数学二次函数复习课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次函数》复习课
复习目标:
知识目标:1、了解二次函数解析式的三种表示方法;
2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;
3、一元二次方程与抛物线的结合与应用。
4、利用二次函数解决实际问题。 复习重、难点:函数综合题型 复习方法:自主探究、合作交流 复习过程:
一、知识梳理(学生独立练习,分小组批改)
1、二次函数解析式的三种表示方法:
(1)顶点式: (2)交点式: (3)一般式: 2、填表:
抛物线 对称轴
顶点坐标
开口方向
y=ax 2
当a >0时, 开口
当a <0时, 开口
Y=ax 2+k Y=a(x-h)2 y=a(x-h)2+k Y=ax 2+bx+c
3、二次函数y=ax 2+bx+c ,当a >0时,在对称轴右侧,y 随x 的增大而 ,在对称轴左侧,y 随x 的增大而 ;当a <0时,在对称轴右侧,y 随x 的增大而 ,
在对称轴左侧,y随x的增大而
4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值
自评分(每空4分,共100分)
二、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)
1、已知二次函数y=ax2+bx+c的图象如图所示,试判断下面各式的符号:
(1)abc (2)b2-4ac (3)2a+b (4)a+b+c
(上题主要考查学生对二次函数的图象、性质的掌握情况:b2-4ac的符号看抛物线与x轴的交点情况;2a+b看对称轴的位置;而a+b+c的符号要看x= 1时y的值)
2、已知抛物线y=x2+(2k+1)x-k2+k
(1) 求证:此抛物线与x轴总有两个不同的交点;
(2)设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满足x12+x22= -2k2+2k+1,
①求抛物线的解析式
②此抛物线上是否存在一点P,使△PAB的面积等于3,若存在,请求出点P的坐标;若不存在,请说明理由。
(此题主要考查抛物线与一元方程的根的判别式、根与系数的关系的联系,以及函数与几何知识的综合)
三归纳小结:
提问:通过本节课的练习,你学到了什么知识?
四、用数学(利用二次函数解决实际问题)
一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物
线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,
然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,
(1)根据题意建立直角坐标系,并求出抛物线的解析式。
(2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?
(此题把学生熟悉的运动员投篮问题与二次函数结合在一起,溶入了一定的生活背景,使学生产生数学学习兴趣;同时培养了学生把实际问题抽象成数学模型的能力。)
五、思维训练(供学有余力的学生做):
已知抛物线y=x2+(1-2a)x+a2 (a≠0)与x轴交于两点A(x1,0),B(x2,0) ,(x1≠x2)
(1)求a的取值范围,并证明A、B两点都在原点的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。