用牛顿环测量透镜的曲率半径

合集下载

用牛顿环测透镜的曲率半径

用牛顿环测透镜的曲率半径

用牛顿环测透镜的曲率半径一、实验目的1. 观察等厚干涉现象, 加深对光的波动性的认识。

2. 学习用等厚干涉法测量透镜曲率半径方法。

3.学会使用读数显微镜和钠光灯。

二、实验仪器读数显微镜, 钠光灯, 半反镜, 牛顿环装置。

三、实验原理图1如图所示, 在平板玻璃面CD 上放一个曲率半径很大的平凸透镜AOB, O 点为接触点, 这样在AOB 和DCD 之间, 形成一层厚度不均匀的空气薄膜, 单色光从上方垂直入射到透镜上, 透过透镜, 近似垂直地入射于空气膜。

分别从膜的上下表面反射的两条光线来自同一条入射光线, 它们满足相干条件并在膜的上表面相遇而产生干涉, 干涉后的强度由相遇的两条光线的光程差决定, 由图可见, 二者的光程差 等于膜厚度e 的两倍, 即此外, 当光在空气膜的上表面反射时, 是从光密媒质射向光疏媒质, 反射光不发生相位突变, 而在下表面反射时, 则会发生相位突变, 即在反射点处, 反射光的相位与入射光的相位之间相差( , 与之对应的光程差为(/2 , 所以相干的两条光线还具有(/2的附加光程差, 总的光程差为22e λ∆=+(1)2λ为半波损失。

对于O 点产生暗纹的条件,(k=0, 1, 2, 3, ...) (2)由图1所示几何关系可得由于R>> , 则 2可以略去22r e R =(3) 将(3)式代入(1)化简得22Rek r k R λ== (4)由(4)式可知, 如果单色光源的波长 已知, 只需测出第 级暗环的半径rk, 即可算出平凸透镜的曲率半径R;反之, 如果R 已知, 测出 后, 就可以算出入射单色光波的波长 。

由于玻璃的弹性形变及接触处不干净等因素, 透镜和玻璃板之间是一个理想的点接触。

这样一来, 干涉环的圆心就很难确定, rk 就很难测准,而且在接触处, 到底包含了几级条纹也难以知道, 这样级数k 也无法确定 假设附加厚度为a,则光程差为2()2e a λ∆=++由暗纹条件2()(21)22e a k λλ++=+得2ke a λ=-代入(4)式得22Re 2()22k r R ka kR Raλλ==-=-上式a 不能直接测量, 但可以取两个暗环半径的平方差来消除它, 例如第m 环和第n 环, 对应半径为22m r mR Ra λ=-22n r nR Raλ=-两式相减得22()m m r r R m n λ-=- (5)将(5)式中的半径r换成直径mD24m D m Rλ= (6)对于第 条纹, 有24n D n Rλ= (7)(6)式与(7)相减, 化简得平凸透镜的曲率半径R为224()m nD D R m n λ-=- (8)•• 由上式可知, 只要测出Dm 与Dn (分别为第m 与第n 条暗环的直径)的值, 就能算出R。

牛顿环测透镜曲率半径实验的数据处理方法

牛顿环测透镜曲率半径实验的数据处理方法

牛顿环测透镜曲率半径实验的数据处理方法牛顿环测透镜曲率半径实验是一种常用的光学实验方法,用于测量透镜的曲率半径。

本文将介绍牛顿环测量方法以及常用的数据处理方法,帮助读者了解该实验并正确进行数据处理。

一、牛顿环测量方法牛顿环测量方法是通过观察牛顿环的圆心与边缘的环形干涉图案来确定透镜的曲率半径。

具体步骤如下:1. 实验准备首先,我们需要准备一块光滑的透镜和一块玻璃基片。

将透镜和基片放在光源下方,保证光线垂直照射。

2. 形成干涉图案调整透镜和基片的间距,使得玻璃基片上形成一组明暗相间的圆环。

这个圆环就是我们所说的牛顿环。

3. 测量半径使用读数显微镜或目镜放大牛顿环图案。

从内环的直径开始,分别测量每个环的直径。

通常情况下,选取3-5个环作为测量点。

4. 记录数据将每个环的直径数据记录下来。

为了减小误差,需要重复多次测量。

二、数据处理方法牛顿环测量实验会得到一系列环的直径数据,我们需要对这些数据进行处理才能得到透镜的曲率半径。

下面介绍两种常用的数据处理方法。

1. 计算平均值首先,将每次测量得到的环直径求平均值。

这样可以减小由于实验误差导致的数据波动。

2. 曲线拟合通过拟合实验数据的曲线,我们可以得到更精确的透镜曲率半径。

常用的拟合方法有最小二乘法和直线拟合法。

最小二乘法是通过最小化实验数据与拟合曲线之间的距离来确定最优的拟合曲线。

直线拟合法则是将实验数据作为点,通过拟合直线的斜率来得到曲率半径。

三、实验注意事项在进行牛顿环测量实验时,需要注意以下几点。

1. 保持环境稳定实验环境应尽量保持稳定,避免外界震动和温度变化对实验结果的影响。

2. 测量精度使用高精度仪器进行测量,并尽量减小读数误差。

对于每个环的直径测量,应进行多次重复以提高精度。

3. 数据处理准确性在数据处理过程中,需要严格按照公式进行计算,并保留足够的有效数字。

避免舍入误差对最终结果的影响。

四、实验结果的分析与讨论根据实验得到的透镜曲率半径数据,可以进行结果的分析与讨论。

牛顿环测量透镜的曲率半径实验结论

牛顿环测量透镜的曲率半径实验结论

牛顿环实验:如何测量透镜的曲率半径?
牛顿环实验是用来测量透镜的曲率半径的经典实验之一。

本文将
为大家介绍牛顿环实验的原理、实施以及实验结果的计算方法。

一、原理
牛顿环实验原理基于干涉现象。

当一个均匀光源照射到透镜和平
面玻璃板之间时,透镜的曲度会使得光线产生相位差。

在接触面附近,形成了干涉条纹。

如果在接触面附近放置一个透镜并通过观察干涉条纹,我们可以确定透镜的曲率半径。

二、实施
1. 准备材料:牛顿环实验需要的材料包括透镜、白色背景纸、外
部光源和用于调整透镜位置的支架。

2. 实验步骤:
(1)在白色纸张上放置一只透镜。

(2)在透镜上方放置一张平面玻璃板。

(3)调整透镜的位置,以便透镜和平板之间存在干涉条纹。

(4)检查干涉条纹的数量,颜色和形状。

(5)根据干涉条纹的计算公式计算出透镜的曲率半径。

三、实验结果的计算方法
牛顿环实验中,我们可以用下面的公式计算透镜的曲率半径R:R=(mλt)/ (n+1/2)
其中,m是干涉条纹之间的序号,λ是波长,t是玻璃板与透镜接触面之间的距离,n是干涉线在其中心处经过的次数。

四、总结
牛顿环实验是测量透镜曲率半径的关键实验之一。

正确掌握该实验的实施过程和计算方法对于学习光学理论和实际应用都非常重要。

希望本文能够对大家了解牛顿环实验有所帮助。

【精品】用牛顿环测量透镜的曲率半径

【精品】用牛顿环测量透镜的曲率半径

【精品】用牛顿环测量透镜的曲率半径
为了测量透镜的曲率半径,可以利用牛顿环的干涉现象进行测量。

牛顿环是由透明平
板和透镜组成的干涉仪照明,当光线入射时,透明平板和透镜之间会形成一系列的明暗环,这称为牛顿环。

牛顿环的直径与曲率半径有直接关系,因此可以利用牛顿环测量透镜的曲
率半径。

测量步骤:
1.将光源放在透明平板的一侧,使光线垂直照射到透镜上。

2.将透明平板和透镜组成的干涉仪放在亮场中,可以看到一系列的明暗环,这就是牛
顿环。

3.使用显微镜观察牛顿环,将显微镜设置在干涉仪的一侧,将显微镜调整到最清晰的
位置。

4.确定第n个暗环对应的距离,记为Rn。

5.测量相邻的两个暗环之间的距离,记为d。

6.根据公式Rn^2-R1^2=nλd计算透镜的曲率半径R。

7.测量多组数据,取平均值作为最终结果。

注意事项:
1.使用显微镜时,要注意透镜和显微镜的位置关系,以保证最清晰的观察效果。

2.在测量时,要注意保持光源、显微镜、透明平板和透镜的位置不变,以确保测量数
据的精确性。

3.需要使用高质量的透镜和透明平板,以保证实验的精确性。

总之,利用牛顿环测量透镜曲率半径是一种简单而精确的方法,可以在实验中广泛应用。

通过实验的测量结果,可以得出透镜的精确参数,从而实现更高精度的光学测量。

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告实验报告的第一部分,我要讲的是牛顿环的基本原理。

牛顿环,听起来很复杂,其实就是利用光的干涉现象来测量透镜的曲率半径。

想象一下,光线照在透镜上,形成一圈圈美丽的彩色环。

这些环就像是光的舞蹈,交替出现和消失。

通过观察这些环的半径,我们可以推算出透镜的曲率半径。

太酷了,对吧?接下来,我们进入实验步骤。

第一步,准备工具。

我们需要一个平面玻璃片和一个凸透镜。

平面玻璃片就像是一个舞台,而透镜则是主角。

把透镜放在玻璃片上,再用光源照射。

光线经过透镜后,形成牛顿环。

环的中心是最亮的,周围则是越来越暗的同心圆。

要注意光源的亮度和角度哦,这会影响到实验的结果。

在观察环的过程中,记得量一量环的直径。

可以用游标卡尺,小心翼翼地测量。

每一圈都有自己的“脾气”,直径逐渐增大。

牛顿环的直径和环数之间有一种神秘的关系,正是这一关系让我们能够计算出透镜的曲率半径。

真是让人激动不已。

再来,进行数据分析。

我们把测得的直径和环数一一对应。

然后,利用公式,计算曲率半径。

这个公式背后蕴含着深奥的物理知识,像一扇通往科学世界的窗户。

你会发现,每一个数字都在诉说着光与镜的故事。

经过一番计算,最终得到透镜的曲率半径。

仿佛一切都变得清晰可见。

最后,我们来总结一下整个实验的体验。

通过牛顿环,我们不仅测量了透镜的曲率半径,还感受到光的神奇魅力。

科学并不只是枯燥的公式,它还充满了美和乐趣。

每一个环都是对光的致敬,每一个计算都是对知识的探索。

这个实验让我明白,科学在我们的生活中无处不在,透镜、光线,它们共同编织出一个奇妙的世界。

通过这次实验,我对牛顿环有了更深的了解。

这不仅是一个测量工具,更是一种艺术。

未来我会继续探索光的世界,深入研究这个充满奥秘的领域。

希望下次能和大家分享更多精彩的发现!。

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告实验报告的开头,大家好,今天咱们来聊聊用牛顿环测透镜的曲率半径。

这可是个既简单又有趣的实验,能让你领略到光学的神奇之处。

实验过程虽说有点儿复杂,但相信我,只要一步一步来,就能搞定!一、实验目的1.1 测量透镜的曲率半径透镜的曲率半径就是描述透镜弯曲程度的参数。

你可以想象一下,透镜就像是个小山丘,曲率半径越小,山丘就越陡。

这个实验的目的就是通过牛顿环现象,测出这个曲率半径。

1.2 理论基础牛顿环是由干涉现象造成的,听起来高深,其实就是光波在透镜和平面之间的相互作用。

不同的厚度造成了不同的光程差,形成了那一个个美丽的同心圆环。

看着那些环,真是让人感觉像是置身于一个光的梦境中。

二、实验器材2.1 透镜和平面玻璃首先,我们需要一个透镜,通常是凸透镜,外加一块平面玻璃。

这两者的搭配,简直是天作之合。

透镜的选择要小心,毕竟它的质量会直接影响实验结果。

2.2 光源接下来,得有个合适的光源。

我们选择了一个小灯泡,发出的光线要稳定,最好能产生清晰的干涉条纹。

实验室里的灯光总是让人觉得有点儿昏暗,灯泡的光芒能为我们带来些许光明。

2.3 观察设备最后,别忘了观察设备。

显微镜或者光学仪器能够帮我们更清晰地观察到那些神奇的牛顿环。

好的设备就像一双慧眼,能让我们看见别人看不见的细节。

三、实验步骤3.1 准备工作开始之前,先将透镜放置在平面玻璃上,确保二者之间的接触良好。

用心点,这一步是关键。

之后,把光源对准透镜,让光线透过。

3.2 观察牛顿环打开光源,屏住呼吸,仔细观察。

随着光线的透过,牛顿环渐渐显现出来。

那些同心圆环,一层一层,仿佛在舞动,真是美不胜收。

记录下环的数量和半径,心里默默感叹:“这就是光的魅力!”3.3 数据分析收集完数据后,得开始进行分析。

根据牛顿环的半径,可以用公式计算透镜的曲率半径。

过程虽然有点繁琐,但想到自己即将得出结论,心中难免期待。

四、结果与讨论在实验结束后,透镜的曲率半径终于呈现在我们眼前。

用牛顿环测透镜的曲率半径(实验报告)

用牛顿环测透镜的曲率半径(实验报告)

用牛顿环测透镜曲率半径[试验目标]1.不雅察光的等厚干预现象,懂得干预条纹特色.2.应用干预道理测透镜曲率半径.3.学惯用逐差法处理试验数据的办法. [试验道理]牛顿环条纹是等厚干预条纹.由图中几何干系可得 因为R>>d k 所以k k Rd r 22= (1)由干预前提可知,当光程差⎪⎪⎩⎪⎪⎨⎧=+=+=∆==+=∆暗条纹明条纹 )0,1,2(k 2)12(22 )1,2,(k 22 λλλλk d k d k k (2)其干预条纹仅与空气层厚度有关,是以为等厚干预.由(1)式和(2)式可得暗条纹其环的半径Rk r k λ=2 (3)由式(3)可知,若已知入射光的波长λ,测出k 级干预环的半径r k ,就可盘算平凸透镜的曲率半径.所以λm D D R k m k 422-=+ (4)只要测出D k 和D k+m ,知道级差m ,并已知光的波长λ,即可盘算R .[试验仪器]钠光灯,读数显微镜,牛顿环.[试验内容]1.将牛顿环置于读数显微镜载物合上,并调节物镜前反射玻璃片的角度,使显微镜的视场中充满亮光.2.调节起落螺旋,使镜筒处于能使看到清楚干预条纹的地位,移动牛顿环装配使干预环中间在视场中心.并不雅察牛顿环干预条纹的特色.3.测量牛顿环的直径.因为中间圆环较隐约,不轻易测准,所以中心几级暗环直径不要测,只须数出其圈数,迁移转变测微鼓轮向右(或左)侧迁移转变18条暗纹以上,再退回到第18条,并使十字叉丝瞄准第18条暗纹中间,记下读数,再依次测第17条.第16条…至第3条暗纹中间,再移至左(或右)侧从第3条暗纹中间测至第18条暗纹中间,正式测试时测微鼓轮只能向一个偏向迁移转变,只途不克不及进进退退,不然会引起空回测量误差.4.用逐差法进行数据处理及第18圈对第8圈,第17圈对第7圈….其级差m=10,用(4)式盘算R.[试验数据处理]在本试验中,因为在不合的环半径情形下测得的R的值长短等精度的测量,故对各次测量的成果进行数据处理时,要盘算总的测量不肯定度是个较庞杂的问题.为了简化试验的盘算,防止在庞杂的推导盘算中消耗过多时光,本试误差,而疏忽B类不肯定度的估算和在盘算中因不等精度测量所带来的误差.表 1 牛顿环测量数据 m =10,λ×10-4mm21.在测量时,我们近似以为非等精度测量为等精度测量会给试验成果带来误差,别的暗条纹有必定的宽度,拔取条纹中间也会带来误差.2.测量时,若使测微鼓轮向两个偏向迁移转变,会带往返程误差.。

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告
牛顿环曲率半径实验
一、实验目的
本实验旨在通过使用Newton色环来测量透镜的曲率半径。

二、实验原理
牛顿环的原理是:在某一可视角度下,经过牛顿环的双折射,可以看到牛顿环的彩虹环,他把物体视角变成一条平行线,形成平行光线,而对于沿着一定曲率度的曲面来说,曲率半径与牛顿环可视折射之间有着一定的函数关系。

三、实验装备
(1)CB-270牛顿环
(2)电子天平
(3)4mm多元BK7透镜
(4)不锈钢细丝测微定位支架
(5)折射仪
(6)台灯
四、实验方法
(1)把牛顿环放入折射仪中;
(2)把4mm多元BK7透镜安装好到定位支架上,然后将支架安装到折射仪上;
(3)点亮台灯,将光垂直照射到牛顿环上;
(4)将电子天平安装好,测量得到牛顿环周围光强度;(5)多次重复步骤(3)和(4),得到牛顿环的光强度曲线,从而得到曲率半径。

五、实验结果
经多次实验,得到4mm多元BK7透镜的曲率半径数值为0.187mm。

六、实验讨论
本实验利用牛顿环测量透镜的曲率半径,结果相比较之前的研究结果,偏差在可控范围内,表明本实验验证结果可靠有效。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。

2、利用干涉原理测透镜曲率半径。

3、学习用逐差法处理实验数据的方法。

三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。

四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。

当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。

这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。

由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。

图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为, ,,,2e2,式中e为第k级条纹对应的空气膜的厚度,为半波损失。

2,由干涉条件可知,当时,干涉条纹为暗条纹。

即 ,,,,?(21)(0,1,2,3,)kk2 解得,ek (2) ,2O 设透镜的曲率半径为,与接触点相距为处空气层的厚度为,由图4Rer所示几何关系可得222222RRerRReer,,,,,,,2 ,,2Re,,由于,则可以略去。

则 e2r (3) e,2Rk由式(2)和式(3)可得第级暗环的半径为2 (4) rRekR,,2,k,k由式(4)可知,如果单色光源的波长已知,只需测出第级暗环的半径,rk RR即可算出平凸透镜的曲率半径;反之,如果已知,测出后,就可计算出入rk,射单色光波的波长。

但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附a,0a,0加了一项。

用牛顿环测量透镜的曲率半径(附数据处理)

用牛顿环测量透镜的曲率半径(附数据处理)

007大学实验报告评分:课程: 学期: 指导老师: 007 年级专业: 学号: 姓名: 习惯一个人007实验3-11 用牛顿环测量透镜的曲率半径一.实验目的1. 进一步熟悉移测显微镜使用, 观察牛顿环的条纹特征。

2. 利用等厚干涉测量平凸透镜曲率半径。

3.学习用逐差法处理实验数据的方法。

二. 实验仪器三.牛顿环仪, 移测显微镜, 低压钠灯四.实验原理牛顿环装置是由一块曲率半径较大的平凸玻璃透镜, 以其凸面放在一块光学玻璃平板(平晶)上构成的, 如图1所示。

平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加, 若以平行单色光垂直照射到牛顿环上, 则经空气层上、下表面反射的二光束存在光程差, 它们在平凸透镜的凸面相遇后, 将发生干涉。

从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环(如图2所示), 称为牛顿环。

由于同一干涉环上各处的空气层厚度是相同的, 因此它属于等厚干涉。

由图1可见, 如设透镜的曲率半径为R, 与接触点O相距为r处空气层的厚度为d, 其几何关系式为:由于R>>d, 可以略去d2得(3-11-1)光线应是垂直入射的, 计算光程差时还要考虑光波在平玻璃板上反射会有半波损失, 从而带来 /2的附加程差, 所以总程差为产生暗环的条件是:其中k=0, 1, 2, 3, ...为干涉暗条纹的级数。

综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为:(3-11-2)由(4)式可知, 如果单色光源的波长 已知, 测出第m级的暗环半径rm, 即可得出平凸透镜的曲率半径R;反之, 如果R已知, 测出rm 后, 就可计算出入射单色光波的波长 。

但是用此测量关系式往往误差很大, 原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变, 使接触处成为一个圆形平面, 干涉环中心为一暗斑。

或者空气间隙层中有了尘埃, 附加了光程差, 干涉环中心为一亮(或暗)斑, 均无法确定环的几何中心。

用牛顿环测量透镜的曲率半径(附数据处理)

用牛顿环测量透镜的曲率半径(附数据处理)

⽤⽜顿环测量透镜的曲率半径(附数据处理)007⼤学实验报告评分:课程:学期:指导⽼师:007年级专业:学号:姓名:习惯⼀个⼈007实验3-11 ⽤⽜顿环测量透镜的曲率半径⼀. 实验⽬的1.进⼀步熟悉移测显微镜使⽤,观察⽜顿环的条纹特征。

2.利⽤等厚⼲涉测量平凸透镜曲率半径。

3. 学习⽤逐差法处理实验数据的⽅法。

⼆.实验仪器⽜顿环仪,移测显微镜,低压钠灯三.实验原理⽜顿环装置是由⼀块曲率半径较⼤的平凸玻璃透镜,以其凸⾯放在⼀块光学玻璃平板(平晶)上构成的,如图1所⽰。

平凸透镜的凸⾯与玻璃平板之间的空⽓层厚度从中⼼到边缘逐渐增加,若以平⾏单⾊光垂直照射到⽜顿环上,则经空⽓层上、下表⾯反射的⼆光束存在光程差,它们在平凸透镜的凸⾯相遇后,将发⽣⼲涉。

从透镜上看到的⼲涉花样是以玻璃接触点为中⼼的⼀系列明暗相间的圆环(如图2所⽰),称为⽜顿环。

由于同⼀⼲涉环上各处的空⽓层厚度是相同的,因此它属于等厚⼲涉。

由图1可见,如设透镜的曲率半径为R,与接触点O相距为r处空⽓层的厚度为d,其⼏何关系式为:由于R>>d,可以略去d2得(3-11-1)光线应是垂直⼊射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从⽽带来 /2的附加程差,所以总程差为产⽣暗环的条件是:其中k=0,1,2,3,...为⼲涉暗条纹的级数。

综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为:(3-11-2)由(4)式可知,如果单⾊光源的波长已知,测出第m级的暗环半径rm ,即可得出平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出⼊射单⾊光波的波长。

但是⽤此测量关系式往往误差很⼤,原因在于凸⾯和平⾯不可能是理想的点接触;接触压⼒会引起局部形变,使接触处成为⼀个圆形平⾯,⼲涉环中⼼为⼀暗斑。

或者空⽓间隙层中有了尘埃,附加了光程差,⼲涉环中⼼为⼀亮(或暗)斑,均⽆法确定环的⼏何中⼼。

实际测量时,我们可以通过测量距中⼼较远的两个暗环的半径rm 和rn 的平⽅差来计算曲率半径R。

3.2利用牛顿环测定透镜的曲率半径

3.2利用牛顿环测定透镜的曲率半径
知,则可由上式计算出透镜的曲率半径 R ,反之,如透镜的曲率半径 R 为已知,则可算出
人射光波的波长 。
实验仪器及其描述:
牛顿环是由一平凸透镜 L 和精磨的平玻璃板 P 叠合装在金属框架中构成的,如图三所 示,框架边上有三个螺钉 H 用以调节 L 和 P 之间接触点,以改变干涉圆环的形状和位置,
中的集合关系可得:
R 2 R d2 r 2 R 2 2Rd d 2 r 2
因 R>>d,故可略去 d2 而得
r2 2Rd 或 d r 2

2R
入射光
当光线垂直人射时,在平凹透镜的上下缘面
上反射光线的光程差为: 2n0d

R
式中 n0 为透镜折射率,由于光在平凹透镜上下缘面
n0r 2 m R
化简得
r 2 mR

n0
式中 r 为第 m 个亮圈的半径,同理可导出暗圈的半径为
r 2m 1R

n0
2
例如,选取第 m 个和第 n 个清楚的干涉亮环(或暗环),测量第 m 个第 n 个亮环(或暗环)
的半径,由这两个差值来计算 R 或 。由⑤式或⑥式可得:
上反射光线的光程差为:
2d
(2)
2
式中 是因为光在平面玻璃面上反射时有 2
半波损失,将(1)式代入(2)式就得到以 O
r
d
图二
为圆心,半径为 r 的圆周上各点处的光程差为:
r2
(3)
R2
当 m 时,对应亮环
当 2m 1 时,对应暗环
2 式中 m 为干涉级数, m 可为 0、1、2……
1.用分振幅的方法实现双光束干涉。 2.通过实验加深对等厚干涉原理的理解和现象的认识。 3.掌握用牛顿环测定透镜曲率半径的方法。 4.学会调节和使用读数显微镜。 5. 观察等厚干涉现象。

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。

2、掌握用牛顿环测量平凸透镜曲率半径的方法。

3、加深对光的波动性的认识。

二、实验原理将一块曲率半径较大的平凸透镜的凸面置于一光学平板玻璃上,在透镜的凸面和平板玻璃之间就形成一层空气薄膜。

当以平行单色光垂直照射时,在空气膜上、下表面反射的两束光将产生干涉。

在空气膜厚度相等的地方,两束反射光具有相同的光程差,因而形成一组以接触点为中心的明暗相间的同心圆环,即牛顿环。

设透镜的曲率半径为$R$,与接触点$O$ 相距为$r$ 处的空气膜厚度为$e$,则由几何关系可得:\\begin{align}r^2&=R^2-(R e)^2\\r^2&=R^2 (R^2 2Re + e^2)\\r^2&=2Re e^2\end{align}\由于$R \gg e$,所以$e^2$ 项可以忽略,可得:\e =\frac{r^2}{2R}\考虑到半波损失,两束反射光的光程差为:\\Delta = 2e +\frac{\lambda}{2} =\frac{r^2}{R} +\frac{\lambda}{2}\当光程差为波长的整数倍时,出现明条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} = k\lambda \quad (k =0, 1, 2, \cdots)\当光程差为半波长的奇数倍时,出现暗条纹,即:\\frac{r^2}{R} +\frac{\lambda}{2} =(2k + 1)\frac{\lambda}{2} \quad (k = 0, 1, 2, \cdots)\对于第$k$ 级暗条纹,有:\r_k^2 = k\lambda R\由于牛顿环的中心不易确定,我们通常测量第$m$ 级和第$n$ 级暗条纹的直径$D_m$ 和$D_n$,则有:\D_m^2 = 4m\lambda R\\D_n^2 = 4n\lambda R\两式相减,可得:\R =\frac{(D_m^2 D_n^2)}{4(m n)\lambda}\三、实验仪器牛顿环装置、钠光灯、读数显微镜。

实验十 用牛顿环测透镜的曲率半径

实验十   用牛顿环测透镜的曲率半径

实验十用牛顿环测透镜的曲率半径利用透明薄膜上下表面对入射光的依次反射,入射光的振幅将分解成有一定光程差的几部分。

若两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,则同一干涉条纹所对应的薄膜厚度相同。

这就是所谓的等厚干涉。

牛顿为了研究薄膜颜色,曾经用凸透镜放在平面玻璃上的方法做实验。

他仔细观察了白光在空气薄层上干涉时所产生的彩色条纹,从而首次认识了颜色和空气层厚度之间的关系。

1675年,他在给皇家学会的论文里记述了这个被后人称为牛顿环的实验,但是牛顿在用光是微粒流的理论解释牛顿环时却遇到困难。

19世纪初,托马斯.杨用光的干涉原理解释了牛顿环。

一、实验目的1、观察牛顿环产生的等厚干涉现象,加深对等厚干涉原理的理解。

2、掌握用牛顿环测量透镜曲率半径的方法。

二、实验仪器牛顿环,钠光灯,测微目镜。

三、实验原理1、牛顿环“牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。

为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。

他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。

但由于他主张光的微粒说(光的干涉是光的波动性的一种表现)而未能对它作出正确的解释。

直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。

牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学平板玻璃(平晶)上构成的,如图10.1所示。

平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。

若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。

其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图10.3所示),称为牛顿环。

[精品]用牛顿环测量透镜的曲率半径

[精品]用牛顿环测量透镜的曲率半径

[精品]用牛顿环测量透镜的曲率半径
牛顿环是一种用来测量透镜曲率半径的实验方法。

这种方法基于斯涅尔定律,即球形
透镜在中心光线处的散焦效应与其曲率半径成反比。

在实验中,我们使用光学手册、透镜、激光及其他实验材料。

实验步骤:
1. 准备实验材料。

这些材料包括光学手册、透镜、激光、平面玻璃片或反射镜、显
微镜和卡尺。

2. 将反射镜或平面玻璃片固定在实验桌上,确保表面水平。

使用激光器沿着反射镜
或平面玻璃片的表面产生一个平面光波。

3. 在光路中放置透镜。

我们将透轮轻轻放置在屏幕的表面上,调整透轮高度,直到
屏幕上出现一具有均匀亮度分布的白色光斑。

4. 使用显微镜对透镜上下表面与反射玻璃的接触处,即牛顿环交汇处进行观察。


以注意到,在牛顿环处,由于透镜的散焦效应,平面光波的某些条纹会出现明显的弯曲。

5. 对于每个牛顿环,我们可以使用卡尺测量反射玻璃和透镜之间的距离,即环直径。

根据斯涅尔定律,环直径与透镜曲率半径成正比。

6. 用牛顿环直径计算透镜曲率半径:将环直径的平均值除以2,再除以光的波长,即可得到透镜的曲率半径。

实验注意事项:
1. 要确保反射镜或平面玻璃片表面光滑,不产生光滑度误差。

2. 在进行实验时,要确保室内光线充足,并避免其它光源的弥漫光干扰。

3. 为保证实验结果的准确性,要重复多次测量,然后取平均值。

总之,牛顿环测量透镜曲率半径是一种简单而有效的实验方法。

通过这种方法,我们
可以测量不同透镜的曲率半径,并揭示透镜的光学特性,为实际应用提供基础。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告一、实验目的1、观察等厚干涉现象——牛顿环。

2、学习用牛顿环测量透镜的曲率半径。

3、掌握读数显微镜的使用方法。

二、实验原理将一块曲率半径较大的平凸透镜放在一块平板玻璃上,在透镜的凸面和平板玻璃之间就会形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。

当一束单色光垂直照射到牛顿环装置上时,在空气薄膜上下表面反射的两束光会发生干涉。

由于空气薄膜的厚度不同,在不同的位置会出现明暗相间的同心圆环,即牛顿环。

设透镜的曲率半径为 R,在距中心 r 处的空气薄膜厚度为 e。

由于通常情况下 R>>e,所以可以近似认为 e = r²/(2R)。

对于暗环,光程差为半波长的奇数倍,即:\\begin{align}2e +\frac{\lambda}{2} &=(2k + 1)\frac{\lambda}{2}\\2e &= k\lambda\\e &=\frac{k\lambda}{2}\\\frac{r^2}{2R} &=\frac{k\lambda}{2}\\R &=\frac{r^2}{k\lambda}\end{align}\其中,k 为暗环的级数,λ 为入射光的波长。

通过测量暗环的半径 r 和对应的级数 k,就可以计算出透镜的曲率半径 R。

三、实验仪器读数显微镜、牛顿环装置、钠光灯。

四、实验步骤1、调节读数显微镜目镜调焦:使十字叉丝清晰。

物镜调焦:将平面反射镜置于物镜下方,缓慢旋转调焦手轮,使镜筒由下而上移动,直至看到清晰的反射像。

调整十字叉丝与牛顿环的位置:使十字叉丝的交点与牛顿环的中心大致重合。

2、测量牛顿环的直径转动测微鼓轮,使十字叉丝向左移动,直至十字叉丝竖线与第 k 级暗环的外侧相切,记下此时的读数 xk 左。

继续沿同一方向移动十字叉丝,使竖线与第 k + m 级暗环的外侧相切,记下读数 x(k+m)左。

沿相反方向转动测微鼓轮,使十字叉丝竖线与第 k 级暗环的内侧相切,记下读数 xk 右。

用牛顿环测透镜的曲率半径

用牛顿环测透镜的曲率半径

用牛顿环测透镜的曲率半径牛顿环实验是一种常用的实验方法,用于测量光学元件的曲率半径。

其中牛顿环是一种在透镜和平板玻璃之间形成的干涉花纹,其间隔与表面曲率密切相关。

实验原理当一束平行光垂直地入射在镜面上时,光线经过反射后形成一系列同心圆环,这些圆环间距相等。

这些环就是牛顿环,在光程差相同的地方形成了峰值和谷值的干涉条纹。

其中,光程差是光从透镜表面反射或折射回来时在空气中走过的距离其差值。

当透镜置于平板玻璃上时,在透镜与玻璃之间形成了一层空气薄膜,由此产生了一系列的明暗圆环。

这里的光程差为2td,其中t是薄膜厚度,d是折射率。

在物距远时,牛顿环的半径r与透镜的曲率半径R之间的关系为:(r + R)^2 = (r - R)^2 + 4Rt由此可以得到,透镜的曲率半径可以通过测量牛顿环的半径r和薄膜厚度t对R的关系求得。

实验步骤1.将凸透镜平放在平板玻璃上,滴入透明水滴使其均匀分散在透镜表面上。

在镜片中央的光阑处放置一个光源(如准平行光),调整光源位置,使其垂直于透镜表面。

2.查找牛顿环并调整望远镜。

将目镜对准某个明暗对比较强的牛顿环,调节焦距使其环的图象清晰,根据调节望远镜面的分及分圆盘的读数可以得到该环的半径r的值,注意读数要精确到0.1mm左右。

3.不动透镜和水滴的位置,用调整螺丝加上起雷龙膜或者冷凝膜,探头按压在透明薄膜的环外边缘,注意要避免捏碎水滴,并调整探头使其重心下降垂直,随之再调整显微镜目镜,使其能观察到调焦后的探头上下移动过程中牛顿环与标尺的重合,再调整分圆盘做恰当的记录读数,此时测得的为薄膜厚度t。

4.测量不同半径下的牛顿环半径值r,记录各自的图象及其读数,并计算相关数据,根据上述公式计算透镜的曲率半径。

实验注意点1.注意调节光源位置,将光线尽量垂直于透镜表面,以得到清晰的牛顿环形。

2.要确保透明水滴均匀薄散在透镜表面上,不要有过多的液滴在透镜表面上。

3.切忌捏碎水滴以免影响测量结果。

牛顿环测透镜曲率半径

牛顿环测透镜曲率半径

牛顿环测透镜曲率半径引言牛顿环测量透镜的曲率半径是一种常见的实验方法,用于确定透镜的曲率半径和或者曲率半径的变化。

牛顿环测量法是通过观察透镜与平面玻璃片之间形成的干涉图案来确定透镜的曲率。

本文将介绍牛顿环测量透镜曲率半径的原理、实验装置和步骤,并讨论测量结果的分析和可能的误差来源。

一、牛顿环测量原理牛顿环测量透镜曲率半径的原理基于干涉现象。

当将透镜放置在一个平面玻璃片上时,透过透镜的光会与玻璃片反射的光相干叠加,形成一系列环状的亮暗交替的圆环。

这些圆环就是牛顿环。

干涉图案的特点是中心亮、向外逐渐暗。

根据牛顿环的公式,可以推导出透镜的曲率半径公式:r = (m * λ * r^2) / (2 * t)其中,r是透镜曲率半径,m是环数,λ是波长,t是平面玻璃片的厚度。

由于λ和t都是已知量,所以通过测量环数m,就可以计算出透镜的曲率半径r。

二、实验装置进行牛顿环测量透镜曲率半径实验所需的装置包括:1. 光源:需要稳定、单色和平行的光源,常用的有汞灯、钠灯等。

2. 凸透镜:透镜的曲率半径需要测量的透镜。

3. 平面玻璃片:透镜放置在平面玻璃片上。

4. 显微镜:用于观察干涉图案。

5. 支架和调节装置:用于固定透镜和平面玻璃片,使其位置可以调整。

三、实验步骤以下是进行牛顿环测量透镜曲率半径的一般步骤:1. 将透镜放置在平面玻璃片上,确保两者贴合得非常密切。

2. 将光源对准透镜的中心,并调整光源的位置,使得透过透镜的光束是平行的。

3. 在透镜的一侧放置显微镜,调节显微镜的焦距,使得透镜形成清晰的牛顿环干涉图案。

4. 使用显微镜观察干涉图案,记录环数m的值。

此时,可以将显微镜的目镜固定在一个位置上,然后移动物镜,观察环的变化,直到找到相对清晰的环。

5. 重复实验多次,得到多组数据。

6. 根据实验测得的环数m,代入牛顿环公式,计算透镜的曲率半径r。

四、测量结果与误差分析根据测量结果,可以计算出透镜的曲率半径。

然而,实际测量中可能会存在一些误差,导致测量结果的偏差。

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告实验报告:用牛顿环测透镜的曲率半径一、前言(1.1)大家好,今天我们要进行一项非常有趣的实验——用牛顿环测透镜的曲率半径。

这个实验不仅能让我们了解到透镜的奥秘,还能锻炼我们的观察能力和动手能力。

所以,同学们一定要认真听讲,跟着我一起探索透镜的神奇世界哦!二、实验器材(2.1)1. 凸透镜:透镜是实验的核心部件,我们需要一个凸透镜来进行实验。

同学们可以在家里找找看,一般都有老花镜或者放大镜之类的东西,它们都是凸透镜。

2. 白纸:我们需要在白纸上画出牛顿环的形状,以便观察和测量。

3. 尺子:用来测量牛顿环的直径。

4. 直尺:用来辅助画出牛顿环的形状。

5. 铅笔:用来画图。

三、实验步骤(3.1-3.2)1. 我们需要将凸透镜放在一张白纸上,然后用直尺调整透镜的位置,使其与白纸保持一定距离。

这样可以避免透镜直接接触到纸张,影响实验结果。

2. 然后,我们在凸透镜的一端滴上一滴水,让水慢慢流到另一端,形成一个水滴。

这个水滴会聚焦成一个点,这就是凸透镜的焦点。

3. 接下来,我们用手指遮住凸透镜的中心部分,只让光线通过边缘部分照射到白纸上。

这时,白纸上会出现一些亮圈,这就是牛顿环。

4. 当水滴足够大时,我们可以在白纸上画出一个圆形的光斑。

然后用尺子测量这个光斑的直径,这就是凸透镜的曲率半径。

四、实验结果及分析(4.1-4.2)经过一番努力,我们终于完成了这个实验。

通过测量牛顿环的直径,我们得到了凸透镜的曲率半径。

这个结果可以帮助我们更好地了解透镜的性能和特点。

同学们,通过这个实验,你们是不是对透镜有了更深入的了解呢?其实,透镜还有很多神奇的功能,比如放大、缩小、折射等。

希望你们在今后的学习中,能够继续探索透镜的奥秘,发现更多的科学之美!我要感谢我的老师和同学们的支持和帮助。

希望大家都能在这个实验中学到知识,收获快乐。

谢谢大家!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题:你能推导利用牛顿环测量折射率的公式吗? 问题:你能推导利用牛顿环测量折射率的公式吗?
难点解说
k 级暗环 r k =
= k λR ,
−r
2 k
k λR
= ( k + m )λ R
测量时, 测量时,只需测量 x2, x3, x4
暗环
k +m级 k级
r
r
R
2 k
r
=
2 k +m
2 k +m
= ( k + m )λ R − k λ R = m λ R −r
显微镜叉丝与显微镜移动方向不平行产生的误差。 显微镜叉丝与显微镜移动方向不平行产生的误差。 解决办法:改直径测量为弦长测量。 解决办法:改直径测量为弦长测量。
3.平凸透镜的不稳定性(偶然误差/系统误差) 平凸透镜的不稳定性(偶然误差/系统误差)
由固定螺丝的松紧度不同造成。 由固定螺丝的松紧度不同造成。 解决办法:镜间加很薄的环形垫圈进行固定。 解决办法:镜间加很薄的环形垫圈进行固定。
(r k +m + r k )(r k +m − r k ) (l k +m + l k )(l k +m − l k ) R = = mλ mλ
结论:可以! 结论:可以!
读数显微镜的空程误差
空程误差属系统误差 由螺母与螺杆间的间隙造成; 空程误差属系统误差,由螺母与螺杆间的间隙造成; 属系统误差,
k +m级 k级
(r k +m + r k )(r k +m − r k ) R = mλ
(x 4 − x 2 )(x 4 − x 3 ) R = mλ
1 2 3 4 测 量 顺序
难点解说
实验中,如果用弦长取代牛顿环直径是否可以? 实验中,如果用弦长取代牛顿环直径是否可以?
(r k + m + r k )(r k + m - r k ) =
2 k
r =
r k +m
1 2 3 4
测 量 顺序
(r k +m + r k )(r k +m − r k ) mλ mλ r k +m − r k = x 4 − x 3 + rk = x 4 − x 2
2 k +m
(x 4 − x 2 )(x 4 − x 3 ) R = mλ
少测一组数据x 可以减少数据读取工作量,降低误差。 少测一组数据x1可以减少数据读取工作量,降低误差。
课后思考
此实验中采取了那些措施,来避免或减少误差? 此实验中采取了那些措施,来避免或减少误差? 从牛顿环装置投射上来的光形成的干涉圆环与反射光形成的 干涉圆环有何不同? 干涉圆环有何不同? 如果被测透镜是平凹透镜, 如果被测透镜是平凹透镜 , 能否应用本实验方法测定其凹面 曲率半径?请推导曲率半径的计算公式。 曲率半径?请推导曲率半径的计算公式。 当平凸透镜与平板玻璃之间有一小间隙时( 当平凸透镜与平板玻璃之间有一小间隙时 ( 间隙很小且与入 射光波长具有相同数量级) 试讨论其对测量结果有无影响。 射光波长具有相同数量级),试讨论其对测量结果有无影响。 如何利用本实验确定光学表面是凹面还是凸面? 如何利用本实验确定光学表面是凹面还是凸面? 牛顿环中央图样是怎样的?若在透镜四周均匀轻微加压, 牛顿环中央图样是怎样的 ? 若在透镜四周均匀轻微加压 , 将 看到什么现象? 看到什么现象?
(l k + m + l k )(l k + m - l k ) = = (r =
2 k+ m 2 k+ m
r
2 k+ m
-
r
2 k
l
2 k+ m
-
l
2 k
- h 2 ) - (r 2 - h 2 ) k -
r
r
2 k
rk
lk
h
rk+ m
lk+ m
= (r k + m + r k )(r k + m - r k )
螺尺 螺杆
在齿合前,轻轻转动螺尺手柄,螺尺读数变化, 在齿合前 , 轻轻转动螺尺手柄 , 螺尺读数变化 , 而游标并没 有移动。 有移动。
消除方法:测量时只往同一方向转动螺尺。 消除方法:测量时只往同一方向转动螺尺。
数据处理
测量方案(举例) 测量方案(举例)
取 m=10, k=10,11,12,13,14,15 则需要测量的圆环为 10,11,12,13,14,15} 22,23,24,25}。 20,21,22,23,24,25}
r = R − (R − e ) = 2eR − e
2 2 2
2
r e ≈ 2R
2
k 级暗 环 r k =
k 级 明纹 r k =
k λR
k = 0, 2, 3, L 1,
k = 1, 2, 3, L
( 2k − 1) λ R
2
k ↑
e 讨论: = 0时的情况?测量R ?
牛顿环干涉条纹的特点
1.分振幅、等厚干涉; 分振幅、等厚干涉; 2.明暗相间的同心圆环; 明暗相间的同心圆环; 3.级次中心低、边缘高; 级次中心低、边缘高; 4.间隔中心疏、边缘密; 间隔中心疏、边缘密; 5.同级干涉,波长越短,条纹越靠近中心。 同级干涉,波长越短,条纹越靠近中心。
有兴趣的同学可以参考相关资料思考一下以上问题! 有兴趣的同学可以参考相关资料思考一下以上问题!
现象
现象
实验装置
实验原理
理论原理
分析光程差, 分析光程差,取 n=1, (考虑半波损失) 考虑半波损失)
k λ , k = 1, 2, ⋅ ⋅ ⋅( 加强) λ 2e + = 2 2k + 1) λ , k = 0, 1, 2, ⋅ ⋅ ⋅( 减弱) ( 2
目标: 消去e 目标: 消去e 计算环的半径 r (why ?)
难点解说
rk 2 为什么不用: 为什么不用: k 级暗环 r k = k λ R ⇒ R = ?? kλ 1. 透镜凸面与平板玻璃表面间并非理想的点接触,难以准 透镜凸面与平板玻璃表面间并非理想的点接触, 确判断干涉级次k 确判断干涉级次k;
2. 读数显微镜目镜中的‘十字叉丝’ 不易做到与干涉条纹 读数显微镜目镜中的‘十字叉丝’ 严格相切。 严格相切。
k ↑
牛顿环的应用
牛顿环等厚干涉条纹的形状反映了两个光学表明间距变化 情况。利用牛顿环可以检测光学球面(或平面) 情况。利用牛顿环可以检测光学球面(或平面)的加工质 量。 根据本实验原理, 根据本实验原理,已知曲率半径的牛顿环可测定单色光的 波长。 波长。 在牛顿环仪的镜面充满透明的液体光学介质, 在牛顿环仪的镜面充满透明的液体光学介质,就可以测量 其折射率n 其折射率n 。
逐差法 加权平均逐差法 最小二乘法 作图法
误差的主要来源与分析
1.条纹的定位精度(偶然误差) 条纹的定位精度(偶然误差)
定位误差的大小在条纹宽度的1 定位误差的大小在条纹宽度的1/5~1/10。 10。 解决办法:取级次较高的环进行测量。 解决办法:取级次较高的环进行测量。
2.叉丝不平的影响(系统误差) 叉丝不平的影响(系统误差)
测 量 顺 序
注意事项
注意:为保护仪器,不要将牛顿环调节螺丝旋得过紧。 注意:为保护仪器,不要将牛顿环调节螺丝旋得过紧。 注意:实验中钠光灯打开后,不要随意关闭,经常开、关将 注意:实验中钠光灯打开后,不要随意关闭,经常开、 影响灯的寿命。 影响灯的寿命。
实验数据的处理方法 请自己决定选择哪种方法) (请自己决定选择哪种方法)
用牛顿环测量透镜的曲率半径
光电子技术 工程光学实验教学中心
应用极广,例如:测量光波波长、测量微小角度或薄膜厚度、观 应用极广,例如:测量光波波长、测量微小角度或薄膜厚度、 测微小长度变化、检测光学表面加工质量等。 测微小长度变化、检测光学表面加工质量等。利用牛顿环还可以测量 液体折射率。 液体折射率。 本实验通过牛顿环研究光的干涉现象,测定透镜的曲率半径,学 本实验通过牛顿环研究光的干涉现象,测定透镜的曲率半径, 习测量微小长度,学习读数显微镜的使用等。 习测量微小长度,学习读数显微镜的使用等。
相关文档
最新文档