x A =∈∉且.四、集合运算中常用的结论 1.集合中的逻辑关系 (1)交集的运算性质.A B B A ⋂=⋂,A B A ⋂⊆,A B B ⋂⊆ A I A ⋂=,A A A ⋂=,A ⋂∅=∅. (2)并集的运算性质.A B B A ⋃=⋃,A A B ⊆⋃,B A B ⊆⋃ A I I ⋃=,A A A ⋃=,A A ⋃∅=. (3)补集的运算性质.()II A A =,I I ∅=,I I =∅ ()I A A ⋂=∅,()I A A I ⋃.补充性质:II I A B A A B B A B B A A B ⋂=⇔⋃=⇔⊆⇔⊆⇔⋂=∅.(4)结合律与分配律.结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C ⋂⋂=⋂⋂. 分配律:()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃. (5)反演律(德摩根定律).()()()II I A B A B ⋂=⋃()()()II I A B A B ⋃=⋂.即“交的补=补的并”,“并的补=补的交”. 2.由*(N )n n ∈个元素组成的集合A 的子集个数A 的子集有2n 个,非空子集有21n -个,真子集有21n -个,非空真子集有22n -个.3.容斥原理()()()()Card A B Card A Card B Card A B ⋃=+-⋂.题型归纳及思路提示I AA题型1 集合的基本概念思路提示:利用集合元素的特征:确定性、无序性、互异性. 例1.1 设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-解析:由题意知{}01,,a b a ∈+,又0a ≠,故0a b +=,得1ba=-,则集合{}{}1,0,0,1,a b =-,可得1,1,2a b b a =-=-=,故选C 。
高考数学必考集合重要知识点和典型例题解析
![高考数学必考集合重要知识点和典型例题解析](https://img.taocdn.com/s3/m/e67a0e9eaff8941ea76e58fafab069dc502247b2.png)
重要知识点(一)集合含义问题1.用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;2.集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.3.集合的含义:某些指定的对象集在一起就成为一个总体,这个总体就叫集合,其中每一个对象叫元素。
4.集合中元素的三个特性:确定性、互异性、无序性.说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
5.元素与集合之间只能用“”或“”符号连接.6.集合的表示常见的方法有列举法与描述法:注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA(1)自然语言描述法:用自然的文字语言描述。
如:英才中学的所有团员组成一个集合。
(2)列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。
如:常见的特殊集合:(1)非负整数集(即自然数集)N(包括零)(2)正整数集N或(3)整数集Z (包括负整数、零和正整数)(4)有理数集(5)实数集R7.集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合例:{x|x2=-5}(二)集合的基本关系1.空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.2.已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.3.某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。
(完整word版)高中数学集合总结+题型分类+完美解析.doc
![(完整word版)高中数学集合总结+题型分类+完美解析.doc](https://img.taocdn.com/s3/m/18974643a300a6c30d229f5b.png)
集合【知识清单】1.性质:确定性、互易性、无序性.2.元素和集合的关系:属于“”、不属于“” .3.集合和集合的关系:子集(包含于“”)、真子集(真包含于“”).4.集合子集个数= 2n;真子集个数 = 2n1.5.交集:A B x | x A且 x B并集: A B x | x A或 x B补集: C U A x | x U 且 x A6.空集是任何非空集合的真子集;是任何集合的子集.题型一、集合概念解决此类型题要注意以下两点:①要时刻不忘运用集合的性质,用的最多的就是互易性;②元素与集合的对应,如数对应数集,点对应点集.【No.1 定义 & 性质】1.下列命题中正确的个数是()①方程x 2 y 2 0 的解集为2, 2②集合 y | y x2 1, x R 与 y | y x 1, x R 的公共元素所组成的集合是0,1③集合x | x 1 0 与集合 x | x a, a R 没有公共元素A.0B.1C.2D.3分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构成的集合,而是 x 和 y 的值的集合,也就是一个点. 答案:A详解:在①中方程x 2 y 2x 2 0 x 20 等价于2,即y。
因此解集应为y 0 22, 2 ,错误;在②中,由于集合y | y x2 1, x R 的元素是 y ,所以当 x R 时, y x2 1 1 .同理, y | y x 1, x R 中 y R ,错误;在③中,集合x | x 1 0 即 x 1,而 x | x a, a R ,画出数轴便可知这两个集合可能有公共的元素,错误.故选 A.2.下列命题中,(1)如果集合A是集合(2)如果集合A是集合(3)如果集合A是集合(4)如果集合A是集合错误的命题的个数是(B的真子集,则集合B的子集,则集合B的子集,则集合B的子集,则集合)B中至少有一个元素;A 的元素少于集合B 的元素;A 的元素不多于集合B 的元素;A 和B 不可能相等.A . 0B. 1C. 2 D . 3分析:首先大家要理解子集和真子集的概念,如果集合M 是集合N的子集,那么M 中的元素个数要小于或等于N中元素的个数;如果集合 M 是集合N的真子集,那么 M 中的元素个数要小于N中元素的个数 .答案: C详解:( 1)如果集合 A 是集合 B 的真子集,则集合 B 中至少有一个元素,故(1)正确;(2)如果集合A是集合B的子集,则集合 A 的元素少于或等于集合的 B 元素,故(2)不正确;(3)如果集合A是集合B的子集,则集合 A 的元素不多于集合 B 的元素,故(3)正确;(4)如果集合A是集合B的子集,则集合 A 和 B 可能相等,故(4)不正确.故选 C .3.设P、Q为两个非空实数集,P 中含有 0,2, 5 三个元素,Q 中含有1,2,6三个元素,定义集合 P Q 中的元素是 a b ,其中 aP , b Q ,则 P Q 中元素的个数是()A.9B.8C.7D.6分析:因为 a P , b Q ,所以 P Q 中的元素 a b 是 P 中的元素和 Q 中元素两两相加而得出的,最后得出的集合还要考虑集合的互易性.答案 :B详解 :当 a 0 时, b 依次取 1,2,6,得 a b 的值分别为 1,2,6;当 a 2时, b 依次取 1,2,6,得当 a 5 时, b 依次取 1,2,6,得a b 的值分别 3,4,8;a b 的值分别 6,7,11;由集合的互异性得P Q 中的元素为 1,2,3,4,6,7,8,11,共 8 个,故选 B.4.设数集 M 同时满足条件 ① M 中不含元素1,0,1,②若 aM ,则1aM .1 a则下列结论正确的是 ()A .集合 M 中至多有 2 个元素;B .集合 M 中至多有3 个元素; C .集合 M 中有且仅有4 个元素;D .集合 M 中有无穷多个元素.分析:已知 a M 时,1 aM .那么我们可以根据条件多求出几个M 集合的元1 a素,找出规律并且判断元素之间是否有可能相等,从而判断集合中元素的个数.答案:C1 a11a111a1详解 :由题意,若 a MM ,则 1 aM ,a M , ,则a 1 a a 1 a111a11 a1 a1 2a1a,则 a 2则a 1 a M ,若 a 1,无解,同理可证明这四个元素中,1 a 1 21 aa 1任意两个元素不相等,故集合M 中有且仅有 4 个元素.----------------------------------------------------------------------------------------------------------------------【 No2.表达方式】5.下列集合表示空集的是()A. x R | x 5 5B. x R | x 5 5C. x R | x2 0D. x R | x2 x 1 0分析:本题考查空集的概念,空集是指没有任何元素的集合.答案:D详解: x2 x 1 0 ,1 4 1 130方程无实数解,故选 D.6.用描述法表示下列集合:(1)0,2,4,6,8 ;(2)3,9,27,81, ;1 3 5 7;(3) , , , ,2 4 6 8(4)被 5 除余 2 的所有整数的全体构成的集合.分析:描述法就是将文字或数字用式子表示出来. 但是要注意题中给出的元素的范围详解:(1) x N | 0 x 10,且 x是偶数;(2) x | x3n,n N;(3) x | x 2n 1, n N ;2n(4) x | x 5n 2,n Z .======================================================================题型二、不含参数⑴⑴ 中的参数是指方程的非最高次项系数解决此类型题应注意:①区分,,的区别;②会用公式求子集、真子集、非空真子集的个数;③ A B A A BA B A B AA B从A和B两方面讨论.【 No.1 判断元素 / 集合与集合之间的关系】1.给出下列各种关系①00 ;② 0 0 ;③;④ a a ;⑤0 ;⑥ 0 ;⑦0 ;⑧0其中正确的是()A. ②③④⑧B. ①②④⑤C.②③④⑥D. ②③④⑦分析:本题需要大家分清,,三个符号的意义和区别:-- “属于”,用于表示元素和集合的关系;,-- “包含于和真包含于”,用于表示集合和集合之间的关系 .答案:A详解:①错误,应为0 0 ;②③④⑧正确;⑤⑥⑦应为0 ;2.若U为全集,下面三个命题中真命题的个数是()(1)若A B ,则 C U A C U B U(2)若A B U ,则 C U A C U B(3)若A B ,则 A BA .0个B .1个C.2个D.3个分析:本题应先简化后面的式子,然后再和前面的条件对比.答案:D详解:( 1)C U A C U B C U A B C U U ;( 2)C U A C U B C U A B C U U;( 3)证明:∵A A B ,即 A,而 A ,∴A;同理 B,∴A B;----------------------------------------------------------------------------------------------------------------------【 No.2子集、真子集】3.从集合U a, b, c, d 的子集中选出 4 个不同的子集,须同时满足以下两个条件:①, U 都要选出;②对选出的任意两个子集 A 和 B ,必有 A B 或 B A .那么共有种不同的选法.分析:由①可以知道选出的子集中一定有和U,我们要求得只剩两个集合。
集合知识点总结及例题分析-高中数学2018版
![集合知识点总结及例题分析-高中数学2018版](https://img.taocdn.com/s3/m/43a8c6df4afe04a1b171de1d.png)
U 中的所有属于 U 但不
属于集合 A 的元素组成
的集合称为集合 A 在全
集 U 中的补集,
注意区分 和 , 连接的是元素与集合,
连接的是集合与集合。即元素
集合,集合 集合
( 2)设有限集 A 中有 n 个元素则
A 的子集个数是 2n ,真子集个数 2n 1,非空子集 2 n 1,非空真子集 2n 2
无序性
集合中的元素排列没有一定的顺序
( 2) 集合的分类:无限集,有限集特别地,我们把不含任何元素的集合叫做空集。记作
( 3) 常用数集及表示符号
名称
正整数集
符号
N*(N )
非负整数集 (自然数 )
N
2、 集合间的基本关系 子集,交集,并集,补集 ( 1)集合间的运算关系
子集
自然语言描述 如果集合 B 中的所有元
(
)
A. 9
B. 8
【答案】 A
,则 中元素的个数为
C. 5
D.时,
;当
时,
;
当
时,
;所以共有 9 个,选 A.
【说明】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别
.
4.【2018 年理数天津卷】设全集为 R,集合
,
,则
()
2
A.
B.
C.
D.
【答案】 B 【解析】
( A){x| –2<x<–1}
(B) {x| –2<x<3}
( C) {x| –1<x<1}
( D){x|1< x<3}
【答案】 A
【解析】利用数轴可知 A B x 2 x 1 ,故选 A.
高一数学集合经典题型归纳总结
![高一数学集合经典题型归纳总结](https://img.taocdn.com/s3/m/0096beb102d276a200292ed3.png)
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合总结:元素的互异性是参考点,常常在求出值的时候必须代回集合察看是否满足该集合中元素是否有重复现象,从而决定值的取舍。
元素与集合之间的关系:属于-- 不属于--常有集合N Z R Q 加星号或者+号表示对应集合的正的集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:通常元素是很具体的值的时候,或者在考察抽象集合之间的关系的时候,我们常常考虑用venn图来表示。
4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合,空集在集合这个章节中非常重要,特别是在集合之间的关系的题中经常出现,很容易考虑掉空集。
例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
集合问题常见题型及求解方法
![集合问题常见题型及求解方法](https://img.taocdn.com/s3/m/90fbd51af18583d0496459d2.png)
集合问题常见题型及求解方法一、概念辨析型此类问题主要考察元素与集合、集合与集合的关系及有关运算,往往可通过观察元素的结构特征或借助图形寻求集合之间的关系,使问题直观准确地得到解决。
例1、 设Φ=B A ,{}A P P M ⊆=,{}B Q Q N ⊆=,则有A. Φ=N M ,B.{}Φ=N M ,C.B A N M ⊂,D.B A N M = 解: ∵Φ=B A ,∴B A ⊆Φ⊆Φ, ∴{}Φ=N M . 例 2.函数⎩⎨⎧∈-∈=M x x P x x x f ,,)(,其中P 、M 为实数集R 的两个非空子集,又规定{}P x x f y y P f ∈==),()(,{}M x x f y y M f ∈==),()(给出下列四个判断:(1)若Φ=P M ,则Φ=)()(M f P f ,(2)若Φ≠P M ,则Φ≠)()(M f P f(3)若R P M = ,则R M f P f =)()( ,(4)若R P M ≠ ,则R M f P f ≠)()( 其中正确的判定有 :A.1个 B.2个 C.3个 D.4个解:由函数定义知{}0=P M 或Φ=P M 。
若Φ≠P M 则{}0=P M 此时{}0)()(=M f P f 非空,∴(2)真;若R P M ≠ ,则必有R M f P f ≠)()( ,∴(4)真;若Φ=P M ,则)()(M f P f 不一定为空,∴(1)假;若R P M = ,则)()(M f P f 一定不等于R,∴(3)假.例3.集合A={直线},B={圆} 则B A 中有( )元素A.2个B.1个C.0个D.0或1或2个。
解:A 、B 中元素分别是直线和圆,不是直线上的点和圆上的点,B A 中元素是“既是直线又是圆的图形”。
二、基本运算型此类题型主要考察集合的基本概念和基本运算,常用解法有定义法、列举法、图示法及语言转换法等。
例4.设全集U=R,M={}132≤-x x ,N={}12-+=x y y x ,则=)(N C M R A.[- 2,2] B.[-2,2] C.[-2,-]2,2[]2 D.[ 2,2] 。
高中数学必修一常考题型总结
![高中数学必修一常考题型总结](https://img.taocdn.com/s3/m/c1b0665f11661ed9ad51f01dc281e53a59025156.png)
高中数学必修一常考题型总结# 一、集合的基本概念与运算。
常考题型1:集合元素的性质。
题目:已知集合A = {x, xy, x y},B = {0, |x|, y},且A = B,求x,y的值。
解析:因为0∈ B,且A = B,所以0∈ A。
若x = 0,则xy = 0,不满足集合中元素的互异性,舍去。
若xy = 0,因为x≠0,所以y = 0,此时|x| = x,集合B不满足元素的互异性,舍去。
若x y = 0,即x = y,则A={x,x^2,0},B={0,|x|,x},所以x^2=|x|,解得x = 1或x = -1。
当x = 1时,不满足集合中元素的互异性,舍去。
当x = -1时,y = -1,此时A = {-1, 1, 0},B = {0, 1, -1},满足条件。
综上,x = -1,y = -1。
常考题型2:集合间的关系。
题目:已知集合A={xmid -2≤slant x≤slant 5},B={xmid m + 1≤slant x≤slant 2m 1},若B⊆ A,求实数m的取值范围。
解析:当B = varnothing时,满足B⊆ A,此时m + 1>2m 1,解得m<2。
当B≠varnothing时,要使B⊆ A,则有m + 1≤slant 2m 1 m + 1≥slant 2 2m 1≤slant 5,解m + 1≤slant 2m 1得m≥slant 2;解m + 1≥slant 2得m≥slant 3;解2m 1≤slant 5得m≤slant 3;综上,2≤slant m≤slant 3。
综合两种情况,实数m的取值范围是m≤slant 3。
常考题型3:集合的交、并、补运算。
题目:设全集U = R,集合A={xmid x^2-3x 4>0},B={xmid 2^x<8},求(∁_UA)∩ B。
解析:先求集合A:解不等式x^2-3x 4>0,即(x 4)(x + 1)>0,解得x>4或x<-1,所以A={xmid x>4或x<-1}。
高考涉及到集合的相关题目及题型总结
![高考涉及到集合的相关题目及题型总结](https://img.taocdn.com/s3/m/37b8f55ba8956bec0975e35e.png)
高考考到集合的题目可以分为三大类:
①函数性质填空题,考察函数基本性质(单调性、奇偶性),一般是二次函数或指对数函数;
②解答题:函数应用题,需要根据题意列出函数关系求最值或其他值的题目,可能涉及到二次函数、指对数函数、三角函数等;
③解答题:函数性质综合题,函数性质的综合应用,可能涉及到二次函数、指对数函数、三角函数等,并且6年中有4年都是和导数求最值有关.都会涉及到对参数的分类讨论.
后两类综合性较强,可能大家目前能力还解决不了,可以重点关注第一部分,填空基本和期中考试难度类似.。
高中数学集合的知识点总结与常考题(附经典例题与解析)
![高中数学集合的知识点总结与常考题(附经典例题与解析)](https://img.taocdn.com/s3/m/74a79e9feefdc8d377ee3228.png)
集合的知识点与常考题 【知识点分析】: 一、一元二次不等式及其解法1.形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式.如:x 2﹣8x +7≧0。
2.如果单纯的解一个一元二次不等式的话,可以按照一下步骤处理:(1) 化二次项系数为正;(2) 若二次三项式能分解成两个一次因式的积,则求出两根12,x x .那么“0>”型的解为12x x x x <>或(俗称两根之外);“0<”型的解为12x x x <<(俗称两根之间);(3) 否则,对二次三项式进行配方,变成2224()24b ac b ax bx c a x a a -++=++,结合完全平方式为非负数的性质求解.二、分式不等式的解法类似于一元二次不等式的解法,运用“符号法则”将之化为两个一元一次不等式组处理;或者因为两个数(式)相除异号,那么这两个数(式)相乘也异号,可将分式不等式直接转化为整式不等式求解.0>ab 等价于:0b >•a 0<ab 等价于:0b <•a 如:解011x ≥-+x 等价于:解011x ≥-•+)()(x 三、绝对值不等式的解法利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
对于含绝对值的双向不等式应化为不等式组求解,也可利用结论:“a ≤|x |≤b ⇔a ≤x ≤b 或-b ≤x ≤-a ”来求解。
如:|1﹣3x |<3,得到﹣3<1﹣3x <3两个绝对值不等式的解法:法一:利用分界点分类讨论,例:解不等式 2|x ﹣3|+|x ﹣4|<2,①若x ≥4,则3x ﹣10<2,x <4,∴舍去.②若3<x <4,则x ﹣2<2,∴3<x <4.③若x ≤3,则10﹣3x <2,∴<x ≤3.综上,不等式的解集为.法二:利用数形结合去掉绝对值符号利用绝对值的几何意义画出数轴,将绝对值转化为数轴上两点间的距离求解。
集合题型归纳讲义高三数学一轮复习(原卷版)
![集合题型归纳讲义高三数学一轮复习(原卷版)](https://img.taocdn.com/s3/m/84b4e48c783e0912a3162a80.png)
专题二《集合》讲义知识梳理.集合1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性(2)集合的三种表示方法:列举法、描述法、图示法.(3)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(4)五个特定的集合及其关系图:N*或N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则称A是B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A是集合B的子集,但集合B中至少有一个元素不属于A,则称A是B的真子集.(3)集合相等:如果A⊆B,并且B⊆A,则A=B.(4)空集:不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集.记作∅.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.1.设集合A={2,1﹣a,a2﹣a+2},若4∈A,则a=()A.﹣3或﹣1或2B.﹣3或﹣1C.﹣3或2D.﹣1或22.设a,b∈R,集合{1,a+b,a}={0,ba,b},则b﹣a=()A.1B.﹣1C.2D.﹣23.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.44.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.65.已知集合A={1,2,3},B={1,m},若3﹣m∈A,则非零实数m的数值是.6.若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A.4B.2C.0D.0或4题型二.集合的基本关系——子集个数1.已知集合A={0,1,a2},B={1,0,3a﹣2},若A=B,则a等于()A.1或2B.﹣1或﹣2C.2D.12.设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥1}B.{a|a≤1}C.{a|a≥2}D.{a|a>2}3.已知集合M={x|x2=1},N={x|ax=1},若N⊆M,则实数a的取值集合为()A.{1}B.{﹣1,1}C.{1,0}D.{1,﹣1,0} 4.已知集合A={x|x2﹣3ax﹣4a2>0,(a>0)},B={x|x>2},若B⊆A,则实数a的取值范围是.5.已知集合A={x∈Z|x2+3x<0},则满足条件B⊆A的集合B的个数为()A.2B.3C.4D.86.设集合A={1,0},集合B={2,3},集合M={x|x=b(a+b),a∈A,b∈B},则集合M 的真子集的个数为()A.7个B.12个C.16个D.151.设集合A={1,2,4},B={x|x2﹣4x+m﹣1=0},若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}2.已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=﹣x},则A∩B中元素的个数为()A.3B.2C.1D.03.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]4.满足M⊆{a1,a2,a3},且M∩{a1,a2,a3}={a3}的集合M的子集个数是()A.1B.2C.3D.45.设集合A={x∈Z||x|≤2},B={x|32x≤1},则A∩B=()A.{1,2} B.{﹣1,﹣2} C.{﹣2,﹣1,2} D.{﹣2,﹣1,0,2}6.已知集合A={1,2,3},B={x|x2﹣3x+a=0,a∈A},若A∩B≠∅,则a的值为()A.1B.2C.3D.1或27.设集合A={x|x2﹣2x≤0,x∈R},B={y|y=﹣x2,﹣1≤x≤2},则∁R(A∩B)等于()A.R B.{x|x∈R,x≠0}C.{0}D.φ8.设集合A={x|x(4﹣x)>3},B={x|x|≥a},若A∩B=A,则a的取值范围是()A.a≤1B.a<1C.a≤3D.a<3题型四.用韦恩图解决集合问题——新定义问题1.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|y=lg(x﹣3)},则图中阴影部分表示的集合为()A.{1,2,3,4,5}B.{1,2,3}C.{1,2}D.{3,4,5} 2.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩∁U B={1,5,7},∁U A∩∁U B={9},则A=,B=.3.(2021•全国模拟)已知M,N均为R的子集,且∁R M⊆N,则M∪(∁R N)=()A.∅B.M C.N D.R4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%5.已知集合M={1,2,3,4},集合A、B为集合M的非空子集,若∀x∈A、y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个.6.任意两个正整数x、y,定义某种运算⊗:x⊗y={x+y(x与y奇偶相同)x×y(x与y奇偶不同),则集合M={(x,y)|x⊗y=6,x,y∈N*}中元素的个数是.。
集合中的题型归类解析
![集合中的题型归类解析](https://img.taocdn.com/s3/m/f2ae5d8383d049649b6658c0.png)
集合中的题型归类解析江苏 李洪洋集合问题为每年必考题型之一,特别是近几年高考试卷中出现了一些以集合为背景的试题,这些试题涉及的知识面广,灵活性较强.实际上,这方面问题的本质是以集合为载体,将一些数学问题的已知条件“嵌入”集合之中,只不过是在语言形式方面做了些变通罢了,而解决问题的理论依据、方法等仍类似于其他问题的求解.因此,在集合题型上应引起我们的足够重视.集合中的题型题型1:集合相等问题集合相等问题,主要是利用集合中元素的互异性,集合中元素的互异性是集合的重要属性,在解题中集合中元素的互异性常常被我们忽略,从而导致解题的失败,所以在解题中应引起足够的重视.例1已知集合{,,2}A a a b a b =++,2{,,}B a ac ac =,若A B =,求c 的值分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的各个集合的元素完全相同,及集合中元素的确定性、互异性、无序性建立关系式解:根据题意,分两种情况进行讨论: (1)若2,2,a b ac a b ac +=⎧⎨+=⎩,消去b ,得220a ac ac +-= 当0a =时,集合B 中的三个元素均为零,与元素的互异性相矛盾,故0a ≠∴2210c c -+=,即1c =,此时B 中的三个元素又相同,∴1c ≠∴此时无解. (2)若2,2,a b ac a b ac ⎧+=⎨+=⎩消去b ,得220ac ac a --= ∵0a ≠,∴2210c c --=,即(1)(21)0c c -+=又1c ≠,∴12c =- 评注:(1)解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验和修正.(2)有些数学问题很难从整体着手解决,需从分解入手,把整体科学合理地划分为若干个局部独立的问题,通过逐一判断来解决这些问题,从而达到整体问题的解决,这种重要的数学方法 就是分类讨论的方法 ,要学会这种思维方法.题型2:证明、判断两集合的关系集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此要予以重视。
(完整word版)高中数学集合总结+题型分类+完美解析
![(完整word版)高中数学集合总结+题型分类+完美解析](https://img.taocdn.com/s3/m/a59390d1b52acfc788ebc920.png)
集合知识清单】1. 性质:确定性、互易性、无序性.2. 元素和集合的关系:属于“”、不属于“” .3. 集合和集合的关系:子集(包含于“”)、真子集(真包含于“ ”)4. 集合子集个数= 2n;真子集个数= 2n1.5.交集:A B x| x A且x B并集:A B x|x A或x B补集:C U A x| x U且x A6.空集是任何非空集合的真子集;是任何集合的子集题型一、集合概念解决此类型题要注意以下两点:①要时刻不忘运用集合的性质,用的最多的就是互易性;②元素与集合的对应,如数对应数集,点对应点集【No.1 定义& 性质】1. 下列命题中正确的个数是()①方程x 2 y 2 0 的解集为2, 2②集合y | y x2 1,x R与y| y x1,x R 的公共元素所组成的集合是0,1③集合x| x 1 0 与集合x|x a,a R 没有公共元素A.0B.1C.2D.3分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构成的集合,而是 x 和 y 的值的集合,也就是一个点 .答案:Ax 2 0 x 2 详解 :在①中方程 x 2 y 2 0等价于,即 。
因此解集应为y 2 0 y 22, 2 ,错误;在②中,由于集合 y | y x 2 1,x R 的元素是 y ,所以当 x R 时, y x 2 1 1.同 理, y | y x 1,x R 中 y R ,错误;在③中,集合 x|x 1 0 即 x 1,而 x|x a,a R ,画出数轴便可知这两个集合可能 有公共的元素,错误 .故选 A.2.下列命题中,1)如果集合 A 是集合 B 的真子集,则集合 B 中至少有一个元素; 错误的命题的个数是( ) 分析:首先大家要理解子集和真子集的概念,如果集合 M 是集合 N 的子集,那 么M 中的元素个数要小于或等于 N 中元素的个数;如果集合 M 是集合N 的真子 集,那么 M 中的元素个数要小于 N 中元素的个数 .答案:C详解:( 1)如果集合 A 是集合 B 的真子集,则集合 B 中至少有一个元素,故( 1)正确;(2)如果集合 A 是集合 B 的子集,则集合 A 的元素少于或等于集合的 B 元素,故( 2)不 正确;(3)如果集合 A 是集合 B 的子集,则集合 A 的元素不多于集合 B 的元素,故( 3)正确; (4)如果集合 A 是集合 B 的子集,则集合 A 和B 可能相等,故( 4)不正确.故选 C .3. 设 P 、 Q 为两个非空实数集, P 中含有 0,2,5 三个元素, Q 中含有 1,2, 6三个元素,2)如果集合 A 是集合 B 的子集,则集合 3)如果集合 A 是集合 B 的子集,则集合 4)如果集合 A 是集合 B 的子集,则集合 A 的元素少于集合 B 的元素; A 的元素不多于集合 B 的元素; A 和B 不可能相等.A .0B .1C .2D .3定义集合 P Q 中的元素是 a b ,其中 a P ,b Q ,则 P Q 中元素的个数是()A.9B.8C.7D.6分析:因为a P ,b Q ,所以P Q 中的元素a b 是P 中的元素和 Q 中元素两 两相加而得出的,最后得出的集合还要考虑集合的互易性 .答案:B详解:当 a 0时, b 依次取 1,2,6,得 a b 的值分别为 1,2,6; 当 a 2时, b 依次取 1,2,6,得 a b 的值分别 3,4,8;当 a 5 时, b 依次取 1,2,6,得 a b 的值分别 6,7,11 ; 由集合的互异性得 P Q 中的元素为1,2,3,4,6,7,8,11,共 8 个,故选 B. 4. 设数集 M 同时满足条件1a① M 中不含元素 1,0,1,②若 a M ,则1 a M .1a 则下列结论正确的是 ( )A .集合 M 中至多有 2 个元素;B .集合 M 中至多有 3 个元素;C .集合 M 中有且仅有 4 个元素;D .集合 M 中有无穷多个元素1a分析:已知a M 时,1 a M .那么我们可以根据条件多求出几个 M 集合的元 1a素,找出规律并且判断元素之间是否有可能相等,从而判断集合中元素的个数 .答案:C详解 :由题意,若1 a111则1 aM ,则 1 a1 M , a a 1 M ,1a1 1 a a 11 a 11 aaa1 1 则a 1a11 a1 任意两个元素不相等,故集合2a 2M ,1 a 2若 a,则 a 21,无解,同理可证明这四个元素中,1aM ,【 No2. 表达方式】5. 下列集合表示空集的是( A. x R|x 5 5 B. x R|x 5 5 2C. x R|x 2 02D. x R|x 2x 1 0分析: 本题考查空集的概念,空集是指没有任何元素的集合答案:D详解: x 2 x 1 0,1 4 1 1 3 0 方程无实数解,故选 D.6. 用描述法表示下列集合: 0,2,4,6,8 ; 3,9,27,81, ;1,3,5,7, ; 2,4,6,8,(4)被 5 除余 2 的所有整数的全体构成的集合.分析: 描述法就是将文字或数字用式子表示出来 .但是要注意题中给出的元素的 范围详解:(1) x N |0 x 10 ,且x 是偶数 ;(2) x|x 3n,n N ;2n 1(3) x|x ,n N 2n(1) (2) (3)(4) x| x 5n 2,n Z题型二、不含参数⑴⑴中的参数是指方程的非最高次项系数解决此类型题应注意:①区分,,的区别;②会用公式求子集、真子集、非空真子集的个数;③A B A ABA B A BAA B从A 和B 两方面讨论【No.1 判断元素/ 集合与集合之间的关系】1.给出下列各种关系①0 0 ;② 0 0 ;③ ;④ a a ;⑤ 0 ;⑥ 0 ;⑦ 0 ;⑧0其中正确的是()A. ②③④⑧B.①②④⑤C.②③④⑥D. ②③④⑦分析:本题需要大家分清,,三个符号的意义和区别:-- “属于”,用于表示元素和集合的关系;,-- “包含于和真包含于”,用于表示集合和集合之间的关系.答案:A详解:①错误,应为0 0 ;②③④⑧正确;⑤⑥⑦应为0 ;2.若U 为全集,下面三个命题中真命题的个数是()(1)若A B,则C U A C U B UC U B(2)若A B U , 则C U A,则 A B(3)若A BA.0个B.1个C.2个D.3个分析:本题应先简化后面的式子,然后再和前面的条件对比答案:D详解:(1)C U A C U B C U A B C U U ;(2)C U A C U B C U A B C U U ;(3)证明:∵AA B , 即A,而A ,∴ A同理B,∴ A B ;【No.2 子集、真子集】3.从集合U a, b, c, d 的子集中选出 4 个不同的子集,须同时满足以下两个条件:①,U 都要选出;②对选出的任意两个子集A 和B ,必有A B 或B A.那么共有种不同的选法.分析:由①可以知道选出的子集中一定有和U ,我们要求得只剩两个集合。
高一数学集合经典题型归纳总结(精编文档).doc
![高一数学集合经典题型归纳总结(精编文档).doc](https://img.taocdn.com/s3/m/b26ba014cf84b9d528ea7ad7.png)
【最新整理,下载后即可编辑】高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合总结:元素的互异性是参考点,常常在求出值的时候必须代回集合察看是否满足该集合中元素是否有重复现象,从而决定值的取舍。
元素与集合之间的关系:属于-- 不属于--常有集合N Z R Q 加星号或者+号表示对应集合的正的集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:通常元素是很具体的值的时候,或者在考察抽象集合之间的关系的时候,我们常常考虑用venn图来表示。
4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合,空集在集合这个章节中非常重要,特别是在集合之间的关系的题中经常出现,很容易考虑掉空集。
例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
2018-2016三年高考真题理科数学分类汇编:集合(解析附后)
![2018-2016三年高考真题理科数学分类汇编:集合(解析附后)](https://img.taocdn.com/s3/m/1bf05c77ff4733687e21af45b307e87100f6f879.png)
2018-2016三年高考真题理科数学分类汇编:集合(解析附后)2018-2016三年高考真题分类汇编:集合(解析附后)考纲解读明方向考点内容解读要求常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义。
理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用XXX(Venn)图表达集合间的基本关系及集合的基本运算。
选择题★★☆2.集合间的基本关系选择题★★☆3.集合间的基本运算选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系。
2.深刻理解、掌握集合的元素、子、交、并、补集的概念。
熟练掌握集合的交、并、补的运算和性质。
能用XXX(Venn)图表示集合的关系及运算。
3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法。
4.本节内容在高考中分值约为5分,属中低档题。
命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x|x<2},B={-2,1,2},则AB=()A。
{0,1} B。
{-1,1} C。
{-2,1,2} D。
{-1,1,2}2.【2018年理新课标I卷】已知集合A={x|x²-4x+3=0},B={x|x²-2x-3=0},则AB中元素的个数为()A。
2 B。
3 C。
4 D。
53.【2018年全国卷III理】已知集合A={x|x²-5x+6>0},B={x|x-2>0},C={x|x<3},则A∩B∩C=()A。
{x|x2} D。
高考集合知识点总结及典型例题
![高考集合知识点总结及典型例题](https://img.taocdn.com/s3/m/b85cc0c650e2524de5187e5b.png)
集 合一.【课标要求】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn 图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。
考试形式多以一道选择题为主。
预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。
具体三.【要点精讲】1.集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a 是集合A 的元素,记作;若b 不是集合A 的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;A a ∈A b ∉互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
人教版高中数学必修一集合题型总结及解题方法
![人教版高中数学必修一集合题型总结及解题方法](https://img.taocdn.com/s3/m/63a17906ae45b307e87101f69e3143323968f5a1.png)
(每日一练)人教版高中数学必修一集合题型总结及解题方法单选题1、已知集合A={x|1<x<3},B={x|3<x<6}则A∩B=()A.(1,3)B.(1,6)C.(−1,3)D.∅答案:D解析:利用集合的交集运算求解.因为集合A={x|1<x<3},B={x|3<x<6},所以A∩B=∅故选:D2、已知集合A={x|x2+2x−15≤0},B={−3,−1,1,3,5},则A∩B=()A.{−3,−1,1,3}B.{−3,−1,1}C.{−1,1,3}D.{−3,−1,1,3,5}答案:A解析:求出集合A,直接进行集合的交集运算.因为A={x|x2+2x−15≤0}={x|−5≤x≤3},所以A∩B={−3,−1,1,3}.故选:A小提示:本题考查集合的交集,考查运算求解能力,属于基础题.3、已知集合A={x|1<x<3},B={x|3<x<6}则A∩B=()A.(1,3)B.(1,6)C.(−1,3)D.∅答案:D解析:利用集合的交集运算求解.因为集合A={x|1<x<3},B={x|3<x<6},所以A∩B=∅故选:D填空题4、已知集合A={y|y=x2−2x,x∈R},B={y|y=−x2+2x+6,x∈R},则A∩B=______. 答案:{y|−1≤y≤7}解析:先分别求集合A,B,注意各自是两个函数的值域,再求交集.∵y=x2−2x=(x−1)2−1≥−1,∴A={y|y≥−1},∵y=−x2+2x+6=−(x−1)2+7≤7,∴B={y|y≤7},∴A∩B={y|−1≤y≤7}.所以答案是:{y|−1≤y≤7}5、对班级40名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人,问对A、B都赞成的学生有________人.答案:18解析:x+1+27−x+x+24−x=40,解得答案.设对A、B都赞成的学生有x,根据韦恩图得到13=24,赞成B的人数为24+3=27,赞成A的人数为40×35x+1+27−x+x+24−x=40,解得x=18.设对A、B都赞成的学生有x,则13所以答案是:18.小提示:本题考查了根据韦恩图求解集合问题,意在考查学生的计算能力和应用能力,画出韦恩图是解题的关键.。
集合题型全归纳(含详解答案)
![集合题型全归纳(含详解答案)](https://img.taocdn.com/s3/m/6f43c6c6a45177232e60a21d.png)
x ax 2 a
,如果 3 P ,那么 a 的取值范围_____________
题型:集合的三大特性
1、下列各组对象中能构成集合的是( )
A.充分接近 的实数的全体
B.数学成绩比较好的同学
C.小于 20 的所有自然数
D.未来世界的高科技产品
2、下列对象能构成集合的是(
A.高一年级全体较胖的学生
题型:集合基本运算的应用
1.某班有 36 名同学参加数学、物理、化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、
化学小组的人数分别为 26,15,13,同时参加数学和物理小组的有 6 人,同时参加物理和化学小组的有
4 人,则同时参加数学和化学小组的有__________人.
2.调查了 100 名携带药品出国的旅游者,其中 75 人带有感冒药,80 人带有胃药,那么对于既带感冒药又
ሼ࢞ .
2、已知全集
,集合
,ᛘ
,求 ᛘ,ሼᾺ ࢞ ᛘ,
ሼᾺ ᛘ࢞.
3、已知集合
,ᛘ
,Ὰ
.
(1)若 A∪(CRB)=R,求实数 的取值范围;
(2)若 Ὰ ᛘ Ὰ,求实数 的取值范围.
4、已知全集
,
,若Ὰ
,求 的值.
5、设集合
,ᛘ
,若 ᛘ ,求实数 的取值范围.
题型:用韦恩图计算
1.设全集
,
,ᛘ
,则图中阴影部分所表示的
或《红楼梦》的学生共有 90 位,阅读过《红楼梦》的学生共有 80 位,阅读过《西游记》且阅读过《红
楼梦》的学生共有 60 位,则在调查的 100 位同学中阅读过《西游记》的学生人数为( )
A.80
B.70
高考数学:集合及其表示法(9种题型)(解析版)
![高考数学:集合及其表示法(9种题型)(解析版)](https://img.taocdn.com/s3/m/50feb4190166f5335a8102d276a20029bd64630d.png)
01集合及其表示法(9种题型)【课程细目表】一、知识梳理二、考点剖析1.集合的含义2.元素与集合关系的判断3.集合的确定性、互异性、无序性4.集合相等5.有限集与无限集.6.集合的表示法--描述法7.集合的表示法--列举法8.集合的表示法--区间法9.集合的表示法--综合应用三、过关检测【知识梳理】一、集合的意义1.集合的概念我们把能够确切指定的一些对象组成的整体叫做集合,简称集.集合中的各个对象叫做这个集合的元素.对于一个给定的集合,集合中的元素具有确定性、互异性、无序性.确定性是指一个对象要么是给定集合的元素,要么不是这个集合的元素,二者必居其一.比如“著名的数学家”、“较大的数”、“高一一班成绩好的同学”等都不能构成集合,因为组成集合的元素不确定.互异性是指对于一个给定的集合,集合中的元素是各不相同的,也就是说,一个给定的集合中的任何两个元素都是不同的对象,集合中的元素不重复出现.例如由元素1,2,1组成的集合中含有两个元素:1,2.无序性是指组成集合的元素没有次序,只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.2.集合与元素的字母表示、元素与集合的关系集合常用大写字母A、B、C⋯来表示,集合中的元素用a、b、c⋯表示,如果a是集合A的元素,就记作a∈A,读作“a属于A”;如果a不是集合A的元素,就记作a∉A,读作“a不属于A”3.常用的数集及记法数的集合简称数集,我们把常用的数集用特定的字母表示:全体自然数组成的集合,即自然数集,记作N,不包含零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R常用的集合的特殊表示法:实数集R(正实数集R+)、有理数集Q(负有理数集Q-)、整数集Z(正整数集Z+)、自然数集N(包含零)、不包含零的自然数集N*;4.集合相等如果两个集合A与B的组成元素完全相同,就称这两个集合相等,记作A=B.5.集合的分类我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集我们引进一个特殊的集合--空集,规定空集不含元素,记作∅,例如,方程x2+1=0的实数解所组成的集合是空集,又如,两个外离的圆,它们的公共点所组成的集合也是空集.6.空集我们把不含任何元素的集合,记作φ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合【知识清单】1.性质:确定性、互易性、无序性.2.元素和集合的关系:属于“∈”、不属于“∉”.3.集合和集合的关系:子集(包含于“⊆”)、真子集(真包含于“≠⊂”). 4.集合子集个数=n 2;真子集个数=12-n.5.交集:{}B x A x x B A ∈∈=且|I并集:{}B x A x x B A ∈∈=或|Y补集:{}A x U x x A C U ∉∈=且|6.空集是任何非空集合的真子集;是任何集合的子集.题型一、集合概念解决此类型题要注意以下两点:①要时刻不忘运用集合的性质,用的最多的就是互易性;②元素与集合的对应,如数对应数集,点对应点集.【No.1 定义&性质】1.下列命题中正确的个数是( ) ①方程022=++-y x 的解集为{}2,2-②集合{}R x x y y ∈-=,1|2与{}R x x y y ∈-=,1|的公共元素所组成的集合是{}1,0 ③集合{}01|<-x x 与集合{}R a a x x ∈>,|没有公共元素A.0B.1C.2D.3 分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构成的集合,而是x 和y 的值的集合,也就是一个点.答案:A详解:在①中方程022=++-y x 等价于⎩⎨⎧=+=-0202y x ,即⎩⎨⎧-==22y x 。
因此解集应为(){}2,2-,错误;在②中,由于集合{}R x x y y ∈-=,1|2的元素是y ,所以当R x ∈时,112-≥-=x y .同理,{}R x x y y ∈-=,1|中R y ∈,错误;在③中,集合{}01|<-x x 即1<x ,而{}R a a x x ∈>,|,画出数轴便可知这两个集合可能有公共的元素,错误.故选A.2.下列命题中,(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素;(2)如果集合A 是集合B 的子集,则集合A 的元素少于集合B 的元素;(3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素;(4)如果集合A 是集合B 的子集,则集合A 和B 不可能相等.错误的命题的个数是( )A .0B .1C .2D .3分析:首先大家要理解子集和真子集的概念,如果集合M 是集合N 的子集,那么M 中的元素个数要小于或等于N 中元素的个数;如果集合M 是集合N 的真子集,那么M 中的元素个数要小于N 中元素的个数.答案:C详解:(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素,故(1)正确;(2)如果集合A 是集合B 的子集,则集合A 的元素少于或等于集合的B 元素,故(2)不 正确;(3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素,故(3)正确;(4)如果集合A 是集合B 的子集,则集合A 和B 可能相等,故(4)不正确.故选C .3.设P 、Q 为两个非空实数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合Q P +中的元素是b a +,其中P a ∈,Q b ∈,则Q P +中元素的个数是( )A.9B.8C.7D.6 分析:因为P a ∈,Q b ∈,所以Q P +中的元素b a +是P 中的元素和Q 中元素两两相加而得出的,最后得出的集合还要考虑集合的互易性.答案:B详解:当0=a 时,b 依次取1,2,6,得b a +的值分别为1,2,6;当2=a 时,b 依次取1,2,6,得b a +的值分别3,4,8;当5=a 时,b 依次取1,2,6,得b a +的值分别6,7,11;由集合的互异性得Q P +中的元素为1,2,3,4,6,7,8,11,共8个,故选B.4.设数集M 同时满足条件①M 中不含元素1,0,1-,②若M a ∈,则M aa ∈-+11. 则下列结论正确的是 ( )A .集合M 中至多有2个元素;B .集合M 中至多有3个元素;C .集合M 中有且仅有4个元素;D .集合M 中有无穷多个元素. 分析:已知M a ∈时,M aa ∈-+11.那么我们可以根据条件多求出几个M 集合的元素,找出规律并且判断元素之间是否有可能相等,从而判断集合中元素的个数.答案:C详解:由题意,若M a ∈,则M a a ∈-+11,则M a aa a a ∈-=-+--++1111111,M a a a a ∈+-=+-111111,则M a a a a a a ∈==+--+-+22111111,若a a a -+=11,则12-=a ,无解,同理可证明这四个元素中,任意两个元素不相等,故集合M 中有且仅有4个元素.----------------------------------------------------------------------------------------------------------------------【No2. 表达方式】5.下列集合表示空集的是( )A.{}55|=+∈x R xB.{}55|>+∈x R xC.{}0|2=∈x R x D.{}01|2=++∈x x R x 分析:本题考查空集的概念,空集是指没有任何元素的集合.答案:D详解:012=++x x ,031141<-=⨯⨯-=∆Θ∴方程无实数解,故选D.6.用描述法表示下列集合:(1){}8,6,4,2,0;(2){}Λ,81,27,9,3;(3)⎭⎬⎫⎩⎨⎧Λ,87,65,43,21; (4)被5除余2的所有整数的全体构成的集合.分析:描述法就是将文字或数字用式子表示出来.但是要注意题中给出的元素的范围详解:(1){}是偶数且x x N x ,100|<≤∈;(2){}+∈=N n n x x ,3|;(3)⎭⎬⎫⎩⎨⎧∈-=+N n n n x x ,212|; (4){}Z n n x x ∈+=,25|.====================================================================== 题型二、不含参数⑴⑴中的参数是指方程的非最高次项系数解决此类型题应注意:①区分∈,⊆,≠⊂的区别; ②会用公式求子集、真子集、非空真子集的个数;③B A A B A ⊆⇒=IA B A B A ⊆⇒=Y两方面讨论和从∅=∅=⇒∅=B A B A I .【No.1 判断元素/集合与集合之间的关系】1.给出下列各种关系①0≠⊂{}0;②0∈{}0;③{}∅∈∅;④{}a a ∈;⑤{}0=∅;⑥{}∅∈0;⑦{}0∈∅;⑧∅≠⊂{}0 其中正确的是( )A.②③④⑧B.①②④⑤C.②③④⑥D.②③④⑦分析:本题需要大家分清∈,⊆,≠⊂三个符号的意义和区别:∈--“属于”,用于表示元素和集合的关系;⊆,≠⊂--“包含于和真包含于”,用于表示集合和集合之间的关系.答案:A详解:①错误,应为{}00∈;②③④⑧正确;⑤⑥⑦应为∅≠⊂{}0;2.若U 为全集,下面三个命题中真命题的个数是( )(1)若()()U B C A C B A U U =∅=Y I 则,(2)若()()∅==B C A C U B A U U I Y 则,(3)若∅==∅=B A B A ,则YA .0个B .1个C .2个D .3个 分析:本题应先简化后面的式子,然后再和前面的条件对比.答案:D详解:(1)()()()U C B A C B C A C U U U U =∅==I Y ;(2)()()()∅===U C B A C B C A C U U U U Y I ;(3)证明:∵()B A A Y ⊆,即∅⊆A ,而A ⊆∅,∴∅=A ;同理∅=B , ∴∅==B A ;----------------------------------------------------------------------------------------------------------------------【No.2 子集、真子集】3.从集合{}d c b a U ,,,=的子集中选出4个不同的子集,须同时满足以下两个条件: ①∅,U 都要选出;②对选出的任意两个子集A 和B ,必有B A ⊆或A B ⊆.那么共有 种不同的选法.分析:由①可以知道选出的子集中一定有∅和U ,我们要求得只剩两个集合。
根据②(以B A ⊆为例)可以从讨论A 中有1个或2个元素有几种选法来确定B 的选法.注意A 中不可能有3种元素,因为这样B 中会出现U 和A 中的元素,与题意和性质不符.答案:36详解:由题意知,集合必有子集∅和U ,只需考虑另外两个集合如果A 中含有一个元素,有4种选法,相应的,B 集合中有6中选法,共24种; 如果A 中含有两个元素,有6种选法,相应的,B 集合中有2中选法,共12种; 即总共有36种选择。
4.已知集合{}032|2=--=x x x A ,那么满足A B ⊆的集合B 有( )A .1个B .2个C .3个D .4个 分析:本题求的是A 集合的子集个数答案:D详解:根据题意,0322=--x x ,则1-=x 或3,则集合{}3,1-=A ,其中有2个元素,则其子集有422=个,满足A B ⊆的集合B 有4个,故选D .5.若集合B A ⊆,C A ⊆,且{}4,2,0=C B I .则满足条件的集合A 的个数为( )A .3个B .4个C .7个D .8个 分析:集合B A ⊆,C A ⊆,说明A 同时是两个集合的子集.答案:D详解:根据题意,集合B A ⊆,C A ⊆,且{}4,2,0=C B I .即A 为{}4,2,0的子集, 而{}4,2,0中有3个元素,共有823=个子集; 即满足条件的A 的个数为8;故选D .----------------------------------------------------------------------------------------------------------------------【No.3 集合间的运算】6.设全集(){}R y x y x U ∈=,|,,集合()⎭⎬⎫⎩⎨⎧=-+=122|,x y y x M ,(){}4|,-≠=x y y x N , 那么()()N C M C U U I 等于________________. 分析:首先要注意本题要求的是点集,M 集合的含义是不含有()2,2-的直线上的点集,M C U 表示的就是()2,2-;N C U 表示4-=x y .答案:(){}2,2-详解:()24:≠-=x x y M ,M 代表直线4-=x y 上,但是挖掉点()2,2-,M C U 代表直线4-=x y 外,但是包含点()2,2-;N 代表直线4-=x y 外,N C U 代表直线4-=x y 上,∴()()(){}2,2-=N C M C U U I .7.已知{}06|2=+-=px x x M ,{}06|2=-+=q x x x N ,则{}2=N M I ,则=+q p ( )A.21B.8C.6D.7分析:从{}2=N M I 入手得,2既是M 的元素又是N 的元素,那么代入便可以求出p 和q 的值.答案:A详解:由已知得,N M ∈∈2,2所以2是方程062=+-px x 和062=-+q x x 的根,故将2代入得,5=p ;16,0==q q .所以21=+q p .8. 已知方程02=++c bx x 有两个不相等的实根1x ,2x . 设{}21,x x C =,{}9,7,5,3,1=A , {}10,7,4,1=B ,若C B C C A =∅=I I ,,试求b ,c 的值。