第八章图论第讲义13节
(优选)离散数学图论版
G3=(G1∪G2)-(G1∩G2),记为G3=G1 G2。
除以上4种运算外,还有以下两种操作:
E={e1,e2}={(v1,v2),(ห้องสมุดไป่ตู้2,v3)};
f(v1)=5,f(v2)=8,f(v3)=11;
g(e1)=4.6,g(e2)=7.5
8.1.2 结点的次数
定义8.1―4在有向图中,对于任何结点v,以v为始点的 边的条数称为结点v的引出次数(或出度),记为deg+(v); 以v为终点的边的条数称为结点v的引入次数(或入度), 记为deg-(v);结点v的引出次数和引入次数之和称为 结点v的次数(或度数),记作deg(v)。在无向图中,结点 v的次数是与结点v相关联的边的条数,也记为deg(v)。
i 1
i 1
定理8.1―2在图中,次数为奇数的结点必为偶数个。
证 设次数为偶数的结点有n1个,记为(i=1,2,…,n1)。 次数为奇数的结点有n2个,记为(i=1,2,…,n2)。
由上一定理得
n
n1
n2
2m deg(i ) deg(Ei ) deg(Oi )
i 1
i 1
i 1
因为次数为偶数的各结点次数之和为偶数。所以
孤立结点的次数为零。
定理8.1―1 设G是一个(n,m)图,它的结点集合为
V={v1,v2,…,vn},则 n
deg(i ) 2m
i 1
证 因为每一条边提供两个次数,而所有各结点次数
之和为m条边所提供,所以上式成立。
离散数学教学课件-第8章 图论
解:以a,b,c,d,e,f,g作为顶点,能讲同一语言作一边
b
d
f
连通
a
g
c
e
§8.5 图的矩阵表示
复习:
R
传递闭包 R R R2 Rn
8.5.1 图的矩阵表示
G V , E V {v1, v2 , v3 ,, vn }
E {e1, e2 , e3 ,, em }
邻接矩阵
A (aij ) nn
起点
P v0 , v1,, vq
回
终点
路
P e1, e2 ,, eq
长度
8.2.1通路与回路
1
4
2 (1,2),(2,3) 1,2,3 (1,4),(4,3) 1,4,3
3
(1,2),(2,4),(4,1)
回路
8.2.1通路与回路
1
2 P:1,2,4,1,4,3
4
3 Q:1,2,4,3 复杂通路
8.5.1 图的矩阵表示
1
3
0 1 0 0 0
2
4
1 0 1 0 0
A 0 1 0 0 0
图1
5
0 0 0 0 1
0 0 0 1 0
1 0 1 0 0
0 2 0
0
0
A2 1 0 1 0 0
0 0 0
1
0
0 0 0 0 1
8.5.1 图的矩阵表示
1
3
1 0 1 0 0
2
4
0 2 0
cij 表示从 vi 到 v j 长度为 l 的通路数目
8.5.1 图的矩阵表示
定理 设邻接矩阵为A的无向简单图,则 Ak (k 1,2,....) 的元素
第八章图论
27
Dijkstra标号法原理
方法的每一步是去修改 T 标号,并且把某一个具有 T 标号的点改变 为具有 P 标号的点,从而使 D 中具有标号的顶点数为多一个.这样至多
树与最小树问题
某企业的组织机构如下所示
生产计划科
行政办公室技术科工 设艺 计组 组
供销科Βιβλιοθήκη 财务科厂长 行政科
车间铸 锻造 压车 车间 间
生产办公室
二车间 三车间 四车间
18
树的概念和性质
树的定义
定义 无圈的连通图,称为树,记作 T=(V,ET)。
树的性质
v1
v3 7 v5
24
矩阵法举例
例 8.2 下面是一个求最小树的问题。用矩阵法求解
V3
7
V6
1
4
1
2
9
V1
3
3
V4
10
V7 3
V9
7
V2
4
8
6
5
V5
2
V8
25
最短路问题
最短路问题,就是从给定的网络图中找出一点到各点或任意两 点之间距离最短的一条路
最短路问题在实际中具有广泛的应用,如管道铺设、线路选择 等问题,还有些如设备更新、投资等问题也可以归结为求最短 路问题
离散数学第8章 图论及其应用
38
第八章 图论及其应用 例如图8-5中(a)与(b)均有6个结点,5条边;3个1度结点
,2个2度结点,1个3度结点。 满足上述3个条件,然而并不同构。
因为在图8-5(a)中的结点x应和图8-5(b)中结点y对应, 它们的度数均为3,而图8-5(a)中的结点x与两个度数为1 的结点邻接,图8-5(b)中结点y仅与一个度数为1的结点
E={e1,e2,e3,e4,e5,e6,e7},
e1=(a,b),e2=(a,c),e3=(b,d),e4=(b,c),e5=(d,c),e6=(a,d),
e7=(b,b)
则图G可用图(a)或(b)表示。
一个图G可用一个图形来
表示且表示形式不唯一
6
第八章 图论及其应用
有向图与无向图
• 在图G中,如果每条边都是有向边,则称该图为有向图; • 若每条边都是无向边,则称该图为无向图; • 如果有些边是有向边,另一些边是无向边,图G称为混合
•
(1)
(2)
37
第八章 图论及其应用 图之间的同构关系具有自反性、对称性和传递性.
若两图同构,则两图必然满足: (1)有相同结点数目; (2)有相同边数; (3)度数相同的结点数目相同; (4)有相同重数的边数相同,等等。
但这仅仅是必要条件而不是充分条件。
寻找一种简单 有效的方法来 判定图的同构, 至今仍是图论 中悬而未决的
• 若边e所对应的结点对是有序对〈a,b〉,则称e是有向边。a叫 边e的始点,b叫边e的终点,统称为e的端点。 • 若边e所对应的结点对是无序对(a,b) ,则称e是无向边。 • 这时统称e关联顶点a和b,端点a和b是邻接的。
5
第八章 图论及其应用
例 设G=〈V,E〉,其中V={a,b,c,d},
运筹学 第八章 图论 - 全
(a)明显为二部图,(b)也是二部图,但不明显,改画为(c) 时即可看出。
2017/7/13 11
图与网络的基本知识
次,奇点,偶点,孤立点 与某一个点vi相关联的边的数目称为 点vi的次(也叫做度),记作d(vi)。 右图中d(v1)=4,d(v3)=5,d(v5)=1。次 为奇数的点称作奇点,次为偶数的
2017/7/13
18
图与网络的基本知识
有向图 无向图
道路
回路
链
圈
道路(边的方向一致)
2017/7/13 19
图与网络的基本知识
连通图
定义10 一个图中任意两点间至少有一条链相连,则称此图为 连通图。任何一个不连通图总可以分为若干个连通子图,每 一个称为原图的一个分图(连通分支)。
连通图
2017/7/13
边,对余下的图重复这个步骤,直至无圈为止。
2、避圈法:每次增加一条边,且与已有边不构成圈,直至恰 有n-1条边为止。
2017/7/13
24
树
例1、下图是某建筑物的平面图,要求在其内部从每一房间都能走到 别的所有的房间,问至少要在墙上开多少门? 试给出一个开门的方案。
三
七
Байду номын сангаас
三 八 一 四 二 五
七 八 九 六
无向图
2017/7/13
有向图
8
图与网络的基本知识
环, 多重边, 简单图 如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 之间边多于一条,称为多重边,如右
v2 e5
多重边
e2
e1 v1
环
e3 v3
e4
图中的e4和e5,对无环、无多重边的
图论详细讲解
e2
V1
e3
e4
V4 e5
e8 e6
V5
39
V3 本书由天疯上传于世界工厂网-下载中心
2.树和最小支撑树
取一个圈(v1,v2,v3,v1),在一个圈中去 掉边e3 。在剩下的图中,再取一个圈 (v1,v2,v4,v3,v1),去掉边e4 。再从圈 (v3,v4 v5,v3)中去掉边e6 。再从圈 (v1,v2,v5,v4,v3,v1 )中去掉边e7, 这样,剩下的图不含圈,于是得到一个 支撑树,如图8.12所示。
v3
15
1.图的基本概念与基本定理
图8.5是一个有向图D=(V,A) 其中V={v1,v2,v3,v4,v5,v6,v7} A={(v1,v2),(v,v3),(v3,v2), (v3,v4),(v2,v4),(v4,v5), (v4,v6),(v,v3),(v5,v4), (v5,v6),(v6,v7)}
19
1.图的基本概念与基本定理
定理8.1 所有顶点次数之和 等于所有边数的2倍。
定理8.2 在任一图中,奇 点的个数必为偶数。
1.图的基本概念与基本定理
图的连通性:
链: 由两两相邻的点及其相关联的 边构成的点边序列;如: v0 ,e1 ,v1 ,e2 ,v2 ,e3 ,v3 ,…,vn-1, en , vn ; v0 ,vn分别为链的起点和终点; 简单链:链中所含的边均不相同; 初等链:链中所含的点均不相同,也 称通路;
本书由天疯上传于世界工厂网-下载中心
9
1.图的基本概念与基本定理
北京 太原 石家庄
天津 塘沽 济南 青岛郑州 Nhomakorabea徐州 连云港
南京 上海
10
重庆
武汉
图论讲义
v5
同构图举例
4 2 1 a c 3 1 2 3
G
4 a 5 d
H
6
H’
b
G’
d b
f c e
G ≅ G’ 1→a,2→b,3→c, 4→d
H ≅ H’ 1→a,2→b,3→c, 4→d,5→e,6→f
非同构图举例 存在结点数及每个结点对应度都相等的两 个图仍然不同构的情况.一个例子如 下:(注意:两个4度点或邻接或不相邻接)
1.3 端点,关联边,相邻,次 端点,关联边,相邻, • 有向图中,由节点指向外的弧的数目称为正次数,记 有向图中,由节点指向外的弧的数目称为正次数, 指向该节点的弧的数目称为负次数, 为 d+,指向该节点的弧的数目称为负次数,记为 d– • 次数为 0 的点称为孤立点 的点称为孤立点 孤立点(isolated vertex) ,次数为 1 的 悬挂点(pendant vertex) 点称为悬挂点 点称为悬挂点 定理 1:图中奇点的个数总是偶数个 : 1.4 链,圈,路径,回路,欧拉回路 路径,回路, • 相邻节点的序列 {v1′′ ,v2′′ ,…, vn′′} 构成一条链(link),又称 构成一条链 , 行走(walk);首尾相连的链称为圈(loop),或闭行走 为行走 ;首尾相连的链称为圈 , 在无向图中,节点不重复出现的链称为路径(path);在 • 在无向图中,节点不重复出现的链称为路径 路径 ; 有向图中,节点不重复出现且链中所有弧的方向一致, 有向图中,节点不重复出现且链中所有弧的方向一致, 则称为有向路径 向路径(directed path) 则称为有向路径 • 首尾相连的路径称为回路(circuit); 首尾相连的路径称为回路 回路 ;
11
一摆渡人欲将一只狼,一头羊, 例 一摆渡人欲将一只狼,一头羊,一篮菜从河 西渡过河到河东.由于船小,一次只能带一物过河, 西渡过河到河东.由于船小,一次只能带一物过河, 并且狼与羊,羊与菜不能独处.给出渡河方法. 并且狼与羊,羊与菜不能独处.给出渡河方法. 用四维0 向量表示( 解:用四维0-1向量表示(人,狼,羊,菜)在河 西岸的状态(在河西岸则分量取1,否则取0), 1,否则取0),共有 西岸的状态(在河西岸则分量取1,否则取0),共有 24 =16 种状态.在河东岸的状态类似表示. 种状态.在河东岸的状态类似表示. 由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不 由题设,状态 , , 是不 允许的,从而对应状态(1,0,0,1), (1,1,0,0), (1,0,0,0) 允许的,从而对应状态 也是不允许的. 也是不允许的. 以可允许的 允许的10个状态向量作为顶点 向量作为顶点,将可能互 以可允许的 个状态向量作为顶点 将可能互 相转移的状态用线段连接起来构成一个图. 相转移的状态用线段连接起来构成一个图 根据此图便可找到渡河方法 渡河方法. 根据此图便可找到渡河方法.
《离散数学》图论 (上)
无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。
离散数学第8章 图论
为d(vi,vj)。
8.2
图的矩阵表示
一、图的邻接矩阵 二、图的连接矩阵
三、图的关联矩阵
二、图的连接矩阵 定义 8-9 设图 G= ( V , E ),其中 V={v1 ,
v2 , … , vn } , n 阶方阵 C= ( cij ),称为图 G 的连接 矩阵,其中第i行j列的元素
1 c ij 0
利用邻接矩阵,我们可以 (1)判断G中任意两个结点是否相连接;
方法是:对 l=1,2,…,n–1,依次检查Al的(i,j)
项元素
(l ( ) ij)是否为0,若都为0,那么结点v 与v 不 a ij i j
相连接,否则vi与vj有路相连接。 (2)计算结点vi与vj之间的距离。
(1) ( 2) ( n 1) 中至少有一个不为0, 若 aij , aij , , aij 则可断定vi与vj相连接,使 a (l ) 0 的最小的 l 即
若中有相同的结点,设为ur= uk(r<k),则子路ur+1…uk可以从 中删去而形成一条较短的路= viu1…ur uk+1…uh–1 vj,仍连接vi到 vj 。 若中还有相同的结点,那么重复上述过程又可形成一条 更短的路,…。这样,最后必得到一条真路,它连接vi到vj, 并短于前述任一非真路。因此,只有真路才能是短程。
非真 生成
真 生成
真 非生成
非真 非生成
真 非生成
七、路与回路 定义:图G中l条边的序列{v0,v1}{v1,v2}…{vl–1,vl}称为连
接v0到vl的一条长为 l 的路。它常简单地用结点的序列 v0v1v2…vl–1vl来表示。其中v0和vl分别称为这条路的起点和终点。 开路:若v0vl,则称路v0v1v2…vl–1vl为开路; 回路:若v0=vl,则称路v0v1v2…vl–1vl为回路; 真路:若开路v0v1v2…vl–1vl中,所有结点互不相同(此时所有 边也互不相同),则称该路为真路; 环:在回路v0v1v2…vl–1v0中,若v0,v1,v2,…,vl–1 各不相同 (此时所有边也互不相同),则称该回路为环。
离散数学 第八章 图论
A
B
D 图2
此图实际上是反 映了客观事物 之间的相互关系
10
离散数学
本世纪40年代,一个数学游戏也使用类似的方法得到 了解决:某人挑一担菜、并带一只狗、一只羊,要从河 的北岸到南岸。由于船小,只允许带狗、羊、菜三者中 的一种过河;而由于明显的原因,当人不在场时狗与羊、 羊与菜不能呆在一起。问此人应采取怎样的办法才能将 这三样东西安全地带过河去? 方法一:不对称状态空间法 将人(person)、狗(dog)、羊(sheep)、菜(cabbage)中任意 几种在一起的情况看作是一种状态,则北岸可能出现的 状态共有十六种,其中 安全状态有下面十种: (人,狗,羊,菜),(空); (P,D,S,C) ,() ; (人,狗,羊), (菜); (P,D,S,) ,(C) ; (人,狗,菜),(羊); (P,D,C) ,(S) ;
7
离散数学
但当地的居民和游人做了不少的尝试,却都没有取得成 功。于是,有好事者便向当时居住在该城的大数学家欧 拉请教。 1736年,瑞士的数学家L.Euler解决了这个问题。他将 四块陆地表示成四个结点,凡陆地间有桥相连的,便在 两点间连一条线,这样图1就转化为图2了。此时,哥尼 斯堡七桥问题归结为:在图2 所示的图中,从 A, B, C, D 任一点出发,通过每条边一次且仅一次而返回出发点 的回路是否存在?后人称如此的问题为Euler环游。 欧拉断言这样的回路是不存在的。理由是:从图2中 的任一结点出发,为了要回到原来的出发点,要求与每 个结点相关联的边数均为偶数。这样才能保证从一条边 进入某结点后,可从另一条边出去,而不经过已走过的
v3
1 2
v1
1 1 1
v4 v2
2 1
图论的基本概念性术语和一些特殊图: 图3 (1)(n,m)图: |V| = n,|E| = m,即有n个结点和m条边的图称 为 ( n, m ) 图。 (2)无向边:(undirected edges简edges)在定义3下,若边 (u, , v)与边(v, ,u)表示同一条边,则称此边为无 向边。 22
第八章图论
3. 图的结点与边之间的关系 定义 如果边e={vi,vj}是G的边, 则称结点vi 和vj邻接的, 边e和结点vi ,边e和结点vj称为关联的。 没有与边关联的结点称为孤立点。 关联于同一结点的相异边称为邻接的。 不与任何边邻接的边称为孤立边。
例1
在上图中显然e1和e2, e1与e4是邻接的, 结点v1和v2,v2和v4等是邻接的, 没有孤立点和孤立边。
例2.如下图中:
图(a)是伪图。图(b)是有向多重 图。 最右第三个图是简单图有权图。
三、结点的度
1.定义 图G中关联于结点vi的边的总数称为 结点vi的度, 用deg(vi)表示。
2.定理1(握手定理) 图G的所有结点的度的总和为边数 的二倍。即若G为具有n结点的(n,m)图, 则有: n deg(vi ) 2m
例8 如下图
(a)是连通图。 (b)是一个具有三个分图 的非连通图。 结论: (1)一个图的分图必是连通的; (2)一个连通图一定只能有一个分图。
例11 对于图的连通性,常常由于删除了 图中的结点和边而影响了图的连通性。
在连通图(a)中删除边e后, 则变成了不连通 的图(b)。
8.2 图的矩阵表示
2. 有向图的定义 定义 设G=(V,E), V是一个有限非空集合, E是V中不同元素的有序对偶的集合, 则称G是一有向图。在有向图G中 若vi≠vj,则(vi,vj)和(vj,vi)表示两条 不同的边,且用一个从结点vi指向vj 的箭头表示边(vi,vj)。
定义 具有n个结点和m条边的图称为(n,m)图。 (n,0)图称为零图。(1,0)图称为平凡图。
三、边割集、点割集 定义3 设图G=<V,E>是连通图,若有E的子集S, 使得在图G中删去了S的所有边后, 得到的子图G-S变成具有两个分图的不连通图, 删去了S的任一真子集后所得子图仍是连通图, 则称S是G的一个边割集。 注:割边是边割集的一个特例。
第8章图论方法
Page 12
【例题·计算题】某城市东到西的交通道路如下图所示,线 上标注的数字为两点间距离(单位:千米)。某公司现需从市 东紧急运送一批货物到市西。假设各条线路的交通状况相同, 请为该公司寻求一条最佳路线。
2 东3
4
3 1
7
2
5
7
3
3
4
4
7 5
6
4 6
7 3
7
西
8
【答案】
1-4-7-西 10 3
9
2
3
5
7
3.5
4
6
10
1
6
4
3
8
2
5
【答案】
2 5
4
6
1
3
5
3 3.5 4
2
Page 8
【解析】按照克鲁斯喀尔的算法很轻松得出答案。
1.(11年7月)已知连接5个城镇的公路交通图如图。为了沿公路架设5个城镇的
光缆线,并要求光缆线架设的总长度为最小,试以最小枝杈树方法求出Pa最ge优9 方 案并计算光缆线的总长度。
8.2 树和树的逐步生成法
Page 4
1、树:连通且不含圈(回路)的图称为树。 2、树的边数=结点数-1。
【选择题】以下叙述中,正确的是( ) A.树的点数为线数加1 B.图的点数小于线数 C.图的点数大于线数 D.树可能含有圈 【答案】A 【解析】树的点数和边数差1,普通图的点数和边数谁多谁少不 确定。 【知识点】图和树的基本概念
Page 22
5.(09年7月)某网络如图,线上标注的数字是单位时间通过两节点的流量。
Page 23
试求单位时间由网络始点到网络终点的最大流量(单位:吨)。
第八章图论第13节
息论、控制论等各个领域,并取得了丰硕的成果。
2020/1/18
6
第一节 图的基本知识
一、图的基本概念
1. 图 由一些点和一些点之间的连线所组成的二元组 ,称为图。
2. 顶点
图中点集 V = { v i } 中的元素 v i 称为顶点。
2020/1/18
7
3. 边和弧
图中,两顶点之间的连线为无向的(不带箭头),
v i 1 , e i 1 , v i 2 , e i 2 ,v . i k 1 . , e i k . 1 , v i , k,如果满足
e it [v it,v it 1]t( 1 ,2 ,.k . .1 ),,且 vi1 和vik
为同一个点,则称此链为圈。
2020/1/18
第八章
图论
2020/1/18
1
第一节 图的基本知识
第二节 欧拉图与中国邮路问题
第三节 树
第四节 最短路(链)问题
第五节 网络最大流问题
第六节 最小费用流问题
2020/1/18
2
1. 图论的产生
图论是运筹学应用十分广泛的一个分支。瑞士数学
家欧拉(E Euler)于 1736 年发表了一篇题为“依据
例: v1
a4
v5
a5
a6 a1
v4 a3
v2
a2
v3
(v1,a1,v2,a2,v3,a6,v1,a4,v5,a5,v4)不是一条初等路。
2020/1/18
42
3. 简单链和简单路
若链 v i 1 , e i 1 , v i 2 , e i 2 ,v . i k 1 . , e i k . 1 , v i , k中,边
第八章_图论
引例1:哥尼斯堡七桥问题(图论应用的开始)
边代表桥 每个点代表陆地
Company Logo
A
B D
C
问题转化成:图G中从某一结点出发找出一条路,它通过 每条边恰好一次后回到原出发结点。 欧拉在这篇论文中提出了一条简单准则,确定七桥问题是 不能解的。
引例2:环球旅行问题
费城 柏林 北京 巴黎 伦敦
i 1
分析 由定义知,结点v的度数等于以v为端点的边 数,而1条边有2个端点(环的2个端点相同), 因此1条边贡献2度。 证明 因为每条边都有两个端点(环的两个端点相 同),所以加上一条边就使得各结点的度数之 和增加2,因此结论成立。
Company Logo
图中结点的次数
正则图:所有结点均有相同次数d的图称为d次正 则图。
l
3
l
4
l
7
A l1 C l3 l2 l4 l5 l6 D
B
哥尼斯堡桥问题之图示
l7
问题的解决:欧拉图
B 欧拉图
Company Logo
图的基本概念
定义8.1 图G是由非空结点集合V={v1,v2,…vn}以及边 集合E={l1,l2,…lm}所组成,其中每条边可用一 个结点对表示,亦即 li=(vi1,vi2) i=1,2,…m 这样的一个图 G可用G=<V,E>表示 。 说明: 1. li=(vi1,vi2) 既可表示有序节点对,也可表示无序结点 对。 2. 一个图的边与结点对相关联,有时一个结点对只与 一条边相关联;有时一个结点对可与多个边相关联。
几何图形是不同的。
Company Logo
第八章 图论原理
1 2 3 4 5
图的基本概念 通路、回路与连通图
图论引导笔记第八章匹配与分解
图论引导笔记第⼋章匹配与分解8.1 匹配定义:1、(边的集合)独⽴的:G.E的⼀个⼦集,且该集合中的任意两条边不相邻接。
称边独⽴集。
2、匹配(matching):图G的⼀个独⽴集。
3、匹配(match):⼆部图的两个部集的点集之间的⼀种映射关系,该映射关系满⾜于所连接的边是⼀个匹配(matching)*以下考虑的是⼆部图G,他的两个集部是U和W,且|U|≤|W|,X是U的⾮空⼦集4、(⾮空点集的)邻域:集合中所有顶点邻域的并。
设集合为X,记作N(X)5、(集部是)友好的:对于集部U,他的任意⾮空⼦集X,都有|N(X)|≥|X|。
(翻译⼀下就是说,在这个部⾥任意取⼀部分点都能形成匹配)6、互异代表元系:有⼀串⾮空有限集合{S1,S2,…,Sn},存在n个不同的元素{x1,x2,…,xn}使得xi∈Si,则这串{xi}称为互异代表元系。
(⽽不是指;仅仅这个集合有别的集合没有。
显然,|∪{Si}|≥n)7、(⼆分图)交错路:⼀条属于匹配的边和⼀条不属于匹配的边交错构成的路。
8、(任意分图)最⼤匹配:具有最⼤基数的匹配, 对于n阶⼆分图,最⼤匹配数不会超过floor(n/2)9、完美匹配:(此处讨论⼆分图)G的阶数为偶数,匹配基数等于n/2,G中任意顶点均能通过M匹配到G中另⼀个顶点。
完美匹配也必定是最⼤匹配。
使⽤:完美匹配要求图的⼀个集部是友好的和边有关的加<'>,和点有关的不加。
11、边独⽴数:G 中边独⽴集的最⼤基数。
记作β'(G)。
阶为n的图存在完美匹配当且仅当n为偶数且β'(G)=n/2.12、覆盖:顶点与其关联边,互为彼此的覆盖。
13、边覆盖:覆盖G所有点的边的集合,称为是G的⼀个边覆盖。
14、边覆盖数:G中所有边覆盖最⼩的基数,记作α'(G),当且仅当G不包含孤⽴点的时候有定义。
15、最⼩边覆盖:具有最⼩边覆盖基数的边覆盖。
边覆盖/独⽴有关的⼀些性质:对于整数n≥3,1≤r≤s,边覆盖数有:α'(Cn)=α'(Kn)=ceiling(n/2); α'(K_r,s)=s边独⽴数有:β'(Cn)=β'(Kn)=floor(n/2); β'(K_r,s)=r所以:α'(Cn)+β'(Cn)= α'(Kn)+β'(Kn)=n; α'(K_r,s)+ β'(K_r,s)=r =s+r以上性质很显然可以看出来。
《应用数学基础》(陈冲)教学课件 第八章 图 论
第八章 图 论
目录
ONTENTS
1 图的基本概念 2 图的矩阵表示 3 图的连通性
01 图的基本 概念
1.1 图的定义
在某计算机网络中,两台计算机之间通过网络线连接起来,如图 8-1 所示.顶点表示每台计 算机的位置,边表示网络连线.这类图在绘制时,可用圆圈(或实心点)来表示顶点,对图的 所有顶点标以名称:v1 ,v2 ,v3 ,v4 ;用直线或曲线来表示边,同时对图的所有边标以名称:e1 , e2 , e3 , e4 , e5 ,如图 8-2 所示.
该定理之所以称为握手定理,因为它有非常直观而形象的解释:假定有若干个人握手,每握
一次手,需要 2 只手来完成.此时有人用自己的右手握自己的左手,也算一次握手.参加握手的 手的总数目(包含重复的)恰好等于握手次数的 2 倍.这里用到了图论模型解决实际问题:把每 个人看成一个顶点,某两人握一次手,则在相应顶点之间连上一条边;如果某人与自己握手,则
设 G (V ,E) 是有向图, v V ,称以 v 为终点的边数为 v 的入度,记为 d (v) ;称以 v 为起 点的边数为 v 的出度,记为 d (v) .
若 d(v) 是奇数,就称 v 为奇点;若 d(v) 是偶数,就称 v 为偶点.度为 1 的点称为悬和是边数的 2 倍,这是图的一般性质.下面给出的定理是 Euler 在 1936 年提出 的,常称为握手定理,是图论中的基本定理.
定理 1(握手定理) 设 G (V ,E) 是图,G 中所有顶点度数之和 d (v) 等于 G 中边数 m 的 vV
两倍,即
d(v) 2m .
vV
1.2 顶点的度
在图 8-3 中,由于 e3 (v2 ,v3 ) ,则点 v2 与点 v3 邻接,点 v2 与边 e3 关联,点 v3 与边 e3 关联; 由于边 e1 和边 e3 有共同的顶点 v2 ,则边 e1 和边 e3 邻接; v5 为孤立点.
离散数学第8章图论
§8-1-1 图
定义8-1.1 一个图G定义为一个三元组<V,E, φ>,记作G=<V,E,φ>。其中: V是一个非空有限集合,其中元素v称为图G 的顶点或结点; E是和V没有公共元素的有限集合,E可以是 空集,其元素e称为图G的边; φ称为关联函数,是从E到V中的有序对或无 序对的映射。
由定义可知,图G中的每条边都与图中的无序或
图8-1(b)表示有向图G=<V,E,φ>,其中: V = { v1,v2,v3,v4 } E= { e1,e2,e3,e4 }
e1 v1 , v2
:
e2 v1 , v3 e3 v1 , v3 e4 v3 , v3
在图 G=<V , E> 中,如果任何两结点间不多 于一条边(对于有向图中,任何两结点间不 多于一条同向弧),并且任何结点无环,则 图 G 称为简单图;若两结点间多于一条边 (对于有向图中,两结点间多于一条同向弧) 图 G 称为多重图,并把联结两结点之间的 多条边或弧,称为平行边或平行弧,平行 边或弧的条数称为重数。
哈密顿问题
1859年,英国数学家哈密顿发明了一种游戏:用一 个规则的实心十二面体,它的20个顶点标出世界 著名的20个城市,要求游戏者找一条沿着各边通 过每个顶点刚好 一次的闭回路,即「绕行世界」。 用图论的语言来说,游戏的目的是在十二面体的 图中找出一个生成圈。这个问题后来就叫做哈密 顿问题。由於运筹学、计算机科学和编码理论中 的很多问题都可以化为哈密顿问题,从而引起广 泛的注意和研究。
1872年,英国当时最著名的数学家凯利正式向伦 敦数学学会提出了这个问题,于是四色猜想成了 世界数学界关注的问题。世界上许多一流的数学 家都纷纷参加了四色猜想的大会战。1878~1880 年两年间,著名律师兼数学家肯普和泰勒两人分 别提交了证明四色猜想的论文,宣布证明了四色 定理。但后来数学家赫伍德以自己的精确计算指 出肯普的证明是错误的。不久,泰勒的证明也被 人们否定了。于是,人们开始认识到,这个貌似 容易的题目,其实是一个可与费马猜想相媲美的 难题(当n>2时,xn+yn=zn,n为奇素数,X,Y,Z 没有正整数解。)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e
u
v
第13页
有向图 D = ( V, A ) 中,弧 a = ( u, v )∈ A,称 顶点 u 是弧 a 的始点,称顶点 v 是弧 a 的终 点。
u
v
第14页
2. 关联边(弧)
无向图 G = ( V, E ) 中,边 e = [ u, v ]∈ E,称边
e 是顶点 u 的关联边,也称边 e 是顶点 v 的关联
第7页
3. 边和弧
图中,两顶点之间的连线为无向的(不带箭头),
称为边,记为 E = { ei }。一条连接顶点 vi 和 vj 的边
记为 [ vi , vj ] 。
vi
ei
vj
第8页
图中,两顶点之间的连线为有向的(带箭头),称 为弧,弧为 A = { ai }。一条由顶点 vi 指向顶点 vj 的 弧记为 ( vi , vj ) 。
u
e
第19页
有向图 D =( V, A ) 中,弧 a = (u, u) ,即弧的始 点和终点相同,称该弧为环。
u
e
第20页
5. 简单图 无向图中,一个无多重边、无环的无向图,称为 简单图。 有向图中,一个无多重弧、无环的有向图,称为
简单图。
第21页
6. 多重图 无向图中,一个有多重边,但无环的无向图,
边。
e
u
v
第15页
有向图 D = ( V, A ) 中,弧 a = ( u, v ) ∈ A,称
弧 a 是始点 u 的关联弧,也称弧 a 是终点 v 的
关联弧。
u
a
v
第16页
3. 多重边(弧)
无向图 G = ( V, E ) 中,边 e1=[u, v]、e2=[u, v]、…
、ek=[u, v]∈E,即两个端点 u 和 v 之间的边多于
第八章图论第13节
第一节 图的基本知识 第二节 欧拉图与中国邮路问题 第三节 树 第四节 最短路(链)问题 第五节 网络最大流问题 第六节 最小费用流问题
第2页
1. 图论的产生
图论是运筹学应用十分广泛的一个分支。瑞士数学 家欧拉(E Euler)于 1736 年发表了一篇题为“依据 几何位置的解题方法”的论文,有效地解决了哥尼 斯堡七桥难题(欧拉证明了每个点都只与奇数条线 相关联,所以从某一点开始,不重复地走过7座桥, 最后回到出发点是不可能的),这是有记载的第一 篇图论论文,欧拉被公认为图论的创始人。
1936年——20世纪中期:电子计算机和离散数学问 题的发展,使得作为提供离散数学模型的图论得以 迅速发展。 目前图论被广泛应用到管理科学、计算机科学、信
息论、控制论等各个领域,并取得了丰硕的成果。
第6页
第一节 图的基本知识
一、图的基本概念
1. 图 由一些点和一些点之间的连线所组成的二元组 ,称为图。 2. 顶点 图中点集 V = { v i } 中的元素 v i 称为顶点。
第10页
无向图
有向图
第11页
5. 无向图中顶点数、边数的表示方式
顶点数:p(G),简记为p。 边 数:q(G),简记为q。 6. 有向图中顶点数、弧数的表示方式 顶点数:p(D),简记为p。 边 数:q(D),简记为q。
第12页
二、图的引申概念
1. 端点、始点、终点
无向图 G = ( V, E ) 中,边 e = [ u, v ]∈ E,称 顶点 u 和 v 是边 e 的端点,也称顶点 u 和 v 是 相邻的。
vi
ai
vj
第9页
4. 有向图和无向图 由点和边所构成的图,称为无向图,记为 G= ( V, E ) ,式中 V 是无向图 G 的点集合; E 是无向图 G 的边 集合。
由点和弧所构成的图,称为有向图,记为 D = ( V, A ) ,式中 V 是有向图的点集合G ; A 是有向图 G 的弧集 合。
4. 奇点 次数为奇数的顶点称为奇点。
如上例中的顶点 v3 和 v4 。
5. 偶点 次数为偶数的顶点称为偶点。 如上例中的顶点 v1 和 v2 。
第29页
例:
v2
v4
v5
e1
e4
e5
v1
e2
v3
e3
d(v5)=0 d(v1)=4
第3页
A C
B
D
第4页
2. 图论的发展
1736 年—— 1936 年:匈牙利数学家 O. KÖnig 于 1936 年出版了名为《有限图与无限图的理论》,为 图论研究的第一本专著。从 1736 年欧拉的第一篇 论文,到这本专著的出版,前后经历 200 年之久, 这一时期图论的发展是缓慢的。
第5页
第24页v1e4源自e1v2e2
v4
e5
e3 e6 v3
e7
v6
e8
v5 e9 v7
d(v1)=2,d(v2)=2,d(v3)=4 d(v4)=3,d(v5)=3,d(v6)=2
d(v7)=2
第25页
注:环的顶点的次数为 2 次。
例:
v2
v4
v5
e1
e4
e5
v1
e2
v3
e3
d(v1)=4,d(v2)=2, d(v2)=3,d(v4)=1,d(v5)=0
称为多重图。 有向图中,一个有多重弧,但无环的有向图, 称为多重图。
第22页
例:
简单图
多重图
第23页
三、顶点的次
1. 顶点的次 ➢在无向图中,以顶点 v 为端点的边的个数称为顶 点 v 的次,记为 d(v)。 ➢在有向图中,以顶点 v 为始点的弧数,称为顶点 v 的出次,记为 d + (v)。 ➢在有向图中,以顶点 v 为终点的弧数,称为顶点 v 的入次,记为 d - (v)。 ➢在有向图中,以顶点 v 的出次和入次之和,称为 顶点 v 的次,记为 d(v)。
一条,称这些边为多重边。
e1
u
ei
v
ek
第17页
有向图 D = ( V, A ) 中,弧 a1=(u, v)、a2=(u, v)、… 、ak=(u, v)∈A,即由始点 u 指向终点 v 的弧多于 一条,称这些弧为多重弧。
a1
a1
u
ai
v
u
v
ak
a2
第18页
4. 环 无向图 G = ( V, E ) 中,边 e = [ u, u ] ,即边的两 个端点相同,称该边为环。
第26页
2. 悬挂点、悬挂边、悬挂弧 ➢次数为 1 的顶点称为悬挂点。
如上例中的顶点 v4。 ➢无向图中,连接悬挂点的边称为悬挂边。
如上例中的边 e5。 ➢有向图中,连接悬挂点的弧称为悬挂弧。
第27页
例:
v2
v4
v5
e1
e4
e5
v1
e2
v3
e3
d(v4)=1
第28页
3. 孤立点 次数为 0 的顶点称为孤立点。 如上例中的顶点 v5 。