七年级数学上册 第二章 有理数及其运算 2.10 科学记数法同步练习 (新版)北师大版

合集下载

新北师大版七年级(上册)数学同步练习全套

新北师大版七年级(上册)数学同步练习全套

目录(A面)第一章丰富的图形世界 .............................................................................................................. A3-A10 1.1 生活中的立体图形.................................................................................................................. A3-A41.2 展开与折叠.............................................................................................................................. A5-A61.3 截一个几何体.......................................................................................................................... A7-A81.4 从三个方向看物体的形状.................................................................................................... A9-A10第二章有理数及其运算 ............................................................................................................ A11-A29 2.1 有理数 ................................................................................................................................. A11-A122.2 数轴 ..................................................................................................................................... A13-A142.3 绝对值 ................................................................................................................................. A15-A162.4 有理数的加法.............................................................................................................................. A172.5 有理数的减法...................................................................................................................... A18-A192.6 有理数的加减混合运算...................................................................................................... A20-A222.7 有理数的乘法...................................................................................................................... A23-A242.8 有理数的除法.............................................................................................................................. A252.9 有理数的乘方.............................................................................................................................. A262.10 科学记数法................................................................................................................................ A272.11 有理数的混合运算............................................................................................................ A28-A29第三章整式及其加减 ................................................................................................................ A30-A37 3.1 字母表示数.................................................................................................................................. A303.2 代数式 ................................................................................................................................. A31-A323.3 整式 ............................................................................................................................................. A333.4 整式的加减.......................................................................................................................... A34-A353.5 探索规律 ............................................................................................................................. A36-A37第四章基本平面图形 ................................................................................................................ A38-A46 4.1 线段、射线、直线.............................................................................................................. A38-A394.2 比较线段的长短.................................................................................................................. A40-A414.3 角 ......................................................................................................................................... A42-A434.4 角的比较 ............................................................................................................................. A44-A454.5 多边形和圆的初步认识.............................................................................................................. A46第五章一元一次方程 .............................................................................................................. A47-A54 5.1 认识一元一次方程.............................................................................................................. A47-A485.2 求解一元一次方程...................................................................................................................... A495.3 应用一元一次方程--水箱变高了......................................................................................................................... A50-A515.4 应用一元一次方程--打折销售 .................................................................................................................................... A525.5 应用一元一次方程--希望工程义演............................................................................................................................. A53 5.6 应用一元一次方程--能追上小明吗............................................................................................................................. A54第六章数据的收集与整理 ...................................................................................................... A55-A59 6.1 数据的收集.................................................................................................................................. A556.2 普查和抽样调查.......................................................................................................................... A56 6.3 数据的表示.......................................................................................................................... A57-A58 6.4 统计图的选择.............................................................................................................................. A59第一章丰富的图形世界1.1 生活中的立体图形※课时达标1.立体图形的各个面都是________面,这样的立体图形称为多面体.2.图形是由_______,________,________构成的.3.物体的形状似于圆柱的有_____________; 类似于圆锥的有_____________________; 类似于球的有__________________.4.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________.5.圆柱,圆锥,球的共同点是______________ _______________.6.长方体共有()条棱.A.8B.6C.10D.127.从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成( )个三角形A. 10B. 9C. 8D. 7※课后作业★基础巩固1.四棱柱是由________个面组成的,且这几个面是_____________;圆锥是由_______ 个面围,它的侧面是_______,底面是____.2.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了_________, 时钟秒针旋转时,形成一个圆面,这说明了_____________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了____ _______________.3.在棱柱中,任何相邻的两个面的交线都叫做_____,相邻的两个侧面的交线叫做__________.棱柱所有侧棱长都________,上下底面是_____.4.七棱柱是由个面围成的,它有个顶点,有条棱.5.一个六棱柱共有条棱,如果六棱柱的底面边长都是3cm,侧棱长都是2cm,那么它所有棱长的和是___ cm.6.请写出下列几何体的名称.( ) ( ) ()( ) ( ) ( )7.用第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.☆能力提升8.下列几种图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是().A.③⑤⑥B.①②③C.③⑥D.④⑤9.直角三角形绕它最长边(即斜边)旋转一周得到的几何体为( ).10.六棱锥共有()条侧棱.A.6B.7C.8D.1011.下列说法,不正确的是().A.圆锥和圆柱的底面都是圆.B.棱锥底面边数与侧棱数相等.C.棱柱的上、下底面是形状、大小相同的多边形.D.长方体是四棱柱,四棱柱是长方体.12.第一行的图形绕虚线转一周,能形成第二行的某个几何体,用线连起来.13.推理猜测题.(1)三棱锥有____条棱,四棱锥有_____条棱,十棱锥有____条棱.(2)_____棱锥有30条棱.(3)_____棱柱有60条棱.(4)一个多面体的棱数是8,则这个多面的面数是________.●中考在线14.右图是由( )图形饶虚线旋转一周形成的.15.图中为棱柱的是().16.下列说法中,正确的是().A.棱柱的侧面可以是三角形.B.由六个大小一样的正方形所组成的图形是正方体的展开图.C.正方体的各条棱都相等.D.棱柱的各条棱都相等.17.下列说法错误的是().A.若直棱柱的后面边长都相等,则它的各个侧面面积相等.B.n棱柱有n个面,n个顶点.C.长方体,正方体都是四棱柱.D.三棱柱的底面是三角形.18.在三棱锥5个面的18个角中,直角最多有()个.A.12个B.14个C.16个D.18个19.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?1.2 展开与折叠※课时达标 1.如图所示棱柱:(1)这个棱柱的底面是_______边形.(2)这个棱柱有_______个侧面,侧面的形状是_______边形.(3)侧面的个数与底面的边数_______.(填“相等”或“不相等”)(4)这个棱柱有_______条侧棱,一共有_______条棱.(5)如果CC′=3 cm,那么BB′=_______cm.2.棱柱中至少有_______个面的形状完全相同.3.判断题:(1)长方体和正方体不是棱柱. ()(2)五棱柱中五条侧棱长度相同. ()(3)三棱柱中底面三条边都相同. ()4.长方体共有_______个顶点________个面,其中有___________对平面相互平行.5.下面图形能围成一个长方体的是().6.圆锥的侧面展开图是( ).A.长方形B.正方形C.圆D.扇形7.下列平面图中不能围成立方体的是( ).※课后作业★基础巩固1.指出下列图形是什么图形的展开图:2.如图,把左边的图形折叠起来,它会变为().3.下面图形经过折叠不能围成棱柱().4.如图,把左边的图形折叠起来,它会变成().5.一个几何体的边面全部展开后铺在平面上,不可能是().A.一个三角形B.一个圆C.三个正方形D.一个小圆和半个大圆6.下面图形经过折叠不能围成棱柱的是().7.圆柱的底面是,侧面是,展开后的侧面是______________.8.圆锥的底面是,侧面是,展开后的侧面是_________.9.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=___,y=______.10.用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的12 3x y体积.11.用如图所示的长31.4cm ,宽5cm 的长方形, 围成一个圆柱体,求需加上的两个底面圆 的面积是多少平方厘米?( 取3.14)☆能力提升12.下面几何体的表面不能展开成平面的是 ( ).A.正方体B.圆柱C.圆锥D.球 13.下面几何体中,表面都是平的是( ). A.圆柱 B.圆锥 C.棱柱 D.球 14.下列图形中( )可以折成正方体.15.如图中是正方体的展开图的有( ).A.2个B.3个C.4个D.5个16.小丽制作了一个如下左图所示的正方体 礼品盒,其对面图案都相同,那么这个正 方体的平面展开图可能是( ).A B C D17.下列图形经过折叠不能围成棱柱的是 ( ).A B C D ●中考在线18.面与面相交成______,线与线相交得到 _______,点动成______,线动成_______, 面动成_______.19.下面的图形中,是三棱柱的侧面展开图的 为 ( ).A B C D1.3 截一个几何体 ※课时达标 1.判断题: (1)用一个平面去截一个正方体,截出的面 一定是正方形或长方形. ( ) (2)用一个平面去截一个圆柱,截出的面一 定是圆. ( ) (3)用一个平面去截圆锥,截出的面一定是 三角形.( ) (4)用一个平面去截一个球,无论如何截, 截面都是一个圆.( )2.下列说法中,正确的是( ).A.棱柱的侧面可以是三角形B.由六个大小一样的正方形所组成的图 形是正方体的展开图C.正方体的各条棱都相等D.棱柱的各条棱都相等3.用一个平面去截一个正方体,截面不可能 是( ).A.梯形B.五边形C.六边形D.圆 4.下列立体图形中,有五个面的是( ). A.四棱锥 B.五棱锥 C.四棱柱 D.五棱柱 5.将一个正方体截去一个角,则其面数12 543 6().A.增加B.不变C.减少D.上述三种情况均有可能6.用一个平面去截圆锥,得到的平面不可能是().7.用一个平面去截一个圆柱体,不可能的截面是().A B C D※课后作业★基础巩固1.如图,用平面去截一个正方体,所得截面的形状应是().2.下面几何体中,截面图形不可能是圆().A.圆柱B.圆锥C.球D.正方体3.如图,用平面去截圆锥,所得截面的形状是().4.用一个平面截正方体,若所得的截面是一个三角形,则留下的较大的一块几何体一定有().A.7个面B.15条棱C.7个顶点D.10个顶点5.用一个平面截圆柱,则截面形状不可能是().A.圆B.正方体C.长方体D.梯形6.用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ).A.①②④B.①②③C.②③④D.①③④☆能力提升7.用一个平面去截一个正方体,截面的形状不可能是().A.梯形B.长方形C.六边形D.七边形8.用一个平面去截一个几何体,不能截得三角形截面的几何体是().A.圆柱B.圆锥C.三棱柱D.正方形9.如图,的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是().●中考在线10.下列图形中可能是正方体展开图的是( ).11.明明用纸(如下图左)折成了一个正方体的盒子,里面装了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中.()A B C D12.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来().A B C D13.用一个平面截一个圆锥,所得截面可能是三角形吗?可能是直角三角形吗?当截面是一个圆时,截面面积可能恰好等于底面面积的一半吗?14.试一试:用平面去截一个正方体,能得到一个等边三角形吗?能截到一个直角三角形或钝角三角形截面吗?1.4从三个方向看物体的形状※课时达标1.观察下图1、2、3分别得它的主视图、左视图和俯视图,请写在对应图的下边.2.画出下图所示几何体的主视图,左视图与俯视图.3.下图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图.4.画出如图所示几何体的主视图,左视图和俯视图.5.圆锥的三视图是().A.主视图和俯视图是三角形,侧视图是圆B.主视图和侧视图是三角形,俯视图是圆C.主视图和侧视图是三角形,俯视图是圆和圆心D.主视图和俯视图是三角形,侧视图是圆和圆心6.物体的形状如图所示,则此物体的俯视图是().※课后作业★基础巩固1.我们从不同的方向观察同一物体时,可能看到不同的图形,其中,把从正面看到的图叫做_____________,从左面看到的图叫做__________,从上面看到的图叫做______.2.主视图,左视图和俯视图都一样的几何体有________(写出一种即可).3.圆柱的俯视图是_______,主视图是_____.4.正方体的俯视图是____________,圆锥的主视图是_______________.5.如图,该物体的俯视图是( ).☆能力提升6.如图的几何体,左视图是().7.桌面上放着一个三棱锥和一个圆柱体,下面的三幅图分别从哪个方向看的顺序是().图1 图2 图3A.正面.左面.上面B.正面.上面.左面C.左面.上面.正面D.以上都不对8.如图是由一些相同的小正方体构成几何体的三种视图,那么构成这几何体的小正方体有().A.4个B.5个C.6个D.无法确定俯视图左视图主视图9.由六个小立方体搭成的几何体的俯视图如图所示,小正方体中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图和左视图.10.用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最少要多少个立方块?最多要多少个立方块?●中考在线11.如图所示,是一个由小立方体搭成的几何体的俯视图,小正方形中数字表示该位置的小立方块的个数,则它的主视图为().A B C D12.下图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图.13.如图,已知一个由小正方体组成的几何体1 1121主视图俯视DCBA1 21243的左视图和俯视图.(1)该几何体最少需要几块小正方体?最 多可以有几块小正方体?(2)请画出该几何体的所有可能的主视图.第二章 有理数及其运算2.1 有理数※课时达标1.(1)某工厂增产1200吨记为+1200吨, 那么减产13吨记为___________ . (2)高出海平面324米记为+324米,那么 -20表示_________________.2.把下面各数填在相应的大括号内: 1,51,0.6,+5,0,-3.3,-6,135,0.3,2%,-13. 正数集合:{ …} 负数集合:{ …} 整数集合:{ …} 分数集合:{ …} 有理数集合:{ …} 3.下面是关于0的一些说法,其中正确说法 的个数是( ).①0既不是正数也不是负数;②0是最小的 自然数;③0是最小的正数;④0是最小的 非负数;⑤0既不是奇数也不是偶数. A.0B.1C.2D.3※课后作业 ★基础巩固1.判断题.(1)零上5℃与零下5℃意思一样,都是5℃.( )(2)正整数集合与负整数集合并在一起是整数集合. ( )(3)若-a 是负数,则a 是正数. ( )(4)若+a 是正数,则-a 是负数.( ) (5)收入-2000元表示支出2000元.( ) 2.大于-5.1的所有负整数为____________.3._____既不是正数,也不是负数.4.非负数是( ). A.正数 B.零C.正数和零D.自然数5.文具店、书店和玩具店依次座落在一条东 西走向的大街上,文具店在书店西边20米 处,玩具店位于书店东边100米处,小明 从书店沿街向东走了40米,接着又向东走 了-60米,此时小明的位置在( ). A.文具店 B.玩具店C.文具店西40米处D.玩具店西60米处 ☆能力提升6. (1)-2.1_____1 (2)-3.2____-4.3 (3)31____21--(4)0____41- 7.把下列各数填入相应的大括号里: 5,-1,0,-6,+8,0.3,-132,+154, -0.72,…①正数集合:{ …} ②负整数集合:{ …} ③负数集合:{ …} ④分数集合:{ …} 8.下列各数,正数一共有( ).-11,0,0.2,3,+71,32,1,-1 A.5个 B.6个 C.4个 D.3个9.在0,21,-51,-8,+10,+19,+3,-3.4 中整数的个数是( ).A.6B.5C.4D.310.某地气象站测得某天的四个时刻气温分别 为:早晨6点为零下3℃,中午12点为零 上1℃,下午4点为零下8℃,晚上12点为零下9℃.1.用正数或负数表示这四个不同时刻的 温度.俯视图左视图2.早晨6点比晚上12点高多少度.3.下午4点比中午12点低多少度.●中考在线11.如果盈余15万元记作+15万元,那么-3 万元表示___________ .12.某地某天的最高气温为5℃,最低气温为 -3℃,这天的温差是 ℃. 13.最小的正整数是______,最大的负整数是 ______,绝对值最小的整数是______. 14.下面关于有理数的说法正确的是( ). A.有理数可分为正有理数和负有理数两 大类B.正整数集合与负整数集合合在一起就 构成整数集合C.正数和负数统称为有理数D.正数、负数和零统称为有理数15.规定向北为正,某人走了+5米,又继续走 了﹣10米,那么,他实际上( ). A.向北走了15km B.向南走了15km C.向北走了5km D.向南走了5km 16.在–1,–2,1,2四个数中,最大的一个 数是( ). A.–1 B.–2 C.1 D.2 17.π是( ).A.整数B.分数C.有理数D.以上都不对 18.如果水位下降3米记作-3米,那么水位上 升4米,记作( ).A.1米B.7米C.4米D.-7米 19.下列说法正确的是( ). A .整数包括正整数、负整数 B .分数包括正分数、负分数和0 C .有理数中不是负数就是正数 D .有理数包括整数和分数20.陕西省元月份某一天的天气预报中,延安 市的最低气温为-6℃,西安市的最低气温 为2℃,这一天延安市的最低气温比西安 市的最低气温低( ).A .8℃B .-8℃C .6℃D .2℃ 21.下列说法正确的个数有( ).①0是整数;②π-是负分数;③5.2不是 正数;④自然数一定是正数;⑤负分数一 定是负有理数;⑥a 一定是正数A .1个B .2个C .3个D .4个2.2 数轴※课时达标 1.判断题:(1)-31的相反数是3. ( ) (2)规定了正方向的直线叫数轴. ( )(3)数轴上表示数0的点叫做原点.( )(4)如果A 、B 两点表示两个相邻的整数,那 么这两点之间的距离是一个单位长度. ( )(5)如果A 、B 两点之间的距离是一个单位长度,那么这两点表示的数一定是两个相邻 的整数.( )2.填空题:(1)在数轴上,-0.01表示A 点,-0.1表 示B 点,则离原点较近的是_______. (2)在所有大于负数的数中最小的数是 _______.(3)在所有小于正数的数中最大的数是_________.(4)在数轴上有一个点,已知离原点的距离是3个单位长度,这个点表示的数为______.(5)已知数轴上的一个点表示的数为3,这个点离开原点的距离一定是_______个单位长度.3.北京2013年1月19日至22日每天的最高气温情况如下表:日期19日20日21日22日最高气温6℃9℃3℃-1.5℃请将这四天的最高气温按从低到高的顺序排列,用“<”号连接起来.4.选择适当的长度单位为单位长度.(1)原点表示的数是______.(2)原点右边的数是_____,左边的数是_____.※课后作业★基础巩固1.在数轴上,原点及原点右边的点表示的数是().A.正数B.整数C.非负数D.非正数2.在数轴上有四个点A,B,C,D,分别表示数a,b,c,d,已知B在A的左侧,B在C的右侧,D在A,B之间,则下列式子正确的是().A.a<b<c<dB.b<d<c<aC.c<b<d<aD.d<a<c<b3.写出所有比-5大的非正整数:__________.4.最大的负整数_____,最小的正整数_____.5.指出数轴上A、B、C、D、E各点分别表示什么数:A点表示______,B点表示______,C点表示______,D点表示______,E点表示______.☆能力提升6.在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7.数轴上A、B、C三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为__________________.8.数轴上-1所对应的点为A,将A点右移4 个单位再向左平移6个单位,则此时A点距原点的距离为__________.9.一个数与它的相反数之和等于_____.10.下面正确的是().A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间11.关于相反数的叙述错误的是().A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零12.下列表示数轴的图形中正确的是().13.若数轴上A、B两点所对应的有理数分别为a、b,且B在A的右边,则a-b一定().A.大于零B.小于零C.等于零D.无法确定●中考在线14.在数轴上有一个点,已知离原点的距离是3个单位长度,这个点表示的数为____. 15.数轴上-1所对应点为A,将A右移4个单位再向左移6个单位,此时A点距原点距离为_____.16.在数轴上,与原点相距3个单位长度的点表示数 ,它们的关系是 . 17.每个有理数都可以用数轴上的以下哪项 来表示( ). A.一个点 B.线 C.单位 D.长度18.下列图形中不是数轴的是( ).19.下列各式中正确的是( ). A.-3.14<-π B.-121>-1C.3.5>-3.4D.-21<-220.下列说法错误的是( ). A.零是最小的整数B.有最大的负整数,没有最大的正整数C.数轴上两点表示的数分别是-231与-2, 那么-2在右边D.所有的有理数都可以用数轴上的点表示 出来21.非负数是( ).A.正数B.零C.正数和零D.自然数 22.下列说法中不正确的是( ). A .任何一个有理数都有相反数B .数轴上表示+3的点离表示-2的点的距 离是5个单位长度C .数轴上表示2与-2的点离原点的距离 相等D .数轴上右边的点都表示正数23.A 为数轴上表示-1的点,将点A 在数轴上 向右平移3个单位长度到点B ,则点B 所 表示的实数为( ).A.3B.2C.-4D.2或-42.3 绝对值※课时达标1.-51的相反数是( ). A.5 B.-5 C.51 D.51-2.如5=a ,则a 的值是( ). A.-5 B.5 C.51D.5± 3.把下列各数用“>”连接起来,并求出各数 的绝对值. 23-, +1, 0, -2, 3. 4.一个数a 与原点的距离叫做该数的______. 5._______的倒数是它本身,_______的绝对 值是它本身.6. -|-76|=_______,-(-76)=_______, -|+31|=_______,-(+31)=_______,+|-(21)|=_______,+(-21)=_______.7. 在给出的数轴上,标出以下各数及它们的 相反数.-1,2,0,25,-4※课后作业 ★基础巩固1.下列说法正确的是( ).A.41-和0.25不是互为相反数 B.a -是负数C.任何一个是都有相反数D.正数与负数互为相反数 2.下列说法正确的是( ).①2的绝对值是2-;②一个有理数的绝对 值一定是正数;③一个非负数的绝对值是 它的相反数;④若两个有理数绝对值相等, 则这两个数一定相等;⑤到原点距离是2 的点有两个,分别是2和2-. A.1个 B.2个 C.3个 D.4个3.绝对值是23的数是_____,绝对值是0的数 是____,绝对值小于3的非负整数是_____.4.211-的相反数是________ .5.若2-=a ,则=a ________.6.已知,020142013=-+-y x =x ____, =y _______. ☆能力提升7.若|x -2|+|y+3|+|z -5|=0, 则x=____,y=____,z=_______. 8.若|a|=2,|b|=5,则|a+b|=_______ . 9.互为相反数的两个数的绝对值_____. 10.一个数的绝对值越小,则该数在数轴上所 对应的点,离原点越_____. 11.绝对值最小的数是_____. 12.|x|=2,则这个数是( ). A.2 B.2和-2 C.-2 D.以上都错13.|21a|=-21a ,则a 一定是( ). A.负数 B .正数 C.非正数 D.非负数 14.若|x -2|+|y+3|+|z -5|=0 计算:(1)x,y,z 的值. (2)求|x|+|y|+|z|的值.●中考在线15.一个数的倒数等于它的本身,这个数是 ____________ .16.绝对值等于5的数是_____,它们互为 _____.17.一个数在数轴上对应点到原点的距离为 m ,则这个数为( ). A.-mB.mC.±mD.2m18.如果一个数的绝对值等于这个数的相反 数,那么这个数是( ). A.正数B.负数C.正数、零D.负数、零19.下列说法中,正确的是( ). A.一个有理数的绝对值不小于它自身B.若两个有理数的绝对值相等,则这两个 数相等C.若两个有理数的绝对值相等,则这两个 数互为相反数D.-a 的绝对值等于a20.若两个数绝对值之差为0,则这两个数 ( ).A.相等B.互为相反数C.两数均为0D.相等或互为相反数21.下列说法正确的是( ).A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个 数一定是负数22.任何一个有理数的绝对值一定( ). A.大于0B.小于0C.不大于0D.不小于0 23.如果|a-12|+|b-1|=0,那么a+b 等于 ( ). A .-12 B .12 C .32D .1 24.一个数是10,另一个数比10的相反数小2,则这两个数的和为( ).A .18B .-2C .-18D .2 25.一个数的绝对值是它本身,则这个数必为 ( ).A.这个数必为正数B.这个数必为0C. 这个数是正数和0D.这个数必为负数26.一个数大于另一个数的绝对值,则这两 个数的和是( ). A.正数 B.零C.负数D.和的符号无法确定 27.一个正数的绝对值小于另一个负数的绝 对值,则两数和( ) . A.正数 B.负数 C.零 D.不能确定和的符号 28.比3的相反数小3的数是( ). A.-6 B.6 C.±6 D.0 29.一个数的倒数等于它本身的数是( ).A .1B .1-C .±1D .030.在–1,–2,1,2四个数中,最大的一个 数是( ).A.–1B.–2C.1D.2 31.已知:|X|=1,|Y|=3,求X +Y 的值.2.4 有理数的加法※课时达标 1.计算:(1)()()75-++ (2)2121+-(3)-1+2- (4)(-21)+(-31)(5)16+(-8)2.计算:272343272341++〉〈-+※课后作业 ★基础巩固1.下列计算错误的是( ).A.(211-)15.0-=+ B.(-2)+(-2)=4 C.(-1.5) +(212-)=-4 D.(-71)+0=71 2.若两个有理数的和为正数,那么这两个有 理数( ).A.都是正数B.都是负数C.至少有一个是正数D.至少有一个是负数3.若,4,2==b a 则=+b a ( ).A.6B.2C.6或2D.±6或±2 4.A 地的海拔高度是-78米,B 地比A 地高 38米,C 地又比B 地高12米,则B 地的海 拔高度是______米,C 地的海拔高度是 _____.5.绝对值小于5的所有整数的和为________;绝对值不大于10的所有整数的和为_____. 6.计算:(1)(-5)+(-4);(2)〉〈-+〉〈-+〉〈-327(3)(-0.6)+0.2+(-11.4)+0.8(4)(324-)+(313-)+(416+)+(412-)●中考在线7.计算:(-1)+2的结果是( ). A.-1 B.1 C.-3 D.3 8.小明家冰箱冷冻室的温度为-5℃,调高 4℃后的温度为( ).A.4℃B.9℃C.-1℃D.-9℃ 9.-2+5的相反数是( ). A.3 B.-3 C.-7 D.72.5 有理数的减法※课时达标1.两个加数的和是-10,其中一个加数是 -1021,则另一个加数是多少?2.某地去年最高气温曾达到36.5℃,而冬季 最低气温为-20.5℃,该地去年最高气温 比最低气温高多少度?3.已知a=-83,b=-41,c=41. 求代数式a -b -c 的值.4.一个数的相反数的绝对值等于这个数的绝 对值的相反数,问这个数是多少?5.用有理数减法解答下列问题:(1)某冷库温度是零下10℃,下降-3℃后 又下降5℃,两次变化后冷库温度是多少?(2)零下12℃比零上12℃低多少? 6.计算:(1)(-12)+(+23); (2)(+37)-(+68); (3)0-(-12); (4)(-16)-(-10).※课后作业 ★基础巩固1.下列说法正确的是( ).A.在有理数的减法中,被减数一定要大于 减数B.两个负数的差一定是负数C.正数减去负数的差是正数D.两个正数的差一定是正数 2.下列运算结果为1的是( ).A.43+-+B.〉〈--〉〈-43C.43---D.43--+ 3.甲数减乙数差大于零,则( ). A.甲数大于乙数B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零D.以上都不对4.比0小4的数是______,比3小4的数是 ____,比-5小-2的数是______ .5.月球表面的温度,中午是113℃,晚上是 -148℃,晚上比中午低______℃.6. ______+0=-0.3 (+5)+_____=-5 _____+(2115-)=0 0+_____=-77.在数轴上,表示-4与-6的点之间的距离 是_____. 8.计算:(1)(-3)-(+7)(2)31-(-21) (3)(212-)-21(4)0-(-5)9.若,6,8==b a 当b a ,异号时,求b a -的值.10.下表列出了国外几个城市与北京的时差 (带正号的数表示同一时刻比北京时间早 的小时数).城市 时差 巴黎 -7 东京 +1 芝加哥-14(1)如果现在北京时间是晚上8点,那么现在巴黎时间是多少?(2)如果现在北京时间是晚上8点,那么 小明现在给在芝加哥的朋友打电话,你认 为合适吗?☆能力提升11.全班同学分为五个组进行游戏,每组基本 分为100分,答对一题加50分,答错一 题扣50分,游戏结束时各组的分数如下 表: 第1组 第2组 第3组 第4组 第5组 100150-450450-100(1)第一名超出第二名多少分? (2)第一名超出第五名多少分?12.设A 是-4的相反数与-12的绝对值的差,B 是比-6大5的数. (1)求A-B 与B-A 的值.(2)从(1)的结果中,你知道A-B ,B-A 之 间的关系吗?●中考在线13.2-3的值等于( ).A.1B.-5C.5D.-1 14.计算:-1-2=( ).A.-1B.1C.-3D.3 15.贵阳今年1月份某天的最高气温为5℃, 最低气温为-1℃,则贵阳这天的温差为 ( ).A.4℃B.6℃C.-4℃D.-6℃2.6 有理数的加减混合运算※课时达标 1.计算题:(1)+3-(-7)=_______. (2)(-32)-(+19)=_______. (3)-7-(-21)=_______.(4)(-38)-(-24)-(+65)=_______. 2.某人从A 处出发,约定向东为正,向西为 负,从A 到B 所走的路线(单位:米),分 别为+10、-3、+4、-2、+13、-8、-7、 -5、-2,则此人走过的路程为____米. 3. 10名学生体检测体重,以50千克为基准, 超过的数记为正,不足的数记为负,结果 如下(单位:千克):2, 3, -7.5, -3, 5, -8, 3.5, 4.5, 8, -1.5,则10名学生的 平均体重为_________.4.室温是32℃,小明开空调后,温度下降了6 ℃,记作-6℃,关上空调1小时后,空气 温度回升了2℃,此时室内温度是______.5.A 、B 、C 三点相对于海平面分别是-13米、 -7米、-20米,那么最高的地方比最低 的地方高_______米.6.某汽车厂计划半年内每月生产汽车20辆, 由于另有任务,每月上班人数不一定相等, 实际每月生产量与计划量相比情况如下表 (增加为正,减少为负).。

北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)

北师大版数学七年级上册 第二章  有理数及其运算 练习题(有答案)

北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)2.1 有理数基础题知识点1 认识正数与负数1.(连云港中考)下列各数中;为正数的是(A)A .3B .-12C .-2D .02.(临沂中考)四个数-3;0;1;2;其中负数是(A)A .-3B .0C .1D .2 3.在-1;0;1;2这四个数中;既不是正数也不是负数的是(B) A .-1 B .0 C .1 D .24.下列各数:-101.2;+18;0.002;-60;0;-45;+3.2;属于正数的有+18;0.002;+3.2;属于负数的有-101.2;-60;-45.知识点2 用正、负数表示具有相反意义的量5.(咸宁中考)冰箱冷藏室的温度零上5 ℃;记作+5 ℃;保鲜室的温度零下7 ℃;记作(B) A .7 ℃ B .-7 ℃ C .2 ℃ D .-12 ℃ 6.下列不具有相反意义的是(C) A .前进5 m 和后退5 m B .节约3 t 和浪费3 tC .身高增加2 cm 和体重减少2 kgD .超过5 g 和不足5 g7.若火箭发射点火前5秒记作-5秒;则火箭发射点火后10秒应记作(D) A .-10秒 B .-5秒 C .+5秒 D .+10秒8.如果+80 m 表示向东走80 m;那么-60 m 表示向西走60__m . 知识点3 有理数的概念及分类9.在0;1;-2;-3.5这四个数中;为负整数的是(C) A .0 B .1 C .-2 D .-3.510.有理数可按正、负性质分类;也可按整数、分数分类: ①按正、负性质分类: ②按整数、分数分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数 11.下列各数:3;-5;-12;0;2;0.97;-0.21;-6;9;23;85;1;其中正数有7个;负数有4个;正分数有2个;负分数有2个.12.如图是数学果园里的一棵“有理数”知识树;请仔细辨别分类;把各类数填在它所属的相应横线上.中档题13.在数-5;3;0;-32;100;0.4中;非负数有(A)A .4个B .3个C .2个D .1个 14.下列说法正确的是(D) A .+2是正数;但3不是正数 B .一个数不是正数就是负数 C .含有负号的数就是负数 D .-0.25是负分数15.请按要求填出相应的两个有理数:(1)既是正数也是分数:212;34(答案不唯一);(2)既不是负数也不是分数:2;0(答案不唯一). 16.“一只闹钟;一昼夜误差不超过±12秒.”这句话的含义是:闹钟走一天的时间比标准时间最多慢12秒或最多快12秒.17.下面是几个家庭五月份用电支出比上月支出变化情况: 赵力减少25% 肖刚增加10% 王辉减少17% 李玉增加5% 田红增加8% 陈佳减少12%分别用正、负数写出这几家五月用电支出比上月支出的增长率. 解:这六家五月用电支出比上月支出的增长率分别为:赵力-25%;肖刚+10%;王辉-17%;李玉+5%;田红+8%;陈佳-12%.18.请用两种不同的分类标准将下列各数分类:-15;+6;-2;-0.9;1;35;0;314;0.63;-4.95.解:分类一:整数:-15;+6;-2;1;0;分数:-0.9;35;314;0.63;-4.95.分类二:正数:+6;1;35;314;0.63;0;负数:-15;-2;-0.9;-4.95.19.小米家住黄河边的某市;黄河大堤高出某市区20米;另有铁塔高约58米;是该市的一大景观;小米和好朋友小华、玲玲出去玩;小米站在黄河大堤上;玲玲站在地面放风筝;顽皮的小华则爬上了铁塔顶;小米说:“以大堤为基准;记为0米;则玲玲所在的位置高为-20米;小华所在位置高为+58米.”小华说:“以铁塔顶为基准;记为0米;则玲玲所在的位置高为-58米;小米所在的位置高为-38米.”玲玲说:“小华的位置比我高58米.”他们谁说得对?解:小华和玲玲说得对.理由:用正、负数表示具有相反意义的量时;由于“基准”(0米点)的选法不同;表示的结果也不同;小米以大堤为基准;玲玲所在的位置高为-20米;小华所在位置高为38米.综合题20.将一串有理数按下列规律排列;回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2 017个数是正数还是负数?排在对应于A、B、C、D中的什么位置?解:(1)在A处的数是正数.(2)B和D位置是负数.(3)第2 017个数是负数;排在对应于B的位置.2.2 数轴基础题知识点1 认识数轴1.关于数轴;下列说法最准确的是(D) A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线 2.下列各图中;所画数轴正确的是(D)知识点2 在数轴上表示数 3.如图;在数轴上点A 表示(A)A .-2B .2C .±2D .04.在如图的数轴上;表示-2.75的点是(D)A .点EB .点FC .点GD .点H5.在数轴上表示数-3;0;5;2;-1的点中;在原点右边的有(C) A .0个 B .1个 C .2个 D .3个6.在数轴上;表示-2的点在原点的左侧;它到原点的距离是2个单位长度. 7.画数轴;并在数轴上表示下列各数:2;-2.5;0;13;-4.解:如图:知识点3 利用数轴比较有理数的大小 8.如图;下列说法中正确的是(B)A .a >bB .b >aC .a >0D .b >09.(成都中考)在-3;-1;1;3四个数中;比-2小的数是(A)A .-3B .-1C .1D .310.已知有理数x;y 在数轴上的位置如图所示;则下列结论正确的是(C)A .x>0>yB .y>x>0C .x<0<yD .y<x<011.把下列各数在数轴上表示出来;并用“<”把各数连接起来:-212;4;-4;0;412.解:如图;大小关系为:-4<-212<0<4<412.中档题12.下列语句中;错误的是(B)A .数轴上;原点位置的确定是任意的B .数轴上;正方向可以是从原点向右;也可以是从原点向左C .数轴上;单位长度可根据需要任意选取D .数轴上;与原点的距离等于8的点有两个13.(济宁中考)在0;-2;1;12这四个数中;最小的数是(B)A. 0 B .-2 C. 1 D.1214.数轴上的点A;B;C;D 分别表示a;b;c;d 四个数;已知A 在B 的左侧;C 在A;B 之间;D 在B 的右侧;则下列式子成立的是(A)A .a<c<b<dB .a<b<c<dC .a<d<c<bD .a<c<d<b15.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm);刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的-3.6和x;则(C)A .9<x <10B .10<x <11C .11<x <12D .12<x <1316.若数轴上的点A 表示+3;点B 表示-4.2;点C 表示-1;则点A 和点B 中离点C 较远的是点A . 17.如图所示;数轴上的点A 向左移动2个单位长度得到点B;则点B 表示的数是-1.18.小红在做作业时;不小心将墨水洒在一个数轴上;如图所示;根据图中标出的数值;判断被墨迹盖住的整数共有多少个?解:因为-13<-12.6<-12;-8<-7.4<-7;所以此段整数有-12;-11;-10;-9;-8共5个;同理10<10.6<11;17<17.8<18;所以此段整数有11;12;13;14;15;16;17共7个;所以被墨迹盖住的整数共有5+7=12(个).19.如图;点A 表示的数是-4.(1)在数轴上表示出原点O ; (2)指出点B 所表示的数;(3)在数轴上找一点C;它与点B 的距离为2个单位长度;那么点C 表示什么数? 解:(1)如图. (2)点B 表示3. (3)点C 表示1或5.综合题20.(1)借助数轴;回答下列问题.①从-1到1有3个整数;分别是-1、0、1;②从-2到2有5个整数;分别是-2、-1、0、1、2;③从-3到3有7个整数;分别是-3、-2、-1、0、1、2、3; ④从-200到200有401个整数;⑤从-n 到n(n 为正整数)有(2n +1)个整数;(2)根据以上规律;直接写出:从-2.9到2.9有5个整数;从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB;求线段AB 盖住的整点的个数.解:1 000个或1 001个.2.3 绝对值基础题知识点1 相反数的概念1.(河南中考)-13的相反数是(B)A .-13 B.13C .-3D .32.相反数等于本身的数为(C)A .正数B .负数C .0D .非负数 3.下列各组数中互为相反数的是(D) A .2与-3B .-3与-13C .2 016与-2 015D .-0.25与144.下列说法中正确的是(C) A .一个数的相反数是负数 B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点;可以在原点的同一侧 5.16和-16互为相反数;-2 017的相反数是2__017;1的相反数是-1. 知识点2 绝对值的意义及计算6.在数轴上表示-2的点到原点的距离等于(A) A .2 B .-2 C .±2 D .4 7.(安徽中考)-2的绝对值是(B)A .-2B .2C .±2 D.128.若|-a|=5;则a 的值是(D)A .-5B .5 C.15D .±59.-3的绝对值是3;-|-2.5|=-2.5;绝对值是6的数是±6. 10.计算:|4|+|0|-|-3|=1. 知识点3 绝对值的性质11.任何一个有理数的绝对值一定(D) A .大于0 B .小于0 C .不大于0 D .不小于0 12.在有理数中;绝对值等于它本身的数有(D) A .一个 B .两个 C .三个 D .无数个 13.(1)①正数:|+5|=5;|12|=12; ②负数:|-7|=7;|-15|=15; ③零:|0|=0;(2)根据(1)中的规律发现:不论正数、负数和零;它们的绝对值一定是非负数;即|a|≥0. 知识点4 利用绝对值比较有理数的大小 14.下列各式中正确的是(D)A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .|-89|>-91015.用“>”或“<”填空: (1)-7<-6.5; (2)-3>-4;(3)-5<-4.中档题16.如果a 与1互为相反数;那么|a|等于(C) A .2 B .-2 C .1 D .-1 17.下列说法正确的是(D) A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|;则a 与b 相等D .若一个数小于它的绝对值;则这个数为负数18.(南京中考)数轴上点A;B 表示的数分别是5;-3;它们之间的距离可以表示为(D) A .-3+5 B .-3-5 C .|-3+5| D .|-3-5|19.如果a>0;b<0;a<|b|;那么a 、b 、-a 、-b 的大小顺序是(A) A .-b>a>-a>b B .a>b>-a>-b C .-b>a>b>-a D .b>a>-b>-a20.绝对值小于6的整数有11个;它们分别是±5;±4;±3;±2;±1;0;绝对值大于3且小于6的整数是±5;±4.21.(河北中考改编)若有理数m;n 满足|m -2|+|2 017-n|=0;则m +n =2__019. 22.比较下列各对数的大小: (1)0和|-2|; 解:0<|-2|.(2)-45和-23;解:-45<-23.(3)-(-4)和|-4|. 解:-(-4)=|-4|.23.计算:(1)|+223|×|-9|;解:原式=83×9=24.(2)|-34|÷|-178|.解:原式=34×815=25.24.光明奶粉每袋质量为500克;在质量检测中;若质量超出标准质量2克记作+2克;若质量低于标准质量3克以上;(1)这10(2)质量最大的是哪袋?它的实际质量是多少? 解:(1)第4袋和第6袋不合格.(2)质量最大的是第9袋;实际质量是505克.综合题25.已知a;b;c为有理数;且它们在数轴上的位置如图所示.(1)试判断a;b;c的正负性;(2)在数轴上分别标出a;b;c的相反数的位置;(3)根据数轴化简:①|a|=-a;②|b|=b;③|c|=c;④|-a|=-a;⑤|-b|=b;⑥|-c|=c.(4)若|a|=5.5;|b|=2.5;|c|=7;求a;b;c的值.解:(1)a为负;b为正;c为正.(2)如图.(4)a=-5.5;b=2.5;c=7.小专题(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1;|-0.2|=0.2;且0.1<0.2;所以-0.1>-0.2.(2)-45与-56;解:因为|-45|=45=2430;|-56|=56=2530;且2430<2530; 所以-45>-56.2.比较下列各对数的大小:(1)-821与-|-17|;解:-|-17|=-17;因为|-821|=821;|-17|=17=321;且821>17;所以-821<-|-17|.(2)-2 0152 016与-2 0162 017.解:因为⎪⎪⎪⎪⎪⎪-2 0152 016=2 0152 016;⎪⎪⎪⎪⎪⎪-2 0162 017=2 0162 017;且2 0152 016<2 0162 017; 所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|x -3|+|y -5|=0;求x +y 的值. 解:由|x -3|+|y -5|=0;得 x -3=0;y -5=0. 解得x =3;y =5. 所以x +y =3+5=8.4.若x 的相反数是-3;|y|=5;且x <y;求y -x 的值. 解:因为x 的相反数是-3;所以x =3. 因为|y|=5;所以y =±5. 因为x <y;所以x =3;y =5. 所以y -x =5-3=2.类型3 绝对值在生活中的应用5.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正;向北为负;他这天下午行车里程如下(单位:千米):+15;-3;+14;-11;+10;+4;-26.若汽车耗油量为0.1 L/km;这天下午汽车共耗油多少升?解:0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L).6.在活动课上;有6名学生用橡皮泥做了6个乒乓球;直径可以有0.02毫米的误差;超过规定直径的毫米数记(1)(2)指出哪个同学做的乒乓球质量最好;哪个同学做的质量最差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解:(1)张兵、蔡伟.(2)蔡伟做的乒乓球质量最好、李明做的乒乓球质量最差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用;对误差来说绝对值越小越好.小专题(二) 三种方法比较有理数的大小方法1 利用数轴比较大小1.如图;在数轴上有a;b;c;d 四个点;则下列说法正确的是(C)A .a>bB .c<0C .b<cD .-1>d2.有理数a 在数轴上对应的点如图所示;则a;-a;-1的大小关系是(C)A .-a<a<-1B .-a<-1<aC .a<-1<-aD .a<-a<-1 3.大于-2.5而小于3.5的整数共有(A) A .6个 B .5个 C .4个 D .3个4.在数轴上表示下列各数;并把这些数用“>”连接起来.3.5;3.5的相反数;-12;绝对值等于3的数;最大的负整数.解:各数分别为:3.5;-3.5;-12;±3;-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12>-1>-3>-3.5.5.点A 、B 在数轴上的位置如图所示;它们分别表示数a 、b.(1)请将a;b;1;-1四个数按从小到大的顺序排列起来;(2)若将点B 向右移动3个单位长度;请将a 、b 、-1三个数按从小到大的顺序排列起来. 解:(1)b<-1<a<1. (2)-1<a<b.方法2 利用比较大小的法则比较大小 6.下列各式成立的是(B)A .-1>0B .3>-2C .-2<-5D .1<-27.(安徽中考)在-4;2;-1;3这四个数中;比-2小的数是(A) A .-4 B .2 C .-1 D .38.(西双版纳中考)若a =-78;b =-58;则a;b 的大小关系是a <b(填“>”“<”或“=”).9.已知数:0;-2;1;-3;5. (1)用“>”把各数连接起来; 解:5>1>0>-2>-3.(2)用“<”把各数的相反数连接起来; 解:-5<-1<0<2<3.(3)用“>”把各数的绝对值连接起来. 解:|5|>|-3|>|-2|>|1|>|0|. 方法3 利用特殊值比较大小10.如图;数轴上的点表示的有理数是a;b;则下列式子正确的是(B)A .-a <bB .a <bC .|a|<|b|D .-a <-b11.a;b 两数在数轴上的对应点的位置如图;下列各式正确的是(D)A.b>a B.-a<bC.|a|>|b| D.b<-a<a<-b2.4 有理数的加法第1课时 有理数的加法法则基础题知识点1 有理数的加法法则1.下列各式的结果;符号为正的是(C)A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+5 2.(天津中考)计算(-3)+(-9)的结果是(B) A .12 B .-12 C .6 D .-6 3.(梅州中考)计算(-3)+4的结果是(C) A .-7 B .-1 C .1 D .7 4.已知a;b 两数互为相反数;则a +b =(C) A .2a B .2b C .0 D .1 5.下列结论不正确的是(D) A .若a>0;b>0;则a +b>0 B .若a<0;b<0;则a +b<0C .若a>0;b<0;且|a|>|b|;则a +b>0D .若a<0;b>0;且|a|>|b|;则a +b>06.在每题的横线上填写和的符号或结果. (1)(+3)+(+5)=+(3+5)=8; (2)(-3)+(-5)=-(3+5)=-8; (3)(-16)+6=-(16-6)=-10; (4)(-6)+8=+(8-6)=2; (5)(-2 015)+0=-2__015. 7.计算:(1)(-4)+(-6); 解:原式=-10.(2)(-12)+5; 解:原式=-7.(3)0+(-12);解:原式=-12.(4)(-2.5)+(-3.5). 解:原式=-6.知识点2 有理数加法的应用8.小明家冰箱冷冻室的温度为-5 ℃;调高4 ℃后的温度为(C) A .4 ℃ B .9 ℃ C .-1 ℃ D .-9 ℃9.一个物体在数轴上做左右运动;规定向右为正;按下列方式运动;列出算式表示其运动后的结果: (1)先向左运动2个单位长度;再向右运动7个单位长度.列式:-2+7; (2)先向左运动5个单位长度;再向左运动7个单位长度.列式:-5+(-7). 10.某人某天收入265元;支出200元;则该天节余65元.11.已知飞机的飞行高度为10 000 m;上升3 000 m 后;又上升了-5 000 m;此时飞机的高度是8__000m.中档题12.(玉林、防城港中考)下面的数中;与-2的和为0的是(A) A .2 B .-2 C.12 D .-1213.有理数a 、b 在数轴上对应的位置如图所示;则a +b 的值(A)A .大于0B .小于0C .小于aD .大于b 14.如果两个数的和是正数;那么(D) A .这两个数都是正数 B .一个为正;一个为零C .这两个数一正一负;且正数的绝对值较大D .必属上面三种情况之一15.一个数是25;另一个数比25的相反数大-7;则这两个数的和为(B) A .7 B .-7 C .57 D .-5716.若x 是-3的相反数;|y|=5;则x +y 的值为(D) A .2 B .8C .-8或2D .8或-217.已知A 地的海拔高度为-53米;而B 地比A 地高30米;则B 地的海拔高度为-23米. 18.如图;三个小球上的有理数之和等于-2.19.计算: (1)32+(-32); 解:原式=0.(2)116+(-4);解:原式=-256.(3)715+(-235);解:原式=+(715-235)=435.(4)-8.75+(-314).解:原式=-(8.75+314)=-12.20.已知有理数a;b;c 在数轴上的位置如图所示;请根据有理数的加法法则判断下列各式的正负性:①a ;②b ;③-c ;④a +b ;⑤a +c ;⑥b +c ;⑦a +(-b). 解:①③⑦为正;②④⑤⑥为负.综合题21.若|a -2|与|b +5|互为相反数;求a +b 的值.解:因为|a-2|与|b+5|互为相反数; 所以|a-2|+|b+5|=0.所以a=2;b=-5.所以a+b=2+(-5)=-3.第2课时 有理数的加法运算律基础题知识点1 有理数的加法运算律1.计算314+(-235)+534+(-825)时;用运算律最为恰当的是(B)A .[314+(-235)]+[534+(-825)]B .(314+534)+[(-235)+(-825)]C .[314+(-825)]+[(-235)+534]D .[(-235)+534]+[314+(-825)]2.计算512+(+4.71)+712+(-6.71)的结果为(D)A .-2B .3C .-3D .-13.在下面的计算过程后面填上运用的运算律. 计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)(加法交换律) =[(-2)+(-5)]+[(+3)+(+4)](加法结合律) =(-7)+(+7) =0.4.在计算323+(-2.53)+(-235)+3.53+(-23)时;比较简便的计算方法是先计算323+(-23)和(-2.53)+3.53. 5.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[(-0.8)+(-0.7)+(-2.1)]+1.2 =-3.6+1.2=-2.4; (2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56. 6.运用加法的运算律计算下列各题: (1)24+(-15)+7+(-20);解:原式=(24+7)+[(-15)+(-20)] =31+(-35) =-4.(2)18+(-12)+(-18)+12;解:原式=[18+(-18)]+[(-12)+12] =0+0 =0.(3)137+(-213)+247+(-123).解:原式=(137+247)+[(-213)+(-123)]=4+(-4) =0.知识点2 有理数加法运算律的应用7.李老师的银行卡中有5 500元;取出1 800元;又存入1 500元;又取出2 200元;这时银行卡中还有3__000元钱.。

北师大版七年级数学上册章节同步练习题

北师大版七年级数学上册章节同步练习题

北师大版七年级数学上册章节同步练习题(全册,共57页)目录第一章丰富的图形世界1 生活中的立体图形2 展开与折叠3 截一个几何体4 从三个方向看物体的形状单元测验第二章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法8 有理数的除法9 有理数的乘方10 科学记数法11 有理数的混合运算12 用计算器进行运算单元测验第三章整式及其加减1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平面图形1 线段射线直线2 比较线段的长短3 角4角的比较5 多边形和圆的初步认识单元测验第五章一元一次方程1 认识一元一次方程2 求解一元一次方程3 应用一元一次方程——水箱变高了4 应用一元一次方程——打折销售5 应用一元一次方程——“希望工程”义演6 应用一元一次方程——追赶小明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择第一章丰富的图形世界1.1生活中的立体图形(1)基础题:1.如下图中为棱柱的是()2.一个几何体的侧面是由若干个长方形组成的,则这个几何体是()A.棱柱B.圆柱C.棱锥D.圆锥3.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为矩形D.球体和圆是不同的图形4.数学课本类似于,金字塔类似于,西瓜类似于,日光灯管类似于。

5.八棱柱有个面,个顶点,条棱。

6.一个漏斗可以看做是由一个________和一个________组成的。

7.如图是一个正六棱柱,它的底面边长是3cm,高是5cm.(1)这个棱柱共有个面,它的侧面积是。

(2)这个棱柱共有条棱,所有棱的长度是。

提高题:一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有种爬行路线。

1.1生活中的立体图形(2)基础题:1.如图绕虚线旋转得到的几何体是()(D)(B)(C)(A)2.下列几何体中表面都是平面的是()A.圆锥B.圆柱C.棱柱D.球体4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.下雨看起来是一根线,这说明,时钟秒针旋转时,形成一个圆面,这说明了,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了。

北师大版数学七年级上册第二章有理数及其运算第10节科学计数法课后练习

北师大版数学七年级上册第二章有理数及其运算第10节科学计数法课后练习

第二章有理数及其运算第10节科学计数法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体也长达30000000个核苷酸.30000000用科学记数法表示为( )A .3×107B .30×106C .0.3×107D .0.3×108 2.百合花的花粉的直径约0.000000087米,这里0.000000087用科学记数法表示为 A .8.7×10-7 B .8.7×10-8 C .8.7×10-9 D .0.87×10-8 3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .3.386×108 B .0.3386×109 C .33.86×107 D .3.386×109 4.临沂市去年全年的旅游总收入约300.6亿元,将300.6亿元用科学记数法可表示为( )A .30.06×108元B .30.06×109C .3.006×1010元D .3.006×109元5.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为A .28.3×107B .2.83×108C .0.283×1010D .2.83×109 6.某水库的总库存量为119 600 000立方米,用科学记数法表示为( )A .11.96×107立方米B .1.196×107立方米C .1.196×108立方米D .0.119 6×109立方米7.据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A .8.55×106B .8.55×107C .8.55×108D .8.55×109 8.计算773.810 3.710⨯-⨯,结果用科学记数法表示为( )A .70.110⨯B .60.110⨯C .7110⨯D .6110⨯9.由四舍五入法得到的近似数6.8×103,下列说法中正确的是( )A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字10.由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为()A.1.0×109美元B.1.0×1010美元C.1.0×1011美元D.1.0×1012美元评卷人得分二、填空题11.明明同学在“百度”搜索引擎输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4680000,这个数用科学记数法表示为_____.12.把下列用科学记数法表示的数还原成原数.(1)地球的直径大约7⨯,约为______km;1.2810m(2)地球与冥王星的距离最近时也有9⨯,记为______m;4.010km(3)有资料统计,我国2003年前4个月,14家汽车行业国家重点企业共实现利润101.2010⨯元,记作______万元;(4)某年我国在公路建设投资6⨯万元,记作______元.2.611013.据媒体报道,我国因环境污染造成的经济损失每年高达680000000元,数据680000000用科学记数法表示是______.14.近似数3.50万精确到__位.15.截至2015年年中(6月底),中国人口13.6407亿.“13.6407亿”用科学记数法表示为:__.16.我国除了约960万平方千米的陆地面积外,还有约3000000平方千米的海洋面积,3000000用科学记数法表示为_____.17.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为__________千米.18.1克水中水分子的个数大约是3.34×1022个,若3.34×1022=,则n=__.19.一种电子计算机每秒可做108次计算,用科学记数法表示它工作8分钟可做________次计算.评卷人得分三、解答题20.用四舍五入法按括号里的要求对下列各数取近似值.(1)0.00149(精确到0.001);(2)204500(精确到千位);(3)0.08904(精确到千分位).21.下列用科学记数法表示的数,原来各是什么数?(1)中国森林面积有1.2 863×108公顷;(2)地球绕太阳每小时转动通过的距离约为1.1×105 km.22.在地球绕太阳转动的过程中,地球每小时通过的路程约是1.1×105千米,用科学记数法表示地球转动一天(以24小时计)通过的路程约是多少千米.23.随着科学技术的进步,太阳能这种洁净环保的能源已日益得到普及应用.已知燃烧1千克煤只能释放3.35×104千焦的热量,1平方米的面积一年内从太阳得到的能量约有4.355×106千焦,那么1个长2米、宽1米的太阳能集热器每年得到的能量相当于燃烧多少千克煤?24.已知光的速度为3×108米/秒,太阳光到达地球的时间大约是500秒.试计算太阳与地球之间的距离大约是多少千米.(结果用科学记数法表示)25.据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,若1年按365天计算,则我国10年内造成的经济损失约为多少元?(结果用科学记数法表示)参考答案:1.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:30000000=3×107,故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B【解析】【详解】试题解析:8=⨯0.0000000878.710.-故选B.3.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108故选:A【点睛】本题考查科学记数法—表示较大的数.4.C【详解】试题解析:300.6亿元用科学记数法表示为:103.00610.⨯故选C.点睛:科学记数法:把一个大于10 (或者小于1)的数记为10n a ⨯的形式(其中110a ≤<)的记数法.5.D【解析】【详解】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.可得28.3亿=28.3×108=2.83×109.故选D .考点:科学记数法—表示较大的数6.C【解析】【详解】由科学记数法的定义:“把一个绝对值较大的数记为:10n a ⨯的形式,其中110a ≤<,n 为整数”可知,119600000立方米用科学记数法表示应为:81.19610⨯立方米.故选C.点睛:在把一个绝对值较大的数用科学记数法表示时,我们要注意两点:①a 必须满足:110a ≤<;①n 比原来的数的整数位数少1(也可以通过小数点移位来确定n ). 7.C【解析】【详解】8.55亿=855000000= 8.55×108,故选C.8.D【详解】试题解析:3.8×107-3.7×107=(3.8-3.7)×107=0.1×107=1×106.故选D.点睛:科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C【解析】【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,它的有效数字的个数只与a有关,而与n的大小无关.【详解】解:6.8×103,精确到了百位,有两个有效数字,分别是6,8.故选C.【点睛】此题考查了近似数数位的确定及有效数字的定义,正确掌握近似数的数位的确定方法及有效数字的定义是解题的关键.10.C【解析】【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值等于这个整数的整数位数减1,所以100 000 000 000= 1.0×1011,故选C.11.4.68×106【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将4680000用科学记数法表示为4.68×106.故答案为:4.68×106.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.(1)12800;(2)4000000000000;(3)1200000;(4)26100000000【解析】【详解】试题解析:()711.281012800000m=12800km.⨯=()924.010km=4000000000000m.⨯()1031.20101200000⨯=万元.()642.6110⨯万元26100000000=元.故答案为()112800, ()24000000000000, ()31200000 ()426100000000.13.86.810⨯【解析】【分析】科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:680 000 000=6.8×108元.故答案为:86.810⨯.【点睛】本题考查了科学记数法的表示,准确确定a×10n 中a 与n 的值是解题的关键.14.百【解析】首先将3.50万还原,然后确定0所表示的数位即可;【详解】解:3.50万=35000,第一个0所表示的数位为百位,故答案为百.【点睛】此题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度.15.1.36407×109【解析】【详解】试题解析:13.6407亿用科学记数法表示为:9⨯1.3640710.故答案为9⨯1.3640710.16.3×106【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其1≤|a|<10,n为整数,即可求得.【详解】解:将3000000用科学记数法表示为3×106,故答案为:3×106.【点睛】本题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.1.5×108【解析】【详解】149600000用科学记数法表示(保留两个有效数字)为:81.510⨯.18.20【解析】试题解析:由题意可得:20n =.故答案为20.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数.19.4.8×1010.【解析】【详解】由题意可知, 8×60×108=480×108=4.8×1010,所以计算机工作8分钟可做4.8×1010次计算. 20.(1)0.001;(2)20.5万;(3)0.089【解析】【详解】试题分析:()1精确到0.001,就是对万分位进行四舍五入;()2要先用科学记数法表示出这个数,再进行四舍五入. ()3精确到千分位,就是对万分位进行四舍五入.试题解析:(1)0.00149≈0.001;(2)204500≈20.5万;(3)0.08904≈0.089;21.(1)128630000; (2) 110 000km.【解析】【详解】试题分析:(1)由题中10的指数是8可知,原来的数整数位数共有9位,这样即可得到原来的数; (2)由题中10的指数是5可知,原来的数整数位数有6位,这样即可得到原来的数. 试题解析:(1)81.286310=128630000⨯;(2)51.110110000⨯=.22.2.64×106【解析】【详解】试题分析:根据题意可得:1.1×105⨯24,并把计算结果用科学记数法表示即可.试题解析:由题意得:5561.11024=26.410=2.6410⨯⨯⨯⨯(千米).答:地球绕太阳转一天所通过的路程大约为62.6410⨯千米.23.260【解析】【详解】试题分析:利用长2米、宽1米的太阳能集热器每年得到的能量除以燃烧1千克煤释放的热量求解即可.试题解析:1个长2米、宽1米的太阳能集热器每年得到的能量相当于燃烧的煤的千克数是()2 4.355106 3.35104260⨯⨯÷⨯=千克.24.1.5×108千米.【解析】【详解】试题分析:用光速乘时间得太阳与地球之间的距离,然后把所得的距离转化为千米,再根据科学记数法的形式为a×10n 的形式,其中1≤|a|<10,n 为整数,n 的值等于这个整数的整数位数减1即可得结论.试题解析: =1.5×108(千米).答:太阳与地球之间的距离大约是1.5×108千米.点睛:本题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.25.5.475×1011元.【解析】【详解】试题分析:用每天的经济损失×365天×10即可得我国10年内造成的经济损失,再用科学记数法表示出即可.试题解析:10×365×1.5×108=5.475×1011(元).答:我国10年内造成的经济损失约为5.475×1011元.。

七年级数学上册 第二章 有理数 2.12 科学记数法练习 (新版)华东师大版

七年级数学上册 第二章 有理数 2.12 科学记数法练习 (新版)华东师大版

2.12科学记数法一、选择题1.57000用科学记数法表示为()A.57×103B.5.7×104C.5.7×105D.0.57×1052.3400=3.4×10n,则n等于()A.2B.3C.4D.53.-72010000000=,则的值为()A.7201B.-7.201C.-7.2D.7.2014.若一个数等于5.8×1021,则这个数的整数位数是()A.20B.21C.22D.235.我国最长的河流长江全长约为6300千米,用科学记数法表示为()A.63×102千米B.6.3×102千米C.6.3×103千米D.6.3×104千米二、填空题1.3.65×10175是位数,0.12×1010是位数.2.把3900000用科学记数法表示为,把1020000用科学记数法表示为.3.用科学记数法记出的数5.16×104的原数是,2.236×108的原数是.4.比较大小:3.01×1049.5×103;3.01×1043.10×104.5.地球的赤道半径是6371千米,用科学记数法记为千米.6.18克水里含有水分子的个数约为,用科学记数法表示为.三、解答题1.用科学记数法表示下列各数.(1)900200 (2)300 (3)10000000 (4)-5100002.已知下列用科学记数法表示的数,写出原来的数.(1)2.01×104 (2)6.070×105 (3)6×105 (4)1043.用科学记数法表示下列各小题中的量.(1)光的速度是300000000米/秒;(2)银河系中的恒星约有160000000000个;(3)地球离太阳大约有一亿五千万千米;(4)月球质量约为734万吨;4.德国科学家贝塞尔推算出天鹅座第61颗暗星距地球102000000000000千米,比太阳距地球还远690000倍.(1)用科学记数法表示出暗星到地球的距离;(2)用科学记数法表示出690000这个数;(3)如果光线每秒钟大约可行300000千米,那么你能计算出从暗星发出的光线到地球需要多少秒吗?并用科学记数法表示出来.参考答案:一、选择题1.B2.B3.B4.C5.C二、填空题1.176102.3.9×1061.02×106 3.516002236000004.><5.6.371×103 6.6.023×1023三、解答题1.(1)9.002×105(2)3×102(3)107(4)-5.1×1052.(1)20100 (2)607000 (3)600000 (4)100003.(1)3×108米/秒(2)1.6×1011个(3)1.5×108千米(4)7.34×1015万吨4.(1)1.02×1014千米(2)6.9×105(3)3.4×108秒。

七年级数学上册 第二章 有理数 2.12 科学记数法同步练习 (新版)华东师大版-(新版)华东师大版

七年级数学上册 第二章 有理数 2.12 科学记数法同步练习 (新版)华东师大版-(新版)华东师大版

科学记数法知识点 1 用科学记数法表示较大的数1.2017·某某A卷“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为________.2.2017·某某我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000 kg 的煤所产生的能量.把130000000 kg用科学记数法可表示为( )A.13×107 kg×108 kgC.1.3×107 kg D.1.3×108 kg3.2017·某某作为世界文化遗产的长城,其总长大约为6700000 m.将6700000用科学记数法表示为( )A.6.7×105 B.6.7×106C.0.67×107 D.67×1084.用科学记数法表示下列各数:(2)银河系中的恒星约有一千六百亿个;(3)某某长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长约168000000 m.知识点 2 还原用科学记数法表示的数5.用科学记数法表示为1×10100的原数是1的后面有 ________个零,用科学记数法表示为1×1020的原数是1的后面有 ________个零.6.下列是用科学记数法表示的数,把原数填在横线上:4.08×102=________;7.56×106=________.7.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦 B.182000000千瓦C.18200000千瓦 D.1820000千瓦8.下列用科学记数法表示的数,原来各是什么数?(1)8.7×107;(2)3.030×1012.9.2017·某某2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( ) A.186×108吨 B.18.6×109吨C.1.86×1010吨 D.0.186×1011吨10.2016·呼伦贝尔一天有8.64×104秒,如果一年按365天计算,那么用科学记数法表示一年有________秒.11.春节晚会由中央电视台直播,猜一猜谁先听到歌声,是与舞台相距34米的演播大厅的观众,还是距3000千米的边防战士(他们正在电视机前)?(声音的传播速度是340米/秒,电磁波的传播速度是3×108米/秒)12.根据统计,我国平均每人每天大约产生1.5千克垃圾,你也许并不觉得多,假如垃圾可缩成棱长为2米的正方体,每一个这样的正方体约有100千克,中国大约13亿人口.(1)我国一天产生的垃圾有多少千克?有多少个这样的正方体?(2)若你们班的教室长为10米,宽为5米,高为4米,那么它能容纳中国人一天产生的垃圾吗?参考答案1.1.1×104(3)将168000000用科学记数法表示为1.68×108.5.100 20 6.408 75600007.C8.解:(1)87000000.(2)3030000000000.9.C10.3.1536×107[解析] 365×8.64×104=3153.6×104=3.1536×107(秒).11.解:因为34÷340=0.1(秒),3000000÷(3×108)=0.01(秒),0.01<0.1,所以距3000千米的边防战士先听到歌声.12.解:(1)1300000000×1.5=1.95×109(千克),即我国一天产生的垃圾有1.95×109千克.(1.95×109)÷100=1.95×107(个),即有1.95×107个这样的正方体.(2)教室的容积为5×10×4=200(米3),1.95×107×23=1.56×108(米3)>200(米3),所以它不能容纳中国人一天产生的垃圾.。

【精】七年级数学上册第二章有理数及其运算2-12用计算器进行运算同步练习新版北师大版

【精】七年级数学上册第二章有理数及其运算2-12用计算器进行运算同步练习新版北师大版
A.-80 B.-60 C.150 D.0
5.有一张厚度是0.1 mm的纸,假设我们能将它连续对折30次,这时它的厚度能超过珠穆朗玛峰的海拔高度(8844.43 m)吗?________.(填“能”或“不能”)
6.已知圆环的大圆半径R=4.56 cm,小圆半径r=2.47 cm,试用计算器求圆环的面积.(结果保留一位小数,π取3.142)
【精】【精】七年级数学上册第二章有理数及其运算2-12用计算器进行运算同步练习新版北师大版
1.用科学计算器求35的值,按键顺序是( )
A. B. C. D.
2.②计算2×(-6),正确的按键顺序是( )
A. B.
C. D.
3.用计算器计算124×1,按键顺序是( )
A. B.
C. D.
4.在计算器上依次按键后,显示器显示的结果为( )
9.解:99×12=1188,
999×12=11988,
9999×12=119988,
99999×12=1199988,
其规律为999…9,\s\do4(n个9))×12=11999…9,\s\do4((n-2)个9))88(n为大于1的整数).
9.先用计算器计算下列各式的值,再找出其中的规律.
99×12,999×12,9999×12,99999×12.
12 用计算器进行运算
1.解:圆环的面积S=πR2-πr2
≈3.142×4.562-3.142×2.472
≈46.2(cm2).
7.7
8.解:9×1×123456789=1111111101;
7.按一定规律排列的一组数:,,,…,,,如果从中选出若干个数,使它们的和大于0.5,那么至少需选________个数.
8.9的迷魂阵:探究9的有趣规律,进而得出这些规律产生的原因.(要求利用计算器从1,2,3,4,5,6,7,8,9中任选几个数与9相乘后,所得结果乘123456789,观察结果的变化规律)

北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题(含答案)

北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题(含答案)

北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题专题(一) 有理数的加减运算1、计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.2、计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.3、计算:(1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=-1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.4、计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.5、计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034. 6、计算:634+313-514-312+123. 解:原式=6+34+3+13-5-14-3-12+1+23=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.7、计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(3)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(4)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(5)-478-(-512)+(-412)-318;解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1=-7.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =(14-14)+[112+(-23)+(-512)] =-1.(7)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=(12+1)+(2.5-212) =112.(8)-205+40034+(-20423)+(-112); 解:原式=(-205)+400+34+(-204)+(-23)+(-1)+(-12) =(400-205-204-1)+(34-23-12)=-10+(-512) =-10512.(9)0+1-[(-1)-(-37)-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37-5+47]+4 =1-[(-1+37+47)-5]+4 =10.(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.8、观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110; (2)计算12+16+112+120+…+19 900的值为99100.专题(二) 有理数的混合运算1、计算:531×(-29)×(-2115)×(-412). 解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.2、计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.3、计算:4×(-367)-3×(-367)-6×367. 解:原式=-367×(4-3+6) =-27.4、计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =16×(-425)-27×(-425)+23×(-425) =-75+125-285=-235.5、计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112)÷(-214); 解:原式=-34×(-32)×(-49)=-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45÷(-25)×34; 解:原式=32×45×52×34=94.(4)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(5)(-5)÷(-127)×(-214)÷7; 解:原式=-5×79×94×17=-54.(6)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(7)391314×(-14); 解:原式=(40-114)×(-14)=40×(-14)-114×(-14) =-560+1=-559.(8)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178.(9)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)(-5)-(-5)×110÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5)=-5-25=-30.(11)(-42)÷(223)2+512×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(12)148÷(38-56+14); 解:因为(38-56+14)÷148=(38-56+14)×48 =38×48-56×48+14×48 =18-40+12=-10,所以148÷(38-56+14)=-110.(13)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(14)(-2)3-16×(38-1)+2÷(12―14―16). 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10 科学记数法
1.截至今年4月底,连云港市中哈物流合作基地累计完成货物进出场量6800000吨,数据6800000用科学记数法可表示为________.
2.北京故宫的占地面积为7.2×105平方米,那么原数为________平方米.
3.据教育部统计,参加xx 年全国统一高考的考生有940万人,940万人用科学记数法表示为________人.
4.“十二五”期间,将新建保障性住房约37000000套,用于解决中低收入人群和新参加工作的大学生住房的需求,把37000000用科学记数法表示应是( )
A .37×106
B .3.7×106
C .3.7×107
D .0.37×108
5.“xx 年至xx 年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”.将数据3万亿美元用科学记数法表示为( )
A .3×1014美元
B .3×1013美元
C .3×1012美元
D .3×1011美元
6.若用科学记数法表示的数为2.51×108,则原数是( )
A .25100000000
B .2510000000
C .251000000
D .25100000
7.今年1月中旬以来的低温、雨雪、冰冻天气,造成全国多个地区发生不同程度的灾害,直接经济损失已达到了5.379×1010元,将此数据用亿元表示为( )
A .0.5379亿元
B .5.379亿元
C .53.79亿元
D .537.9亿元
8.把-4.02×107还原为原数是______________.
命题点 3 含有科学记数法的运算 [热度:85%]
9.有关资料显示,一个人每次在刷牙的过程中,如果一直打开水龙头,将浪费7杯水(每杯水约250毫升).某市有100万人口,如果某天早晨所有的人在刷牙的过程中都不关水龙头,那么将浪费多少毫升水(结果用科学记数法表示)?
10.某种球形病毒,直径是0.01纳米,每一个病毒每过一分钟就能繁殖出9个与自己同样的病毒,假如这种病毒在人体中聚集到一定数量,按这样的数量排列成一串,长度达到1分米时,人就会感到不适,那么人从感染第一个病毒后,经过________分钟就会感到不适.(1分米=108纳米)
11.比较0.75×108与54
×107的大小.
1.6.8×106
2.720000
3.9.4×106
4.C
5.C 6.C
7.D
8.-40200000
9.解:7×250×1000000=1750000000=1.75×109(毫升). 答:将浪费1.75×109毫升水.
10.设人从感染第一个病毒后,经过x 分钟感到不适,则10x =1010,解得x =10. 11.
解:0.75×108=7.5×107,
54
×107=1.25×107. 因为7.5>1.25,所以0.75×108
>54×107. 感谢您的支持,我们会努力把内容做得更好!。

相关文档
最新文档