平面与平面的位置关系(2)(3.2.4) (2)
中等职业教育规划教材数学1-3册目录(人民教育出版社)
中等职业教育规划教材数学1-3册目录(人民教育出版社)目录第一章集合(第一册)1.1集合及其表示1.1.1集合1.1.2集合的表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件第二章方程与不等式2.1一元一次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含有绝对值的不等式2.2.4一元二次不等式第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2.2空间几何体的体积第七章三角函数(第二册)7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像和性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法8.2.2向量的减法8.2.3数乘向量8.3平面向量的的直角坐标系8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量内积的直角坐标运算第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量与点向式方程9.1.2直线的斜率与点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行9.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置的关系第十一章概率与统计初步11.1计数的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3.1简单随机抽样11.3.2系统抽样11.3.3分层抽样11.4用样本估计总体11.4.1用样本的频率分布估计总体的分布11.4.2用样本的数字特征估计总体的数字特征11.5一元线性回归分析第十二章三角计算及其应用(第三册) 12.1和角公式12.1.1两角和与差的余弦12.1.2两角和与差的正弦12.1.3两角和与差的正切12.2倍角公式12.3正弦函数)sin(?ω+=x A y 的图像和性质 12.4解三角形12.4.1余弦定理12.4.2三角形的面积12.4.3正弦定理12.5三角计算及应用举例第十三章圆锥曲线与方程13.1椭圆13.1.1椭圆的标准方程13.1.2椭圆的几何性质13.2双曲线13.2.1双曲线的标准方程13.2.2双曲线的几何性质13.3抛物线13.3.1抛物线的标准方程13.3.2抛物线的几何性质第十四章坐标变换与参数方程14.1坐标变换14.1.1坐标轴的平移14.1.2利用坐标轴的平移化简二元二次方程14.1.3坐标轴的旋转14.1.4利用坐标轴的旋转化简二元二次方程14.2一般二元二次方程的讨论14.2.1化一般二元二次方程为标准式14.2.2一般二元二次方程的讨论14.3参数方程14.3.1曲线的参数方程14.3.2圆的参数方程14.3.3直线的参数方程14.3.4圆锥曲线的参数方程14.4参数方程的应用举例第十五章逻辑代数基础15.1常用逻辑用语15.1.1命题15.1.2量词15.1.3逻辑联结词15.2数制15.2.1十进制与二进制15.2.2十进制与二进制之间的转换15.3逻辑代词15.3.1基本概念与基本逻辑运算15.3.2逻辑代数的运算律和基本定理15.3.3逻辑函数15.3.4逻辑函数的表示方法15.3.5逻辑函数的化简15.3.6逻辑图第十六章算法与程序框图16.1算法的概念16.2程序框图与算法的基本逻辑结构16.2.1程序框图的基本图例16.2.2顺序结构及其框图16.2.3条件分支结构及其框图16.2.4循环结构及其框图16.3条件判断16.4算法案例第十七章数据表格信息处理17.1数组、数据表格的概念17.2数组的代数运算17.3用软件处理数据表格17.4数据表格的图示第十八章编制计划的原理与方法18.1编制计划的有关概念18.2关键路径法18.3统筹图18.3.1网络图18.3.2横道图18.4进度计划的编制18.4.1网络图的时间参数18.4.2时间优化的方法第十九章线性规划初步19.1线性规划问题19.2二元一次不等式表示的区域19.3线性规划问题的图解法19.4线性规划问题的应用举例19.5用Excel解线性规划问题第二十章复数20.1复数的概念20.1.1复数的有关概念20.1.2复数的几何意义20.2复数的运算20.2.1复数的加法和减法20.2.2复数的乘法和除法20.3实系数一元二次方程的解法20.4复数的三角形式20.4.1复数的三角形式20.4.2复数三角形式的乘法与乘方运算20.4.3复数三角形式的除法运算20.4.4复数的开方运算20.5复数的指数形式20.6复数的应用第二十一章概率分布初步21.1排列与组合21.1.1排列与排列数公式21.1.2组合与组合数公式21.2二项式定理21.2.1二项式定理21.2.2二项式系数的性质21.3离散型随机变量及其分布21.3.1离散型随机变量21.3.2二项分布21.4正态分布。
平面与平面的位置关系ppt
判定方法二
利用向量的性质判断。如果两个平 面的法向量不共线,则它们一定相 交;如果法向量共线,则它们可能 重合或平行。
判定方法三
利用点积的性质判断。如果两个平 面的任意两个非零向量点积为零, 则它们相交;否则,它们平行或重 合。
相交的性质
性质一
两个平面相交时,它们有且仅有一条共同的直线。这条直线是两 个平面的交线,也是两个平面的边界。
详细描述
平面与平面重合是平面与平面之间的一种特殊位置关系。在这种情况下,两个平面的所有点都位于同一位置,即 它们完全重合。这意味着两个平面的方向向量平行且长度相等,同时它们的法向量也相同。此外,在这种位置关 系中,两个平面没有公共点。
平面与平面斜交
总结词
当两个平面不平行且不重合时,它们呈 斜交状态。
详细描述
在平面与平面分离的位置关系中,两 个平面的法向量不同且不共线。这意 味着它们不会相交或重合,而是完全 分离。在这种位置关系中,两个平面 没有公共点。
THANKS
感谢观看
VS
详细描述
平面与平面斜交是另一种常见的位置关系 。在这种情况下,两个平面的法向量不共 线,因此它们也不平行。这意味着一个平 面可以旋转到另一个平面上,但不会完全 重合。此外,在这种位置关系中,两个平 面会有一些公共点,这些点位于它们的交 线上。
平面与平面分离
总结词
当两个平面既不平行也不重合时,它 们处于分离状态。
Байду номын сангаас
平行的判定方法
总结词
根据平行的定义,可以通过判断两个平面是否有公共点来判断它们是否平行。
详细描述
在三维空间中,可以通过观察两个平面是否相交来判断它们是否平行。如果两 个平面没有交点,则它们平行;如果有交点,则它们不平行。
最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)
最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
《机械制图》教案——第二章-3 直线、平面的相对位置关系
直线、平面的相对位置关系教学目的要求:研究直线与平面以及平面与平面的相对位置关系在投影图中的投影特性和基本作图方法。
包括:平行、相交和垂直。
教学重点难点:相交关系的作图方法与步骤,及可见性的判断,线、面相对位置综合作图。
学时:3§ 1平行关系1.1直线与平面平行几何条件:如果平面外的一直线和这个平面上的一直线平行,则此直线平行于该平面,反之亦然。
投影:如果直线的投影与平面内任意一直线的同面投影平行,在空间则直线与平面平行。
根据此定理,我们可以在投影图上判断直线与平面是否平行,并解决直线与平面平行的作图问题。
作图:如图5-1所示,已知b’d’∥e’f’,bd∥ef,且BD是ABC平面上的一直线,因此,直线BD∥ΔABC。
图5-1例1:过点K作一水平线,使之平行于ΔABC(图5-2)解:①在ΔABC上作一水平线AD。
(先作正面投影 aˊdˊ∥X)②过K点作直线KL∥AD。
(kl∥ad,kˊlˊ∥aˊdˊ)直线KL即为所求。
图5-2例2:过点K作一铅垂面(用迹线表示),使之平行于直线AB解:由于铅垂面的H投影为一直线,所以作铅垂面平行于直线AB,则P H必平行于ab。
1)过k作P H∥ab,与X轴交于P X点。
2)过P X点作P V⊥X轴,则P平面即为所求。
图5-31.2平面与平面平行几何条件:如果一平面上的两条相交直线分别平行于另一平面上的两条相交直线,则此两平面平行。
投影:一个平面内任意两条直线的投影分别与另一个平面内两条相交直线的同面投影对应平行,则这两个平面平行。
作图:由于AB∥A1B1,BC∥B1C1,所以平面ABC∥平面A1B1C1,如图5-4所示图5-4两平行平面的同面迹线一定平行,反之,如果两平面的两对同面迹线分别相互平行,则不能确定两平面是相互平行的。
在图5-5中两平面平行,在图5-6中两平面不平行。
图5-5图5-6§2相交关系求直线与平面的交点和两平面的交线是解决相交问题的基础。
空间点线面之间位置关系知识点总结
高中空间点线面之间位置关系知识点总结第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系'''x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。
重点记忆:直观图面积=原图形面积(三)空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积:各个面面积之和②圆柱的表面积③圆锥的表面积2S rl rππ=+④圆台的表面积22S rl r Rl Rππππ=+++⑤球的表面积24S Rπ=⑥扇形的面积公式213602n RS lrπ==扇形(其中l表示弧长,r表示半径)2、空间几何体的体积①柱体的体积V S h=⨯底②锥体的体积13V S h=⨯底③台体的体积1)3V S S h=+⨯下上(④球体的体积343V Rπ=第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
平面与平面的位置关系判定平面与平面的位置关系有哪些平面与平面垂直的性质定理
一、平面与平面的位置关系有且只有两种1、两个平面平行——没有公共点;2、两个平面相交——有一条公共直线。
二、面面垂直性质定理1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
3.如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4.如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
(判定定理推论1的逆定理)三、平面与平面垂直的性质如果两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
平面与平面垂直有如下性质:如果两个平面垂直,那么在一个平面内与交线垂直的直线垂直于另一个平面;如果两个平面垂直,那么与一个平面垂直的直线平行于另一个平面或在另一个平面内。
四、面面垂直定义若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。
五、线面垂直定义如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。
是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。
在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”。
六、线面垂直判定定理直线与平面垂直的判定定理(线面垂直定理):一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
推论1:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
推论2:如果两条直线垂直于同一个平面,那么这两条直线平行。
两个平面的位置关系的符号语言及其图形如下表:。
2025年新人教版高考数学一轮复习讲义含答案解析 第七章§7.3 空间点、直线、平面之间的位置关系
2025年新人教版高考数学一轮复习讲义含答案解析§7.3空间点、直线、平面之间的位置关系课标要求1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.2.了解四个基本事实和一个定理,并能应用定理解决问题.知识梳理1.基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行.2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间中直线与直线的位置关系异面直线:不同在任何一个平面内,没有公共点.4.空间中直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交a ∩α=A 1个平行a ∥α0个在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l 无数个5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.6.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,我们把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2),π2.常用结论1.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2.分别在两个平行平面内的直线平行或异面.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)没有公共点的两条直线是异面直线.(×)(2)直线与平面的位置关系有平行、垂直两种.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)两两相交的三条直线共面.(×)2.(必修第二册P147例1改编)已知正方体ABCD -A 1B 1C 1D 1,直线BD 1与直线AA 1所成角的余弦值是()A.12B.13C.63D.33答案D解析连接BD (图略),由于AA 1∥DD 1,所以∠DD 1B 即为直线BD 1与直线AA 1所成的角,不妨设正方体的棱长为a ,则BD =2a ,BD 1=D 1D 2+BD 2=3a ,所以cos ∠DD 1B =DD 1D 1B =13=33.3.(多选)给出以下四个命题,其中错误的是()A .不共面的四点中,其中任意三点不共线B .若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则点A ,B ,C ,D ,E 共面C .若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面D .依次首尾相接的四条线段必共面答案BCD解析反证法:如果四个点中,有3个点共线,第4个点不在这条直线上,根据基本事实2的推论可知,这四个点共面,这与已知矛盾,故A 正确;如图1,A ,B ,C ,D 共面,A ,B ,C ,E 共面,但A ,B ,C ,D ,E 不共面,故B 错误;如图2,a ,b 共面,a ,c 共面,但b ,c 异面,故C 错误;如图3,a ,b ,c ,d 四条线段首尾相接,但a ,b ,c ,d 不共面,故D 错误.图1图2图34.如图,在三棱锥A -BCD 中,E ,F ,G ,H 分别是棱AB ,BC ,CD ,DA 的中点,则:(1)当AC ,BD 满足条件________时,四边形EFGH 为菱形;(2)当AC ,BD 满足条件________时,四边形EFGH 为正方形.答案(1)AC =BD(2)AC =BD 且AC ⊥BD解析(1)由题意知,EF ∥AC ,EH ∥BD ,且EF =12AC ,EH =12BD ,∵四边形EFGH 为菱形,∴EF =EH ,∴AC =BD .(2)∵四边形EFGH 为正方形,∴EF =EH 且EF ⊥EH ,∴AC =BD 且AC ⊥BD .题型一基本事实的应用例1已知在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,C 1B 1的中点,AC ∩BD =P ,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于点R,则P,Q,R三点共线;(3)DE,BF,CC1三线交于一点.证明(1)如图所示,连接B1D1.因为EF是△C1D1B1的中位线,所以EF∥B1D1.在正方体ABCD-A1B1C1D1中,B1D1∥BD,所以EF∥BD,所以EF,BD确定一个平面,即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,连接A1C,设A1,C,C1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β,所以Q是α与β的公共点,同理,P是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,R∈α,且R∈β.则R∈PQ,故P,Q,R三点共线.(3)因为EF∥BD且EF<BD,所以DE与BF相交,设交点为M,则由M∈DE,DE⊂平面D1DCC1,得M∈平面D1DCC1,同理,M∈平面B1BCC1.又平面D1DCC1∩平面B1BCC1=CC1,所以M∈CC1.所以DE,BF,CC1三线交于一点.思维升华共面、共线、共点问题的证明(1)共面:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)共线:先由两点确定一条直线,再证其他各点都在这条直线上.(3)共点:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1在如图所示的空间几何体中,四边形ABEF 与ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥AF 且BE =12AF ,G ,H 分别为AF ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由题设知,因为G ,H 分别为AF ,FD 的中点,所以GH ∥AD 且GH =12AD ,又BC ∥AD 且BC =12AD ,故GH ∥BC 且GH =BC ,所以四边形BCHG 是平行四边形.(2)解C ,D ,F ,E 四点共面.理由如下:由BE ∥AF 且BE =12AF ,G 是AF 的中点知BE ∥GF 且BE =GF ,所以四边形EFGB 是平行四边形,所以EF ∥BG .由(1)知BG ∥CH ,所以EF ∥CH .故EC ,FH 共面.又点D 在直线FH 上,所以C ,D ,F ,E 四点共面.题型二空间位置关系的判断例2(1)(多选)下列推断中,正确的是()A .M ∈α,M ∈β,α∩β=l ⇒M ∈lB .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=ABC .l ⊄α,A ∈l ⇒A ∉αD .A ,B ,C ∈α,A ,B ,C ∈β,且A ,B ,C 不共线⇒α,β重合答案ABD解析对于A ,因为M ∈α,M ∈β,α∩β=l ,由基本事实3可知M ∈l ,故A 正确;对于B,A∈α,A∈β,B∈α,B∈β,故直线AB⊂α,AB⊂β,即α∩β=AB,故B正确;对于C,若l∩α=A,则有l⊄α,A∈l,但A∈α,故C错误;对于D,有三个不共线的点在平面α,β中,α,β重合,故D正确.(2)(2023·龙岩模拟)若a和b是异面直线,b和c是异面直线,则a和c的位置关系是() A.异面或平行B.异面或相交C.异面D.相交、平行或异面答案D解析如图,在长方体ABCD-A1B1C1D1中,①若直线AA1记为直线a,直线BC记为直线b,直线B1A1记为直线c,此时a和c相交;②若直线AA1记为直线a,直线BC记为直线b,直线DD1记为直线c,此时a和c平行;③若直线AA1记为直线a,直线BC记为直线b,直线C1D1记为直线c,此时a和c异面.思维升华判断空间直线的位置关系一般有两种方法:一是构造几何体(如长方体、空间四边形等)模型来判断.二是排除法.特别地,对于异面直线的判定常用到结论:“平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.”跟踪训练2(1)空间中有三条线段AB,BC,CD,且∠ABC=∠BCD,那么直线AB与CD 的位置关系是()A.平行B.异面C.相交或平行D.平行或异面或相交均有可能答案D解析根据条件作出示意图,容易得到以下三种情况,由图可知AB与CD有相交、平行、异面三种情况.(2)(多选)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,以下四个选项正确的是()A .直线AM 与CC 1是相交直线B .直线AM 与BN 是平行直线C .直线BN 与MB 1是异面直线D .直线AM 与DD 1是异面直线答案CD解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以直线AM 与CC 1是异面直线,故A 错误;取DD 1的中点E ,连接AE (图略),则BN ∥AE ,但AE 与AM 相交,所以AM 与BN 不平行,故B 错误;因为点B 1与直线BN 都在平面BCC 1B 1内,点M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故C 正确;同理D 正确.题型三异面直线所成的角例3(1)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为()A.33B.55C.306D.66答案D解析如图,过点E 作圆柱的母线交下底面于点F ,连接AF ,易知F 为 AD 的中点,设四边形ABCD 的边长为2,则EF =2,AF =2,所以AE =22+(2)2= 6.连接ED ,则ED = 6.因为BC ∥AD ,所以异面直线AE 与BC 所成的角即为∠EAD (或其补角).在△EAD 中,cos ∠EAD =6+4-62×2×6=66.所以异面直线AE 与BC 所成角的余弦值为66.(2)四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PA ⊥底面ABCD ,异面直线AC 与PD 所成角的余弦值为105,则四棱锥外接球的表面积为()A .48πB .12πC .36πD .9π答案D解析如图,将其补成长方体.设PA =x ,x >0,连接AB 1,B 1C ,则异面直线AC 与PD 所成的角就是∠ACB 1或其补角.则cos ∠ACB 1=105=8+x 2+4-x 2-42×22×x 2+22,解得x =1(舍去负值),所以外接球的半径为12×12+22+22=32,所以该四棱锥外接球的表面积为4π=9π.思维升华异面直线所成角的求法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已有的平行线或者作平行线,形成三角形求解补形法在该几何体的某侧补接上一个几何体,在这两个几何体中找异面直线相应的位置,形成三角形求解跟踪训练3(1)(2023·莆田模拟)若正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,高为6,则直线AE 1和EF 所成角的大小为()A.π6B.π4C.π3D.π2答案C解析如图所示,EF ∥E 1F 1,则∠AE 1F 1即为所求.∵AF =EF =1,EE 1=6,且∠AFE =2π3,∴AE =AF 2+EF 2-2AF ·EF ·cos2π3=3,∴AE 1=AE 2+EE 21=3,AF 1=AF 2+FF 21=7,∴cos ∠AE 1F 1=AE 21+E 1F 21-AF 212AE 1·E 1F 1=9+1-72×3×1=12,∴∠AE 1F 1=π3,即直线AE 1和EF 所成角的大小为π3.(2)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32B.22C.33D.13答案A解析如图所示,过点A 补作一个与正方体ABCD -A 1B 1C 1D 1相同棱长的正方体,易知平面α为平面AF 1E ,则m ,n 所成的角为∠EAF 1.∵△AF 1E 为正三角形,∴sin ∠EAF 1=sin 60°=32.课时精练一、单项选择题1.若直线上有两个点在平面外,则()A .直线上至少有一个点在平面内B .直线上有无穷多个点在平面内C .直线上所有点都在平面外D .直线上至多有一个点在平面内答案D解析根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.2.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析由m ,n ,l 在同一平面内,可能有m ,n ,l 两两平行,所以m ,n ,l 可能没有公共点,所以不能推出m ,n ,l 两两相交.由m ,n ,l 两两相交且m ,n ,l 不经过同一点,可设l ∩m =A ,l ∩n =B ,m ∩n =C ,且A ∉n ,所以点A 和直线n 确定平面α,而B ,C ∈n ,所以B ,C ∈α,所以l ,m ⊂α,所以m ,n ,l 在同一平面内.3.已知平面α∩平面β=l ,点A ,C ∈α,点B ∈β,且B ∉l ,又AC ∩l =M ,过A ,B ,C 三点确定的平面为γ,则β∩γ是()A .直线CMB .直线BMC .直线ABD .直线BC答案B解析已知过A ,B ,C 三点确定的平面为γ,则AC ⊂γ.又AC ∩l =M ,则M ∈γ,又平面α∩平面β=l ,则l ⊂α,l ⊂β,又因为AC ∩l =M ,所以M ∈β,因为B ∈β,B ∈γ,所以β∩γ=BM .4.如图,已知直三棱柱ABC -A 1B 1C 1的所有棱长都相等,M 为A 1C 1的中点,则AM 与BC 1所成角的余弦值为()A.153B.155C.64D.104答案D 解析如图,取AC 的中点D ,连接DC 1,BD ,易知AM ∥DC 1,所以异面直线AM 与BC 1所成角就是直线DC 1与直线BC 1所成的角,即∠BC 1D ,因为直三棱柱ABC -A 1B 1C 1的所有棱长都相等,可设三棱柱的棱长都为2,则DC 1=5,BD =3,BC 1=22,则在△BDC 1中,由余弦定理可得cos ∠BC 1D =(5)2+(22)2-(3)22×5×22=104,即异面直线AM 与BC 1所成角的余弦值为104.5.四边形ABCD 是矩形,AB =3AD ,点E ,F 分别是AB ,CD 的中点,将四边形AEFD 绕EF 旋转至与四边形BEFC 重合,则直线ED ,BF 所成角α在旋转过程中()A .逐步变大B .逐步变小C .先变小后变大D .先变大后变小答案D 解析由题可知初始时刻ED 与BF 所成的角为0,如图1,故B ,C 错误;图1在四边形AEFD 绕EF 旋转过程中,EF ⊥DF ,EF ⊥FC ,DF ∩FC =F ,DF ,FC ⊂平面DFC ,所以EF ⊥平面DFC ,EF ⊂平面EFCB ,所以平面DFC ⊥平面EFCB ,故D 在平面BCFE 内的投影P 一直落在直线CF 上,如图2,图2所以一定存在某一时刻EP ⊥BF ,而DP ⊥平面EFCB ,DP ⊥BF ,又DP ∩PE =P ,DP ,PE ⊂平面DPE ,所以BF ⊥平面DPE ,此时DE 与BF 所成的角为π2,然后α开始变小,故直线ED ,BF 所成角α在旋转过程中先变大后变小,故A 错误,D 正确.6.在正四棱锥P -ABCD 中,AB =2,E ,F ,G 分别为AB ,PC ,AD 的中点,直线BF 与EG 所成角的余弦值为63,则三棱锥P -EFG 的体积为()A.5212 B.24 C.23 D.26答案B解析连接BD ,DF ,AC ,CG ,CE ,如图,设BF =DF =x ,由BD ∥EG ,得∠FBD 即为BF 与EG 所成的角,在△FBD 中,易知BD =22,cos ∠FBD =x 2+8-x 242x=63,解得x = 3.设PB =PC =y ,在△PFB +3-23·y 2cos ∠PFB =y 2,①因为∠PFB +∠BFC =180°,故cos ∠BFC =cos(180°-∠PFB )=-cos ∠PFB ,则在△BCF +3-23·y 2cos ∠BFC =4,即+3+23·y 2cos ∠PFB =4,②①+②得y 22+6=y 2+4,因为y >0,解得y =2.因为F 为PC 的中点,故V 三棱锥P -EFG =V 三棱锥C -EFG =V 三棱锥F -ECG ,因为PA 2+PC 2=AC 2,PA =PC ,所以△PAC 为等腰直角三角形,则在等腰直角三角形PAC 中,易求得点P 到AC 的距离即点P 到底面的距离为2×222=2,故点F 到平面CEG 的距离为22,S △ECG =S ▱ABCD -S △AEG -S △CDG -S △CEB =2×2-12×1×1-12×2×1-12×1×2=4-12-1-1=3 2,故所求三棱锥的体积为13×32×22=24.二、多项选择题7.如图,在正方体ABCD-A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD于点M,则下列结论正确的是()A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,B1,B四点共面D.D1,D,O,M四点共面答案AB解析∵O∈AC,AC⊂平面ACC1A1,∴O∈平面ACC1A1.∵O∈BD,BD⊂平面C1BD,∴O∈平面C1BD,∴O是平面ACC1A1和平面C1BD的公共点,同理可得,点M和点C1都是平面ACC1A1和平面C1BD的公共点,∴点C1,M,O在平面C1BD与平面ACC1A1的交线上,即C1,M,O 三点共线,故A,B正确;根据异面直线的判定定理可得BB1与C1O为异面直线,故C1,O,B1,B四点不共面,故C不正确;根据异面直线的判定定理可得DD1与MO为异面直线,故D1,D,O,M四点不共面,故D不正确.8.(2024·朝阳模拟)在三棱锥A-BCD中,AB=CD=2,AD=BC=AC=BD=5,则() A.AB⊥CDB.三棱锥A-BCD的体积为23C.三棱锥A-BCD外接球的半径为6D.异面直线AD与BC所成角的余弦值为35答案ABD解析将三棱锥补形为长方体,如图所示.其中BE =BN =1,BF =2,所以AB =CD =2,AD =BC =AC =BD =5,连接MF ,则AM ∥BF ,AM =BF ,所以四边形AMFB 为平行四边形,所以AB ∥MF ,又四边形MCFD 为正方形,所以MF ⊥CD ,所以AB ⊥CD ,故A 正确;长方体的体积V 1=1×1×2=2,三棱锥E -ABC 的体积V 2=V 三棱锥A -BEC =13×12×1×2×1=13,同理,三棱锥N -ABD ,三棱锥F -BCD ,三棱锥M -ACD 的体积也为13,所以三棱锥A -BCD 的体积V =2-4×13=23,故B 正确;长方体的外接球的直径为12+12+22=6,所以长方体的外接球的半径为62,长方体的外接球也是三棱锥A -BCD 的外接球,所以三棱锥A -BCD 外接球的半径为62,故C 错误;连接MN ,交AD 于点O ,因为MN ∥BC ,所以∠AOM (或其补角)为异面直线AD 与BC 所成的角,由已知OA =12AD =52,OM =12MN =52,AM =2,所以cos ∠AOM =54+54-42×52×52=-35,所以异面直线AD 与BC 所成角的余弦值为35,故D 正确.9.已知α,β是不同的平面,l ,m ,n 是不同的直线,P 为空间中一点.若α∩β=l ,m ⊂α,n ⊂β,m ∩n =P ,则点P 与直线l 的位置关系用符号表示为________.答案P ∈l 解析∵m ⊂α,n ⊂β,m ∩n =P ,∴P ∈α且P ∈β,又α∩β=l ,∴点P 在直线l 上,即P ∈l .10.如图为正方体表面的一种展开图,则图中的AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对.答案3解析画出该正方体的直观图如图所示,易知异面直线有(AB ,GH ),(AB ,CD ),(GH ,EF ).故共有3对.11.(2023·南阳模拟)如图,AB 和CD 是异面直线,AB =CD =3,E ,F 分别为线段AD ,BC上的点,且AE ED =BF FC =12,EF =7,则AB 与CD 所成角的大小为________.答案60°解析在平面ABD 中,过E 作EG ∥AB ,交DB 于点G ,连接GF ,如图,∵AE ED =12,∴BG GD =12,又BF FC =12,∴BG GD =BF FC,∴∠EGF (或其补角)即为AB 与CD 所成的角,在△EGF 中,EG =23AB =2,GF =13CD =1,EF =7,∴cos ∠EGF =22+12-(7)22×2×1=-12,∴∠EGF =120°,∴AB 与CD 所成角的大小为60°.12.(2023·长春模拟)如图,在底面为正方形的棱台ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为棱CC 1,BB 1,CF ,AF 的中点,对空间任意两点M ,N ,若线段MN 与线段AE ,BD 1都不相交,则称点M 与点N 可视,下列与点D 不可视的为________.(填序号)①B 1;②F ;③H ;④G .答案①②③解析如图所示,连接B 1D 1,BD ,DB 1,EF ,DE ,DH ,DF ,DG ,因为E ,F 分别为棱CC 1,BB 1的中点,所以EF ∥BC ,又底面ABCD 为正方形,所以BC ∥AD ,所以EF ∥AD ,所以四边形EFAD 为梯形,所以DH 与AE 相交,DF 与AE 相交,故②③不可视;因为B 1D 1∥DB ,所以四边形B 1D 1DB 是梯形,所以B 1D 与BD 1相交,故①不可视;因为EFAD 为梯形,G 为CF 的中点,即G ∉EF ,则D ,E ,G ,A 四点不共面,所以DG 与AE 不相交,若DG 与BD 1相交,则D ,B ,G ,D 1四点共面,显然D ,B ,B 1,D 1四点共面,G ∉平面DBB 1D 1,所以D ,B ,G ,D 1四点不共面,即假设不成立,所以DG 与BD 1不相交,即点G 与点D 可视,故④可视.四、解答题13.已知ABCD 是空间四边形,如图所示(M ,N ,E ,F 分别是AB ,AD ,BC ,CD 上的点).(1)若直线MN 与直线EF 相交于点O ,证明:B ,D ,O 三点共线;(2)若E ,N 为BC ,AD 的中点,AB =6,DC =4,NE =2,求异面直线AB 与DC 所成角的余弦值.(1)证明因为M ∈AB ,N ∈AD ,AB ⊂平面ABD ,AD ⊂平面ABD ,所以MN ⊂平面ABD ,因为E ∈CB ,F ∈CD ,CB ⊂平面CBD ,CD ⊂平面CBD ,所以EF ⊂平面CBD ,由于直线MN 与直线EF 相交于点O ,即O ∈MN ,O ∈平面ABD ,O ∈EF ,O ∈平面CBD ,又平面ABD ∩平面CBD =BD ,则O ∈BD ,所以B ,D ,O 三点共线.(2)解连接BD ,作BD 的中点G ,并连接GN ,GE ,如图所示,在△ABD 中,点N ,G 分别是AD 和BD 的中点,且AB =6,所以GN ∥AB ,且GN =12AB =3,在△CBD 中,点E ,G 分别是BC 和BD 的中点,且DC =4,所以GE ∥CD ,且GE =12DC =2,则异面直线AB 与DC 所成的角等于直线GE 与GN 所成的角,即∠EGN 或∠EGN 的补角,又NE =2,由余弦定理得cos ∠EGN =GE 2+GN 2-NE 22GE ·GN =22+32-222×2×3=34>0,故异面直线AB 与DC 所成角的余弦值为34.14.如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AD ⊥DC ,AB ∥DC ,AB =2AD =2CD =2,点E 是PB 的中点.(1)线段PA 上是否存在一点G ,使得点D ,C ,E ,G 共面?若存在,请证明,若不存在,请说明理由;(2)若PC =2,求三棱锥P -ACE 的体积.解(1)存在.当G 为PA 的中点时满足条件.如图,连接GE ,GD ,则GE 是△PAB 的中位线,所以GE ∥AB .又AB ∥DC ,所以GE ∥DC ,所以G ,E ,C ,D 四点共面.(2)因为E 是PB 的中点,所以V 三棱锥P -ACE =V 三棱锥B -ACE =12V 三棱锥P -ACB .又S △ABC =12AB ·AD =12×2×1=1,V 三棱锥P -ACB =13PC ·S △ABC =23,所以V 三棱锥P -ACE =13.15.(多选)如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,点P 在线段BC 1上运动,则下列判断中正确的是()A .DP ∥平面AB 1D 1B .三棱锥C -AD 1P 的体积为定值C .平面PB 1D ⊥平面ACD 1D .异面直线DP 与AD 1所成角的范围是π4,π2答案ABC 解析对于A ,连接DB ,C 1D ,AB 1,D 1B 1,因为BC 1∥AD 1,BC 1⊄平面AB 1D 1,AD 1⊂平面AB 1D 1,所以BC 1∥平面AB 1D 1,因为DB ∥D 1B 1,DB ⊄平面AB 1D 1,D 1B 1⊂平面AB 1D 1,所以DB ∥平面AB 1D 1,又DB ∩BC 1=B ,DB ,BC 1⊂平面BDC 1,所以平面AB 1D 1∥平面BDC 1,又DP ⊂平面BDC 1,所以DP ∥平面AB 1D 1,故A 正确;对于B ,由点P 在线段BC 1上运动知平面AD 1P 即平面AD 1C 1B ,故点C 到平面AD 1P 的距离不变,且△AD 1P 的面积不变,所以三棱锥C -AD 1P 的体积不变,故B 正确;对于C ,因为四边形DCC 1D 1为正方形,则CD 1⊥C 1D ,而AD ⊥平面DCC 1D 1,CD 1⊂平面DCC 1D 1,所以CD 1⊥AD ,又AD ∩C 1D =D ,AD ,C 1D ⊂平面AB 1C 1D ,则CD 1⊥平面AB 1C 1D ,而DB 1⊂平面AB 1C 1D ,因此DB 1⊥CD 1,同理DB 1⊥CA ,又CD 1∩CA =C ,CD 1,CA ⊂平面ACD 1,所以DB 1⊥平面ACD 1,又DB 1⊂平面PB 1D ,则平面PB 1D ⊥平面ACD 1,故C 正确;对于D ,由AD 1∥BC 1,异面直线DP 与AD 1所成角即为DP 与BC 1所成角,又△DBC 1为等边三角形,当P 与线段BC 1的两端点重合时,DP 与AD 1所成角取最小值π3,当P 与线段BC 1的中点重合时,DP 与AD 1所成角取最大值π2,故DP 与AD 1所成角的范围为π3,π2,故D 错误.16.(2023·孝感模拟)已知正方体ABCD -A 1B 1C 1D 1的所有顶点均在体积为43π的球O 上,则该正方体的棱长为________,若动点P 在四边形A 1B 1C 1D 1内运动,且满足直线CC 1与直线AP 所成角的正弦值为13,则OP 的最小值为________.答案262解析设正方体ABCD -A 1B 1C 1D 1的棱长为a ,球O 的半径为R ,则由正方体体对角线L =3a =2R 得R =3a 2,所以V 球O =43πR 3=43π3a 23=43π,故a =2,因为CC 1∥AA 1,所以AA 1与AP 所成角的正弦值也是13,即sin ∠A 1AP =13,又因为AA 1⊥平面A 1B 1C 1D 1,A 1P ⊂平面A 1B 1C 1D 1,所以AA 1⊥A 1P ,故sin ∠A 1AP =A 1P AP =A 1P A 1P 2+AA 21,即A 1P A 1P 2+4=13,解得A 1P =22,所以点P 的轨迹是以A 1为圆心,22为半径的圆与四边形A 1B 1C 1D 1内的一段弧,如图所示,设正方形A 1B 1C 1D 1的中心为O 1,连接O 1P ,OO 1,因为O 1A 1=12A 1C 1=12×22+22=2,所以(O 1P )min =O 1A 1-A 1P =22,所以(OP )min =OO 21+(O 1P )2min =1+12=62,即(OP )min =62.。
高中数学北师大版2019必修第二册空间图形基本位置关系的认识
[证明] (1)如图,连接AC,在△ACD中,
∵M,N分别是CD,AD的中点,
∴MN是△ACD的中位线,
∴MN∥AC,MN=12AC.
由正方体的性质得:AC∥A1C1,AC=A1C1.
∴MN∥A1C1,且MN=
1 2
A1C1,即MN≠A1C1,∴四边形MNA1C1
是梯形.
(2)由(1)可知MN∥A1C1. 又∵ND∥A1D1,∴∠DNM与∠D1A1C1相等或互补.而∠DNM 与∠D1A1C1均为锐角, ∴∠DNM=∠D1A1C1.
直线 a,b 所成的角(或夹角)
范围 记异面直线 a 与 b 所成的角为 θ,则 0°<θ≤90°
特殊情况 当 θ= 90° 时,a 与 b 互相垂直,记作: a⊥b
思考:1.分别在两个平面内的两条直线一定是异面直线吗? 提示:不一定.可能相交、平行或异面.
2.如图,在长方体A1B1C1D1-ABCD中,BC1∥AD1,则“直线 BC1与直线BC所成的角”,与“直线AD1与直线BC所成的角”是否 相等?
[思路点拨]
利用中点平移直线
→
作出两异面 直线所成的角
→ 在三角形内求角的大小
[解] 如图,取BD的中点G,连接EG,FG. 因为E,F分别为BC,AD的中点,AB=CD,
所以EG∥CD,GF∥AB,且EG=12CD,GF=12AB.
所以∠GFE就是EF与AB所成的角或其补角,EG=GF. 因为AB⊥CD,所以EG⊥GF.所以∠EGF=90°. 所以△EFG为等腰直角三角形. 所以∠GFE=45°,即EF与AB所成的角为45°.
(2)要特别注意平移所得的角可能是异面直线所成的角的补角, 这是由异面直线所成角的范围是0°,90°决定的.
平面与平面之间的位置关系教案
平面与平面之间的位置关系教案第一章:平面与平面的基本概念1.1 平面几何的基本概念平面:无限延展且内部所有点都满足同一方程的二维空间。
平面上的点:平面内的任一点。
平面上的直线:平面内任意两点之间的最短路径。
1.2 平面方程一般式:Ax + By + C = 0点法式:经过点P(x1, y1)且垂直于向量(a, b)的平面方程。
第二章:平面与平面的相交2.1 平面与平面的相交条件两个平面Ax + By + C1 = 0和Ax + By + C2 = 0相交当且仅当C1 ≠C2。
2.2 相交线段的性质相交线段是两个平面的交线,且为直线。
相交线段的中点在两个平面的交线上。
第三章:平面与平面的平行3.1 平面与平面的平行条件两个平面Ax + By + C1 = 0和Ax + By + C2 = 0平行当且仅当C1 = C2且A/B = A/B。
3.2 平行线段的性质平行线段是两个平行平面的交线,且为直线。
平行线段在两个平行平面上的距离相等。
第四章:平面与平面的垂直4.1 平面与平面的垂直条件两个平面Ax + By + C1 = 0和Ax + By + C2 = 0垂直当且仅当A1A2 + B1B2 + C1C2 = 0。
4.2 垂直线段的性质垂直线段是两个垂直平面的交线,且为直线。
垂直线段在两个垂直平面上的投影相等。
第五章:平面与平面的混合位置关系5.1 平面与平面的混合位置关系两个平面既不平行也不相交时,它们的位置关系为混合关系。
混合关系可以通过求解方程组来确定两个平面的交线。
第六章:平面与平面相交的判定6.1 判定两个平面相交的方法使用方程组求解法,构造一个新的方程组,解得交线方程,判断交线是否为直线。
使用图形判断法,绘制两个平面的图形,观察是否有一条直线属于两个平面。
6.2 判定平面与平面相交的性质相交的平面在交线上存在唯一公共点。
相交的平面在交线上存在无限多条公共直线。
第七章:平面与平面平行的判定7.1 判定两个平面平行的方法使用方程组求解法,构造一个新的方程组,判断是否存在解。
高中数学平面几何知识点知识清单
高中课程复习专题——数学立体几何一 空间几何体 ㈠ 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
㈡ 几种空间几何体的结构特征 1 棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类1.3 棱柱的性质⑴ 侧棱都相等,侧面是平行四边形;⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶ 过不相邻的两条侧棱的截面是平行四边形; ⑷ 直棱柱的侧棱长与高相等,侧面的对角面是矩形。
1.4 长方体的性质⑴ 长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12 = AB 2 + AC 2 + AA 12⑵ 长方体的一条对角线AC 1与过定点A 的三条棱所成 的角分别是α、β、γ,那么:cos 2α + cos 2β + cos 2γ = 1 sin 2α + sin 2β + sin 2γ = 2⑶ 长方体的一条对角线AC 1与过定点A 的相邻三个面所组成的角分别为α、β、γ,则:cos 2α + cos 2β + cos 2γ = 2 sin 2α + sin 2β + sin 2γ = 11.5 棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。
图1-1 棱柱图1-2 长方体图1-1 棱柱1.6 棱柱的面积和体积公式S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 圆柱的结构特征2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。
(2019新教材)人教A版高中数学必修第二册:空间点、直线、平面之间的位置关系
■名师点拨 (1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线 既不相交,也不平行. (2)不能把异面直线误认为分别在不同平面 内的两条直线,如图中,虽然有 a⊂α,b⊂β, 即 a,b 分别在两个不同的平面内,但是因 为 a∩b=O,所以 a 与 b 不是异面直线.
2.空间中直线与平面的位置关系
2.[变条件]在本例中,若将条件改为平面 α 内有无数条直线与 平面 β 平行,那么平面 α 与平面 β 的关系是什么? 解:如图,α 内都有无数条直线与平面 β 平行.
由图知,平面 α 与平面 β 可能平行或相交.
3.[变条件]在本例中,若将条件改为平面 α 内的任意一条直线 与平面 β 平行,那么平面 α 与平面 β 的关系是什么? 解:因为平面 α 内的任意一条直线与平面 β 平行,所以只有这 两个平面平行才能做到,所以平面 α 与平面 β 平行.
平行.( × ) (10)若两个平面都平行于同一条直线,则这两个平面平行.( × )
异面直线是指( ) A.空间中两条不相交的直线 B.分别位于两个不同平面内的两条直线 C.平面内的一条直线与平面外的一条直线 D.不同在任何一个平面内的两条直线
解析:选 D.对于 A,空间两条不相交的直线有两 种可能,一是平行(共面),另一个是异面,所以 A 应排除.对于 B,分别位于两个平面内的直线, 既可能平行也可能相交也可能异面,如图,就是 相交的情况,所以 B 应排除.对于 C,如图中的 a,b 可看作是平 面 α 内的一条直线 a 与平面 α 外的一条直线 b,显然它们是相交直 线,所以 C 应排除.只有 D 符合定义.
位置关系
直线 a 在 平面 α 内
直线 a 在平面 α 外
直线 a 与平
直线 a 与
人教A版 必修二 第2章 2.1 2.1.3 空间中直线与平面、平面与平面之间的位置关系
判断直线与平面的位置关系
例 1:两条相交直线 a、b 都在平面α内且都不在平面β内, ) 且平面α与β相交,则 a 和 b( A.一定与平面β都相交 B.至少一条与平面β相交 C.至多一条与平面β相交 D.可能与平面β都不相交 思维突破:设α∩β=c,∵若 a、b 都不与β相交,则 a∥c, b∥c,∴a∥b,这与 a、b 相交矛盾,故 a、b 中至少一条与β相 交. 答案:B
高中数学人教版必修2课件
解:(1)(2)是真命题,(3)(4)是假命题.
(3)会出现三点在这个平面的两侧且符合条件的情况,所以
这两个平面还可能相交. (4)会出现两个相交平面同时与另外一个平面垂直的情况, 如正方体中共顶点的三个面. 要判断一个命题是假命题,只需举出一个 反例;而要想说明一个命题是真命题,则需理论上的证明.
高中数学人教版必修2课件
1-1.下列命题:①若直线 l 平行于平面α内的无数条直线, 则 l∥α;②若直线 a 在平面α外,则 a∥α;③若直线 a∥b,直 线 b⊂α,则 a∥α;④若直线 a∥b,b⊂α,那么直线 a 就平行 于平面α内的无数条直线.其中真命题的个数为( A.1 个 B.2 个 A )
作AB⊥平面α于点B,BC⊥a1 于点C,BD⊥b1 于点D,记∠AOB
=θ1,∠BOC=θ2,(θ2=25°或65°), 则有cosθ=cosθ1· cosθ2, 因为0°≤θ≤90°,所以0≤cosθ≤cosθ2.
高中数学人教版必修2课件
当θ2=25°时,由θ≤cosθ≤cos25°,得 25°≤θ≤90°. 当θ2=65°时,由θ≤cosθ≤cos65°,得 65°≤θ≤90°. 故当θ<25°时,直线 l 不存在;
高中数学人教版必修2课件
(完整)空间点线面之间位置关系知识点总结,推荐文档
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系
①柱体的体积 V S底 h
②锥体的体积
V
1 3 S底
h
③台体的体积
V 13(S上上 S S下下 S ) h
④球体的体积V 4 R3 3
1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a
画三视图的原则: 长对齐、高对齐、宽相等
2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点;
β
P
α ·L
3.直观图:直观图通常是在平行投影下画出的空间图形。
共面直 平行直线:同一平面内,没有公共点;
4.斜二测法:在坐标系 x 'o ' y ' 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于 x
的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。
(1)多面体——由若干个平面多边形围成的几何体.
3 三个公理:
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直 (1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(1)若 A1B2 A2B1 0 ,两直线相交;
(2)若 A1B2 A2B1 0 ,两直线平行或重合;
(3)若 A1A2 B1B2 0 ,若两直线垂直。
10.点 (x1, y1)和(的x2中, y点2 ) 坐标是
【教学设计】《第5节 长方体中平面与平面位置关系的认识》(上教)
《第5节 长方体中平面与平面位置关系的认识》在学习本单元之前,学生已经对长方体有了初步的认识,能辨别出哪些物体是长方体。
本单元就是进一步探究有关长方体的知识,了解长方体的元素及特征,掌握长方体直观图的画法,知道长方体中棱与棱、棱与平面及平面与平面的位置关系。
本课的教学内容是由长方体中平面与平面的位置关系,引申到空间中平面与平面的位置关系。
【知识与能力目标】掌握长方体中平面与平面的位置关系,以及空间中平面与平面的位置关系。
【过程与方法目标】在探究长方体中平面与平面的位置关系的过程中,体会认知事物的概括分类思想,培养学生初步的空间观念和空间想象能力。
【情感态度价值观目标】使学生初步建立空间观念,培养学生用数学进行交流、合作探究和创新的意识,感受数学与现实生活的密切联系,激发学生学习数学的兴趣。
【教学重点】理解长方体中平面与平面的平行、垂直的位置关系。
【教学难点】检验平面与平面垂直、平面与平面平行的方法。
多媒体课件。
一、复习引入问题:空间中两条不重合直线有哪几种位置关系?答:平行、相交、异面。
问题:空间直线与平面有哪几种位置关系?答:垂直、平行。
问题:检验直线是否垂直于平面的方法有哪些?答:①“铅垂线”检验;②“三角尺”检验;③“合页型折纸”检验。
问题:检验直线是否平行于平面的方法有哪些?答:①“铅垂线”检验;②“长方形纸片”检验。
教师:我们已经知道长方体中棱与棱、棱与平面的位置关系,这节课我们就一起来研究一下长方体中平面与平面的位置关系。
二、探究新知1、平面与平面垂直。
教师:在长方体ABCD-EFGH中,面EFGH、面ABFE、与面BCGF三个面中,任意两个都给我们以平面与平面垂直的形象。
平面α垂直于平面β,记作:平面α⊥平面β,读作:平面α垂直于平面β。
问题:如何检验平面与平面垂直呢?教师:①可以用“铅垂线”检验。
方法:用铅垂线可以检验课桌的侧面是否垂直于地面。
如果铅垂线能紧贴课桌的侧面,那么这个课桌的侧面就垂直于地面。
高中数学第1章立体几何初步1
.例1.在正方体ABCD-A1B1C1D1中
求①二面角D1 -AB-D的大小;
D1
②二面角A1 -AB-D的大小 A1
D A
C1 B1
C B
数学建构:
两个平面垂直:
如果两个平面所成的二面角是直二面角,就称这两
个平面互相垂直.
a
l
O
b
数学应用:
例2.在正方体ABCD-A1B1C1D1中
求证:平面A1C1CA⊥平面B1D1DB.
平面与平面的位置关系(2)
问题情境:
使用笔记本电脑时,为便于操作,需 将显示屏打开一定的角度。
二面角的定义:
1.平面内的一条直线把这个平面分成两部分,
其中的每一部分叫做半平面
2.一般地,一条直线和由这条直线出发的两个半
平面所组成的图形叫做二面角。
棱
面
二面角的表示:
二面角-AB-
C B D
A
二面角C-AB- D
异面直线所成角 直线与平面所成角
三维的空间角
二维的平面角
二面角的度量:
以二面角的棱上任意一
点为端点,在两个面内分
别作垂直于棱的两条射线,
P
这两条射线所成的角叫做
P
A
二面角的平面角。
O
Q
B
O
Q
二面角的平面角的三个特征:
1.点在棱上 2.线在面内 3.与棱垂直
二面角的大小的取值范围:0≤θ≤π
数学应用:
D1
A1
D A
C1 B1
C B
问题情境:
打开教室的门,门面与地面之间有什么关系?
数学建构:
平面与平面垂直的判定定理:
如果一个平面经过另一个平面的一条垂线,那么这两个平面
平面与平面之间的位置关系(附答案)
平面与平面之间的位置关系[学习目标] 1.了解直线与平面之间的三种位置关系,会用图形语言和符号语言表示.2.了解平面与平面之间的两种位置关系,会用符号语言和图形语言表示.知识点一 直线与平面的位置关系 1.直线与平面的位置关系2.直线与平面的位置关系的分类 (1)按公共点个数分类⎩⎨⎧有无公共点⎩⎪⎨⎪⎧直线和平面相交——有且只有一个公共点直线在平面内——有无数个公共点无公共点——直线和平面平行(2)按直线是否在平面内分类⎩⎨⎧直线在平面内——所有点在平面内直线在平面外⎩⎪⎨⎪⎧直线与平面相交直线与平面平行思考 “直线与平面不相交”与“直线与平面没有公共点”是相同的意义吗?答 不是.前者包括直线与平面平行及直线在平面内这两种情况;而后者仅指直线与平面平行.知识点二 两个平面的位置关系思考分别位于两个平行平面内的两条直线有什么位置关系?答这两条直线没有公共点,故它们的位置关系是平行或异面.题型一直线与平面的位置关系例1下列命题中,正确命题的个数是()①如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面;②如果直线a和平面α满足a∥α,那么a与平面α内的任何一条直线平行;③如果直线a,b满足a∥α,b∥α,那么a∥b;④如果平面α的同侧有两点A,B到平面α的距离相等,那么AB∥α.A.0B.2C.1D.3答案 C解析如图,在长方体ABCD-A′B′C′D′中,AA′∥BB′,AA′却在过BB′的平面AB′内,故命题①不正确;AA′∥平面B′C,BC ⊂平面B′C,但AA′不平行于BC,故命题②不正确;AA′∥平面B′C,A′D′∥平面B′C,但AA′与A′D′相交,所以③不正确;④显然正确.故答案为C.跟踪训练1以下命题(其中a,b表示直线,α表示平面),①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确命题的个数是()A.0B.1C.2D.3答案A解析如图所示在长方体ABCD-A′B′C′D′中,AB∥CD,AB⊂平面ABCD,但CD⊂平面ABCD,故①错误;A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交,故②错误;AB∥A′B′,A′B′∥平面ABCD,但AB⊂平面ABCD,故③错误;A′B′∥平面ABCD,BC⊂平面ABCD,但A′B′与BC异面,故④错误.题型二平面与平面的位置关系例2以下四个命题中,正确的命题有()①在平面α内有两条直线和平面β平行,那么这两个平面平行;②在平面α内有无数条直线和平面β平行,那么这两个平面平行;③平面α内△ABC的三个顶点在平面β的同一侧面且到平面β的距离相等且不为0,那么这两个平面平行;④平面α内两条相交直线和平面β内两条相交直线分别平行,那么这两个平面平行.A.③④B.②③④C.②④D.①④答案A解析当两个平面相交时,一个平面内有无数条直线平行于它们的交线,即平行另一个平面,所以①②错误.跟踪训练2两平面α,β平行,a⊂α,下列四个命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③直线a与β内任何一条直线都不垂直;④a与β没有公共点.其中正确的个数是()A.1B.2C.3D.4答案B解析①错误,a不是与β内的所有直线平行,而是与β内的无数条直线平行,有一些是异面;②正确;③错误,直线a与β内无数条直线垂直;④根据定义,a与β没有公共点,正确.分类讨论思想例3在正方体ABCD-A1B1C1D1中,点Q是棱DD1上的动点,判断过A,Q,B1三点的截面图形的形状.分析决定过A,Q,B1三点的截面图形的形状的因素是动点Q,所以要对点Q的位置进行分类讨论.解由于点Q是线段DD1上的动点,故①当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图:②当点Q与点D重合时,截面图形为矩形AB1C1D,如图:③当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图:1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交2.下列命题中,正确的命题是()A.若直线a上有无数个点不在平面α内,则a∥αB.若a∥α,则直线a与平面α内任意一条直线都平行C.若a⊂α,则a与α有无数个公共点D.若a⊄α,则a与α没有公共点3.下列命题中,正确的有()①平行于同一直线的两条直线平行;②平行于同一个平面的两条直线平行;③平行于同一条直线的两个平面平行;④平行于同一个平面的两个平面平行.A.1个B.2个C.3个D.4个4.与两个相交平面的交线平行的直线和这两个平面的位置关系是()A.都平行B.都相交C.在两个平面内D.至少与其中一个平面平行5.下列命题:①两个平面有无数个公共点,则这两个平面重合;②若l,m是异面直线,l∥α,m∥β,则α∥β.其中错误命题的序号为________.一、选择题1.若a,b是异面直线,且a∥平面α,则b与α的位置关系是()A.b∥αB.相交C.b⊂αD.b⊂α、相交或平行2.与同一平面平行的两条直线()A.平行B.相交C.异面D.平行、相交或异面3.若直线a不平行于平面α,则下列结论成立的是()A.α内的所有直线均与a异面B.α内不存在与a平行的直线C.α内的直线均与a相交D.直线a与平面α有公共点4.以下四个命题:①三个平面最多可以把空间分成八部分;②若直线a⊂平面α,直线b⊂平面β,则“a与b相交”与“α与β相交”等价;③若α∩β=l,直线a⊂平面α,直线b⊂平面β,且a∩b=P,则P∈l;④若n条直线中任意两条共面,则它们共面.其中正确的是()A.①②B.②③C.③④D.①③5.过平面外一条直线作平面的平行平面()A.必定可以并且只可以作一个B.至少可以作一个C.至多可以作一个D.一定不能作6.下列命题正确的是()①两个平面平行,这两个平面内的直线都平行;②两个平面平行,其中一个平面内任何一条直线都平行于另一平面;③两个平面平行,其中一个平面内一条直线和另一个平面内的无数条直线平行;④两个平面平行,各任取两平面的一条直线,它们不相交.A.①B.②③④C.①②③D.①④7.在长方体ABCDA1B1C1D1的六个表面与六个对角面(面AA1C1C、面ABC1D1、面ADC1B1、面BB1D1D、面A1BCD1及面A1B1CD)所在的平面中,与棱AA1平行的平面共有()A.2个B.3个C.4个D.5个二、填空题8.如果空间的三个平面两两相交,则下列判断正确的是________(填序号).①不可能只有两条交线;②必相交于一点;③必相交于一条直线;④必相交于三条平行线.9.下列命题正确的是________.①如果一条直线与一平面相交,那么这条直线与平面内的无数条直线垂直;②若直线a与平面α和平面β都平行,那么α∥β;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∩β=b,a⊂α,则a与β一定相交.10.给出下列几个说法:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③过平面外一点有且只有一条直线与该平面平行;④过平面外一点有且只有一个平面与该平面平行.其中正确有________个.三、解答题11.如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.12.如图,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.当堂检测答案1.答案D解析直线a∥平面α,则a与α无公共点,与α内的直线当然均无公共点.2.答案C解析对于A,直线a与平面α有可能相交,所以A错;对于B,平面α内的直线和直线a 可能平行,也可能异面,所以B错;对于D,因为直线a与平面α可能相交,此时有一个公共点,所以D错.3.答案B解析②中,也有可能是相交或异面,故②错误;③中,存在平行于两个相交平面的交线,且不在两个平面内的直线,故③错误.4.答案D解析这条直线与两个平面的交线平行,有两种情形,其一是分别与这两个平面平行,其二是在一个平面内且平行于另一个平面,符合至少与一个平面平行.5.答案①②解析对于①,两个平面相交,则有一条交线,也有无数多个公共点,故①错误;对于②,借助于正方体ABCD-A1B1C1D1,AB∥平面DCC1D1,B1C1∥平面AA1D1D,又AB与B1C1异面,而平面DCC1D1与平面AA1D1D相交,故②错误.课时精练答案一、选择题1.答案D解析如图所示,选D.2.答案D解析与同一平面平行的两条直线的位置关系有三种情况:平行、相交或异面.3.答案D解析若直线a不平行平面α,则a∩α=A或a⊂α,故D项正确.4.答案D解析对于①,正确;对于②,逆推“α与β相交”推不出“a与b相交”,也可能a∥b;对于③,正确;对于④,反例:正方体的侧棱任意两条都共面,但这4条侧棱却不共面,故④错.所以正确的是①③.5.答案C解析因为直线在平面外包含两种情况:直线与平面相交和直线与平面平行.当直线与平面相交时,不能作出符合题意的平面;当直线与平面平行时,可作出惟一的一个符合题意的平面.6.答案B解析①不正确,因为这两条直线可能是异面;②③④都正确,可根据线面平行的定义或面面平行的定义或观察几何体模型进行判断.7.答案B解析如图所示,结合图形可知AA1∥平面BB1C1C,AA1∥平面DD1C1C,AA1∥平面BB1D1D.二、填空题8.答案①解析空间的三个平面两两相交,可能只有一条交线,也可能有三条交线,这三条交线可能交于一点.9.答案①③解析对于①,如图,∴命题①正确;对于②,α、β也可能相交,②不正确;对于③,若a与b相交,则α与β相交与条件矛盾,③正确;对于④,当a与b重合时,a在β内;当a∥b时,a∥β;当a与b相交时,a与β相交,④不正确.10.答案1解析①当点在已知直线上时,不存在过该点的直线与已知直线平行,故①错误;②由于垂直包括相交垂直和异面垂直,因而过一点与已知直线垂直的直线有无数条,故②错误;③过棱柱的上底面内的一点任意作一条直线都与棱柱的下底面平行,所以过平面外一点与已知平面平行的直线有无数条,故③错误;④过平面外一点与已知平面平行的平面有且只有一个,故④正确.三、解答题11.解a∥b,a∥β.证明如下:由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点.又a⊂α,∴a与β无公共点,∴a∥β.12.解平面ABC与β的交线与l相交.证明如下:∵AB与l不平行,且AB⊂α,l⊂α,∴AB与l一定相交.设AB∩l=P,则P∈AB,P∈l.又∵AB⊂平面ABC,l⊂β,∴P∈平面ABC,P∈β.∴点P是平面ABC与β的一个公共点,而点C也是平面ABC与β的一个公共点,且P,C 是不同的两点,∴直线PC就是平面ABC与β的交线,即平面ABC∩β=PC,而PC∩l=P,∴平面ABC与β的交线与l相交.。
平面几何的位置关系
平面几何的位置关系平面几何是研究平面上的图形和它们之间的相互位置关系的数学分支。
在平面几何中,我们经常会遇到各种不同的位置关系,如相交、垂直、平行等。
这些位置关系对于我们理解和解决几何问题至关重要。
本文将介绍一些常见的平面几何位置关系及其性质。
1. 相交相交是指两个或更多图形在平面上有公共部分的情况。
当两个图形相交时,它们的边或直线段上存在交点。
相交可以进一步细分为以下几种情况:1.1 点的相交:当两个图形的边或直线段上存在一个共同的点时,它们被称为相交于该点。
这是最简单的相交情况。
1.2 线的相交:当两个图形的边或直线段在平面上相交时,它们被称为线的相交。
线的相交可能会产生交点,也可能没有交点,而是共线。
1.3 区域的相交:当两个封闭图形的内部有非空的公共部分时,它们被称为区域的相交。
这意味着两个图形的边界上的点不仅相交,而且它们的内部也有交集。
2. 垂直垂直是指两条直线或线段相互交于一个角度为90度的情况。
垂直关系常用于测量角度、判断直角、证明垂直边等。
对于两条直线的垂直关系,有以下性质:2.1 垂直直线的特征:两条直线垂直的充要条件是它们的斜率之乘积为-1。
换句话说,如果直线L1的斜率为m1,直线L2的斜率为m2,则当m1 * m2 = -1时,L1和L2垂直。
2.2 垂直线段的特征:当两条线段的斜率为互为倒数的相反数时,它们是垂直的。
3. 平行平行是指两条直线或线段在平面上永远不相交,即没有公共点的情况。
平行关系常用于测量角度、判断平行边等。
对于两条直线的平行关系,有以下性质:3.1 平行直线的特征:如果两条直线L1和L2的斜率相等且不相交,则它们是平行的。
换句话说,设直线L1的斜率为m1,直线L2的斜率为m2,则当m1 = m2时,L1和L2平行。
3.2 平行线段的特征:当两条线段的斜率相等且不相交时,它们是平行的。
4. 垂直平分线垂直平分线是指一个线段的中垂线。
它不仅将线段分成两个相等的部分,还与线段垂直相交。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内心 外心
垂心 重心
10.将锐角 为 ,边长为 的菱形 沿对角线 折 的二面角,则 与 间的距离为
( )
11.如下图, 是正方形, 是 的中点,如将△ 和△ 分别沿 折起,使 与 重合, 重合后的点记为 ,则面 与面 所成的二面角大小为 ( )
12.二面角 的平面角为
( 为锐角), 与面 所成角为 ,则下列关系式成立的是 ( )
( )
和 的大小不能确定
3.在边长为 的正三角形 中, 于 ,沿 折成二面角 后,使 ,这时二面角 的大小为 ( )
4.已知二面角 为 , ,若 到平面 的距离为 ,则 点在 上的射影 到平面 的距离为 ( )
二、填空题
5.在二面角的一个面内引一条射线,它与二面角的棱成 角,与另一个面所成的角为 ,则此二面角的大小为 .
6. 为△ 所在平面外的一点,
,则二面角 的平面角的余弦值为 .
三、解答题
7.如下图, 是正方形, 是 的中点,如将△
和△ 分别沿虚线 和 折起,使
与 重合,记 与 重合后的点为 ,求面 和面 所成的二面角的度数.
8.如下图,在棱长为1的正方体 的棱 上求一点 ,使二面角 的大小为 .
第 页
相等 互补
无关 相等或互补
7.若一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角.已知二面角 的平面角是锐角 , 内一点 到 的距离为3,点 到棱 的距离为4,那么 的值为 ( )
9.已知二面角
都相等,则 点在平面 上的射影是△ 的
,求二面角 的大小.
20.如下图,在 的二面角 中
交于 交于 ,若
,求:直线 与棱 所成角的正弦值.
21.如下图,已知四边形 内接半径为 的
, 为 的直径,点 为平面 外的一点,且
平面 ,
,求二面角 的正切值的大小.
22.如下图, 是平 外一点, 平面 , 的垂直平分线分别交
于 ,又 ,求二面角
的大小.
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (21216123)△
第□讲
平面与平面的位置关系(2)
[典型例题]:
例1已知 ,过点 引 所在平面的斜线 与 分别成 角,求二面角
的余弦值.
例2已知在 的二面角 内有一点 ,它到 的距离分别为3和5,求 到棱 的距离.
[基础练习]:
一、选择题
第 页
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (21216123)△
第 □ 讲
平面与平面的位置关系(2)
[能力测试]:
一、选择题
1. 是正方形,以 为棱把它折成直二面角
为 的中点, 的大小为 ( )
2.二面角 的平面角为锐角, 是面 内一点(不在棱 上),点 是点 在 上的射影,点 是棱 上满足 为锐角的任意一点,则
二、填空题
13.在正方体 中,二面角
的正切值为 .
14. 为 的二面角 内一点, 到 和 的距离均为10,则 到棱 的距离为 .
15.把等腰直角△ 沿斜边 上的高线 折
第 页
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (21216123)△
第 □ 讲
平面与平面的位置关系(2)
成一个二面角,此时 ,那么此二面角的大小是 .
可能平行 可能垂直
不可能垂直 不可能平行,也不可能垂直
4.以等腰直角三角形斜边上的高为棱,把它折成直二面角,则折成后两条直角边的夹角为 ( )
5.从空间一点 向二面角 的两个面
分别作垂线 为垂足,若二面角 的大小为 ,则 的大小为 ( )
6.自二面角内一点分别向两个平面引垂线,它们所成的角与二面角的平面角的大小关系是 ( )
16.△ 的边 在平面 内, 在 内的射影是 ,设△ 的面积为 ,它和平面 交成二面角 ,射影 的面积为 ,则 .
三、解答题
17.如下图, 是从空间一点 出发的三条射线,若 ,求二面角 的正切值.
18.如下图, △ 在平面 上的射线为正△ ,若 ,求平面 与平面 所成锐二面角的大小.
19.如下图, 平面 ,
1.以下三个命题:
①一个二面角的平面角只有一个;
②二面角的棱垂直于这个二面角的平面角所在的平面
③分别在二面角的两个半平面内,且垂直于棱的两直线所成的角等于二面角的大小.
其中,正确的命题有 ( )
0个 1个
2个 3个
2.已知二面角 为锐角,点 到 的距离 到棱的距离 ,则 点到 的距离是 ( )
3.已知直线 分别在锐二面角 的两个面内, 不垂直于 , 不平行于 ,则 的位置关系是 ( )