全国卷数列高考题汇总附答案完整版

合集下载

2024全国卷真题分类汇编(教师版)(数列)

2024全国卷真题分类汇编(教师版)(数列)

2024全国卷真题分类汇编(教师版)-数列1.(2024年新课标全国Ⅱ卷)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=.故答案为:95.2.(2024年高考全国甲卷数学(理))等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A .2-B .73C .1D .2【详解】由105678910850S S a a a a a a -=++++==,则80a =,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.3.(2024年高考全国甲卷数学(理))记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【详解】(1)当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13n n a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.(2)111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343n n T n =⋅+⋅+⋅++⋅所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅ ()1313444313n n n --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.4.(2024年新课标全国Ⅰ卷)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【详解】(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k k a a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.。

历年(2020-2023)全国高考数学真题分类(数列)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(数列)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(数列)汇编【2023年真题】1. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件2. (2023·新课标II 卷 第8题) 记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S = ( ) A. 120B. 85C. 85-D. 120-3. (2023·新课标I 卷 第20题)设等差数列{}n a 的公差为d ,且 1.d >令2n n n nb a +=,记n S ,n T 分别为数列{}{},n n a b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求.d4. (2023·新课标II 卷 第18题)已知为等差数列,,记n S ,n T 分别为数列,的前n 项和,432S =,316.T =(1)求的通项公式;(2)证明:当5n >时,n S .n T >【2022年真题】5.(2022·新高考I 卷 第17题)记n S 为数列{}n a 的前n 项和,已知11a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112.na a a +++< 6.(2022·新高考II 卷 第17题)已知{}n a 为等差数列,{}nb 为公比为2的等比数列,且223344.a b a b b a -=-=-(1)证明:11;a b =(2)求集合1{|,1500}k m k b a a m =+剟中元素个数.【2021年真题】7.(2021·新高考II 卷 第12题)(多选)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ ,则( ) A.()()2n n ωω=B. ()()231n n ωω+=+C. ()()8543n n ωω+=+D. ()21nn ω-=8.(2021·新高考I 卷 第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推.则对折4次共可以得到不同规格图形的种数为____________________;如果对折*()n n N ∈次,那么12n S S S ++= __________2dm . 9.(2021·新高考I 卷 第17题)已知数列{}n a 满足11a =,,记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; 求{}n a 的前20项和.(1)(2)10.(2021·新高考II 卷 第17题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35a S =,244.a a S =(1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.【2020年真题】11.(2020·新高考I 卷 第14题、II 卷 第15题)将数列{21}n -与{32}n -的公共项从小到大排列得到数列{n a },则{}n a 的前n 项和为__________.12.(2020·新高考I 卷 第18题)已知公比大于1的等比数列{}n a 满足24320,8.a a a +==(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m N ∈中的项的个数,求数列{}m b 的前100项和100.S13.(2020·新高考II 卷 第18题)已知公比大于1的等比数列{}n a 满足2420a a +=,38.a =(1)求{}n a 的通项公式;(2)求1223a a a a -+…11(1).n n n a a -++-参考答案1. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d , 则1(1)2n n n S na d -=+,111222n S n d d a d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}n Sn为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n 为等差数列,即甲是乙的充分条件.反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C . 2. (2023·新课标II 卷 第8题)解:2S ,42S S -,64S S -,86S S -成等比数列,242224264264262(1)55(21)521S S q S q S S S q S S q S S S⎧-=⎧+=-⎪-==+⇒⎨⎨-=⎩⎪=⎩从而计算可得24681,5,21,85S S S S =-=-=-=- 故选.C3. (2023·新课标I 卷 第20题)解:因为21333a a a =+,故3132d a a d ==+,即1a d =,故n a nd =,所以21n n n n b nd d++==,(1)2n n n d S +=,(3)2n n n T d +=,又3321S T +=,即34362122d d ⨯⨯+=,即22730d d -+=,故3d =或1(2d =舍), 故{}n a 的通项公式为:3.n a n =(2)方法一:(基本量法)若{}n b 为等差数列,则2132b b b =+,即11123123422a d a a d⨯⨯⨯⨯=+++,即2211320a a d d -+=,所以1a d =或12;a d =当1a d =时,n a nd =,1n n b d +=,故(1)2n n n d S +=,(3)2n n n T d+=,又999999S T -=, 即99100991029922d d ⋅⋅-=,即250510d d --=,所以5150d =或1(d =-舍); 当12a d =时,(1)n a n d =+,n n b d=,故(3)2n n n d S +=,(1)2n n n T d +=,又999999S T -=,即99102991009922d d ⋅⋅-=,即251500d d --=,所以50(51d =-舍)或1(d =舍); 综上:51.50d = 方法二:因为{}n a 为等差数列且公差为d ,所以可得1n a dn a d =+-,则211(1)n n n n nb dn a d dn a d++⋅==+-+- 解法一:因为{}n b 为等差数列,根据等差数列通项公式可知n b 与n 的关系满足一次函数,所以上式中的分母“1dn a d +-”需满足10a d -=或者11da d=-,即1a d =或者12;a d = 解法二:由211(1)n n n n nb dn a d dn a d ++⋅==+-+-可得,112b a =,216b a d =+,31122b a d =+,因为{}n b 为等差数列,所以满足1322b b b +=,即111212622a a d a d+=⋅++,两边同乘111()(2)a a d a d ++化简得2211320a a d d -+=,解得1a d =或者12;a d =因为{}n a ,{}n b 均为等差数列,所以995099S a =,995099T b =,则999999S T -=等价于50501a b -=, ①当1a d =时,n a dn =,1(1)n b n d =+,则505051501a b d d-=-=,得 250510(5051)(1)0d d d d --=⇒-+=,解得5150d =或者1d =-,因为1d >,所以51;50d =②当12a d =时,(1)n a d n =+,1n b n d =,则505050511a b d d-=-=,化简得 251500(5150)(1)0d d d d --=⇒+-=,解得5051d =-或者1d =,因为1d >,所以均不取; 综上所述,51.50d =4. (2023·新课标II 卷 第18题) 解:(1)设数列的公差为d ,由题意知:,即,解得52(1)2 3.n a n n ∴=+-=+(2)由(1)知23n a n =+,,212121n n b b n -+=+,当n 为偶数时,当n 为奇数时,22113735(1)(1)4(1)652222n n n T T b n n n n n ++=-=+++-+-=+-, ∴当n 为偶数且5n >时,即6n …时,22371(4)(1)022222n n n nT S n n n n n n -=+-+=-=->, 当n 为奇数且5n >时,即7n …时, 22351315(4)5(2)(5)0.22222n n T S n n n n n n n n -=+--+=--=+-> ∴当5n >时,n S .n T >5.(2022·新高考I 卷 第17题)解:1112(1)(1)33n n S S n n a a +=+-=,则23n n n S a +=①,1133n n n S a +++∴=②; 由②-①得:111322;33n n n n n a n n n a a a a n ++++++=-⇒=∴当2n …且*n N ∈时,13211221n n n n n a a a a aa a a a a ---=⋅⋅ 1543(1)(1)1232122n n n n n n n a n n +++=⋅⋅⋅=⇒=-- , 又11a =也符合上式,因此*(1)();2n n n a n N +=∈ 1211(2)2((1)1n a n n n n ==-++, 1211111111112(2(12122311n a a a n n n ∴+++=-+-++-=-<++ , 即原不等式成立.6.(2022·新高考II 卷 第17题) 解:(1)设等差数列{}n a 公差为d由2233a b a b -=-,知1111224a d b a d b +-=+-,故12d b = 由2244a b b a -=-,知111128(3)a d b b a d +-=-+,故11124(3);a d b d a d +-=-+故1112a d b d a +-=-,整理得11a b =,得证.(2)由(1)知1122d b a ==,由1k m b a a =+知:11112(1)k b a m d a -⋅=+-⋅+即111112(1)2k b b m b b -⋅=+-⋅+,即122k m -=,因为1500m 剟,故1221000k -剟,解得210k 剟, 故集合1{|,1500}k m k b a a m =+剟中元素的个数为9个. 7.(2021·新高考II 卷 第12题)(多选)解:对于A 选项,010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,, 则12101122222kk k k n a a a a +-=⋅+⋅++⋅+⋅ ,,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,,而0120212=⋅+⋅,则,即,B 选项错误;对于C 选项,34302340101852225121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 32k k a ++⋅,所以,,23201230101432223121222k k n a a a a a ++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅+ 22k k a ++⋅,所以,,因此,,C 选项正确;对于D 选项,01121222n n --=+++ ,故,D 选项正确.故选.ACD8.(2021·新高考I 卷 第16题)解:对折3次时,可以得到2.512dm dm ⨯,56dm dm ⨯,103dm dm ⨯,20 1.5dm dm ⨯四种规格的图形. 对折4次时,可以得到2.56dm dm ⨯,1.2512dm dm ⨯,53dm dm ⨯,10 1.5dm dm ⨯,200.75dm dm ⨯五种规格的图形.对折3次时面积之和23120S dm =,对折4次时面积之和2475S dm =,即12402120S ==⨯,2180360S ==⨯,3120430S ==⨯,475515S ==⨯,……得折叠次数每增加1,图形的规格数增加1,且()*12401,2nn S n n N ⎛⎫=+⨯∈ ⎪⎝⎭,121111240[234(1)]2482n n S S S n ∴++=⨯⨯+⨯+⨯++⋅+记231242n n n T +=+++ ,则112312482n n n T ++=+++ , 11111111(224822n n n n n n T T T ++-==++++-113113322222n n n n n ++++=--=-, 得332n nn T +=-,123240(3)2n n n S S S +∴++=⨯-, 故答案为5;3240(3).2n n +⨯-9.(2021·新高考I 卷 第17题)解:⑴12b a =,且21+1=2a a =,则1=2b , 24b a =,且4321215a a a =+=++=,则25b =;1222121213n n n n n b a a a b +++==+=++=+,可得13n n b b +-=,故{}n b 是以2为首项,3为公差的等差数列; 故()21331n b n n =+-⨯=-.数列{}n a 的前20项中偶数项的和为2418201210109=102+3=1552a a a ab b b ⨯++++=+++⨯⨯ , 又由题中条件有211a a =+,431a a =+, ,20191a a =+, 故可得n a 的前20项的和10.(2021·新高考II 卷 第17题)解:(1)由等差数列的性质可得:535S a =,则3335,0a a a =∴=, 设等差数列的公差为d ,从而有22433()()a a a d a d d =-+=-,412343333(2)()()2S a a a a a d a d a a d d =+++=-+-+++=-,从而22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:*3(3)26().n a a n d n n N =+-=-∈(2)由数列的通项公式可得1264a =-=-,则2(1)(4)252n n n S n n n -=⨯-+⨯=-, 则不等式n n S a >即2526n n n ->-,整理可得(1)(6)0n n -->, 解得1n <或6n >,又n 为正整数,故n 的最小值为7.(2)11.(2020·新高考I 卷 第14题、II 卷 第15题)解:数列 的首项是1,公差为2的等差数列; 数列 的首项是1,公差为3的等差数列; 公共项构成首项为1 ,公差为6的等差数列; 故 的前n 项和S n 为: .故答案为232.n n -12.(2020·新高考I 卷 第18题)解:(1)设等比数列的公比为q ,且1q >,2420a a += ,38a =,,解得舍)或,∴数列{}n a 的通项公式为2;n n a =(2)由(1)知12a =,24a =,38a =,416a =,532a =,664a =,7128a =,则当1m =时,10b =,当2m =时,21b =, 以此类推,31b =,45672b b b b ====,815...3b b ===,1631...4b b ===, 3263...5b b ===,64100...6b b ===, 10012100...S b b b ∴=+++0122438416532637480.=+⨯+⨯+⨯+⨯+⨯+⨯=13.(2020·新高考II 卷 第18题)解:(1)设等比数列{}n a 的公比为(1)q q >,则32411231208a a a q a q a a q ⎧+=+=⎨==⎩, {21}n -{32}n -{}n a1q > ,122a q =⎧∴⎨=⎩, 1222.n n n a -∴=⋅=1223(2)a a a a -+…11(1)n n n a a -++- 35792222=-+-+…121(1)2n n -++-⋅,322322[1(2)]82(1).1(2)55n n n +--==----。

全国卷数列高考题汇总附答案

全国卷数列高考题汇总附答案

数列专题高考真题(2014·I) 17. (本小题满分12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n−1,其中λ为常数.(Ⅰ)证明:a n+2−a n=λ;(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.(2014·II) 17.(本小题满分12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+12}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:1a1+1a2+⋯+1a n<32.(2015·I)(17)(本小题满分12分)S n为数列{a n}的前n项和.已知a n>0,a n2+2a n=4S n+3,(Ⅰ)求{a n}的通项公式:(Ⅱ)设b n=1a n a n+1,求数列{b n}的前n项和。

(2015·II)(4)等比数列{a n}满足a1=3,=21,则( )(A)21 (B)42 (C)63 (D)84(2015·II)(16)设是数列的前n项和,且,,则________.(2016·I)(3)已知等差数列{a n}前9项的和为27,a10=8,则a100=(A)100 (B)99 (C)98 (D)97(2016·I)(15)设等比数列{a n}满足 a1+a3=10,a2+a4=5,则 a1a2…a n的最大值为__________。

(2016·II)(17)(本题满分12分)S n为等差数列{a n}的前n项和,且a1=1 ,S7=28 记b n=[log a n],其中[x]表示不超过x的最大整数,如[0.9]= 0,[lg 99]=1.(I)求b1,b11,b101;(II)求数列{b n}的前1 000项和.(2016·III)(12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,?,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个(2016·III)(17)(本小题满分12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0(I)证明{a n}是等比数列,并求其通项公式;(II )若S n =3132,求λ. (2017·I)4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。

历年高考理科数列真题汇编含答案解析

历年高考理科数列真题汇编含答案解析

高考数列选择题部分(2016全国I )(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97(2016上海)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a(2016四川)5. 【题设】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年 (B )2019年 (C )2020年 (D )2021年 (2016天津)(5)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件(2016浙江)6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}n S 是等差数列C .{}n d 是等差数列D .2{}n d 是等差数列1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( )A 、-1B 、0C 、1D 、62.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .93.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a -->4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>1.【2014年重庆卷(理02)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列2.【2014年全国大纲卷(10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .35.【2014年福建卷(理03)】等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14高考数列填空题部分(2016全国I )(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .(2016上海)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.(2016北京)12.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..(2016江苏)8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .(2016浙江)13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .5.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .6.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.7.【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += .8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 .9.【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为3.【2014年广东卷(理13)】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= 。

全国卷历年高考数列真题归类分析(含答案)

全国卷历年高考数列真题归类分析(含答案)

全国卷历年高考数列真题归类分析(含答案)全国卷历年高考数列真题归类分析(含答案)(10个小型和3个大型,分析型)一、等差、等比数列的基本运算(8小1大)1.(2022年第3卷第1卷)已知的算术序列?一前9项的总和是27,A10?8,那么100?(a) 100(b)99(c)98(d)97【解析】由已知,??9a1?36d?27,所以a1??1,d?1,a100?a1?99d??1?99?98,选c.A.9d?8.一2.(2021年1卷4)记sn为等差数列{an}的前n项和.若a4?a5?24,s6?48,则{an}的公差为a、一,【解析】:s6?b、二,c.4d、八,48a1a616a4a5a1a824,2.作差a8?a6?8?2d?d?4故而选c.,3.(2021年3卷9)等差数列?an?的首项为1,公差不为0.若a2,a3,a6成等比数列,则6.a1?a6??一前六项之和为()a.?24b、 ?。

?三c.3d、八,2?a2?a6,即【解析】∵?an?为等差数列,且a2,a3,a6成等比数列,设公差为d.则a3?a1?2d?2.a1?Da1?5d∵ A1?1.用上述公式代入D2?2d?0,以及∵ D0,然后是d??二6?56?5d?1?62???24,故选a.∴s6?6a1?224.(2021年2卷15)等差数列?an?的前项和为sn,则a3?3,s4?10,sk?1n1k?。

a12d3a11【解析】设等差数列的首项为a1,公差为d,所以?,解得?,4?3d?14a1?d?102所以an?n,sn?nn?1?n?121??1,那么,那么??22snn?n?1??nn?1?1??1??11?1??1?2n?1?.?21?......21??nn?1n?1?n?1k?1sk??2??23?5.(2022年第17卷第2卷)Sn是一个等差序列吗?一A1呢?1,s7?28.注BN??莱根其中呢?十、表示不超过x的最大整数,例如?0.9?? 0 lg99??1.(I)找到B1、B11、B101;(ⅱ)求数列?bn?的前1000项和.a4?a1?1,3∴一a1?(n?1)d?n。

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。

(精品word)新课标全国卷五年高考数列汇编(附答案).doc

(精品word)新课标全国卷五年高考数列汇编(附答案).doc

1.[2014 新·课标全国卷Ⅰ ]已知数列 { a, a = 1, a ≠ 0, a += λS- 1,其中 λ为常数.n } 的前 n 项和为 S n1 nn a n 1 n(1) 证明: a n + 2- a n = λ.(2) 是否存在 λ,使得 { a n } 为等差数列?并说明理由.2.[2014 新·课标全国卷 2]已知数列 a满足 a 1 =1, a n 13a n1.n(Ⅰ)证明a n 1 是等比数列,并求 a n 的通项公式;2(Ⅱ)证明: 1 11 3 aa⋯ + a2 .12n3.[2013 新·课标全国卷 1] 设等差数列 a n 的前 n 项和为 S n , S m 1 2, S m 0, S m 13 ,则 m ()A . 3B. 4C.5D.64.[2013 新·课标全国卷 1]设 A B Ca ,b , c,A B Cn 的 面 积 为S n , n1,2,3,, 若n nn 的 三 边 长 分 别 为nn nn nb 1c 1 ,b 1 c 1 2a 1 , a n 1 a n , b n 1c na n,c n 1 b na n,则 ()A. { S } 为递减数列22B. { S } 为递增数列nnC.{ S 2n - 1} 为递增数列, { S 2n } 为递减数列D.{ S 2n - 1} 为递减数列, { S 2n } 为递增数列 5.[2013 新·课标全国卷 1]若数列 { a } 的前 n 项和为 S n=2a 1 ,则数列 { a } 的通项公式是a =______.n 3 n 3 n n6.(2013 课标全国Ⅱ,理3)n.已知3=2+10 1,5=9,则1=().等比数列 { n}的前n 项和为 a aa S S a a1 1 1 1A.3B.3C. 9D.97.(2013 课标全国Ⅱ,理16)等差数列 { a n} 的前n项和为S n,已知S10= 0,S15 = 25,则nS n的最小值为 __________.8.[2012 新课标全国卷 ]已知 an为等比数列, a4 a7 2 , a5a6 8 ,则 a1 a10 ()(A) 7 (B) 5 (C) (D )9.[2012 新课标全国卷 ]数列 { a n} 满足 a n 1(1)n a n 2n 1,则 { a n} 的前60 项和为10.[2010 新课标全国卷]设数列a n满足a12, a n 1a n 3 22n 1 (1)求数列a n的通项公式;(2)令b n na n,求数列的前n 项和S n11、( 2015 全国 1 卷 17 题)S n为数列 { a n } 的前n项和 . 已知a n> 0,a n2a n= 4S n3. (Ⅰ)求 { a n } 的通项公式;(Ⅱ)设b n1, 求数列 { b n } 的前n项和 . anan 112、( 2015 全国 2 卷 4 题)已知等比数列a n 满足 a1=3,a1a3 a5 =21 ,则a3 a5 a7 ()A.21 B .42C .63 D . 84.13、( 2015 全国 2卷 16 题)设 S n是数列a n 的前 n 项和,且a1 1, a n 1 S n S n 1,则S n ________.14、( 2016 全国 1 卷 3 题)已知等差数列a n 前 9 项的和为 27, a10 8 ,则 a100 ()(A ) 100 (B)99 ( C)98 (D)9715、( 2016 全国 2 卷 15 题)设等比数列a n 满足 a1+a3 =10,a2+a4=5,则 a1a2 a n的最大值为.16、( 2016 全国 2 卷 17 题)S n为等差数列a n 的前 n 项和,且 a1 1 ,S7 28 .记b n lg a n,其中 x 表示不超过x的最大整数,如0.9 0 , lg99 1 .(Ⅰ)求 b1, b11, b101;(Ⅱ)求数列b n的前1000项和.17、( 2016 全国 3 卷 17 题) 已知数列{ a n }的前 n 项和S n1a n,其中 0 .(I )证明{ a n }是等比数列,并求其通项公式;31 (II )若S 532,求 .18、( 2017 年国 1 卷 4 题)记 S n 为等差数列 a n 的前 n 项和,若 a 4 a 524 ,S 6 48 ,则 a n的公差为() A . 1B .2C . 4D .8 19、( 2017 全国 2 卷 3 题)我国古代数学名著《算法统宗》中有如下问题: “远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂了381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯()A .1 盏B .3 盏C .5 盏D .9 盏20、( 2017 全国 2 卷 15 题) 等差数列a n 的前 n 项和为 S n , a 3 3, S 4 10,则n1.k 1S k21、( 2017全国 3卷 9题) 等差数列 a n 的首项为 1,公差不为 0.若 a 2 , a 3 , a 6 成等比数列,则 a n 前 6项的和为()A . 24B . 3C . 3D . 812、( 2017 全国 3卷 14题)设等比数列a n 满足 a 1 a 21 , a 1 a 33 ,则 a 4 ________..详细解析1.解: (1) 证明:由题设, += λS - 1,a ++=λS + 1 - 1,a n a n 1nn 1a n 2n两式相减得 a n1(a n2- a n )= λa n 1.+ + +因为 a n + 1≠0,所以 a n + 2- a n = λ.= 1, a = λS- 1,可得 a = λ- 1,(2) 由题设, a 1 1a 2 1 2由(1) 知, a 3= λ+ 1.若{ a n } 为等差数列,则 2a 2= a 1+ a 3,解得 λ=4,故 a n + 2- a n =4. 由此可得 { a 2n -1} 是首项为 1,公差为 4 的等差数列, a 2n -1= 4n - 3;{ a 2n } 是首项为 3,公差为 4 的等差数列, a 2n =4n - 1. 所以 a n = 2n -1, a n + 1- a n =2.因此存在 λ= 4,使得数列 { a n } 为等差数列.a 1 1, a n 1 3a n 1.n ∈ N * .2.解: ∴ a n 11 3a n 1 13(a n 1). 2 2 2 1 是首项为 a 1 1 3 ,公比为 3的等比数列。

全国卷6年数列高考题整理汇总(附答案)

全国卷6年数列高考题整理汇总(附答案)

数列专题高考真题(2014·I) 17. (本小题满分12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n−1,其中λ为常数.(Ⅰ)证明:a n+2−a n=λ;(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.(2014·II) 17.(本小题满分12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+12}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:1a1+1a2+⋯+1a n<32.(2015·I)(17)(本小题满分12分)S n为数列{a n}的前n项和.已知a n>0,a n2+2a n=4S n+3,(Ⅰ)求{a n}的通项公式:(Ⅱ)设b n=1a n a n+1,求数列{b n}的前n项和。

(2015·II)(4)等比数列{a n}满足a1=3,=21,则( )(A)21 (B)42 (C)63 (D)84(2015·II)(16)设是数列的前n 项和,且,,则________.(2016·I)(3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=(A )100 (B )99 (C )98 (D )97(2016·I)(15)设等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2…a n 的最大值为__________。

(2016·II)(17)(本题满分12分)S n 为等差数列{a n }的前n 项和,且a 1=1 ,S 7=28 记b n =[log a n ],其中[x]表示不超过x 的最大整数,如[0.9] = 0,[lg 99]=1.(I )求b 1,b 11,b 101;(II )求数列{b n }的前1 000项和.(2016·III)(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,⋯,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个(2016·III)(17)(本小题满分12分)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0 (I )证明{a n }是等比数列,并求其通项公式;(II )若S n =3132,求λ.(2017·I)4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。

数列解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

数列解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
所以 .
【题目栏目】数列\数列的综合应用\数列的综合问题
【题目来源】2020年新高考I卷(山东卷)·第18题
7.(2020新高考II卷(海南卷)·第18题)已知公比大于 的等比数列 满足 .
(1)求 通项公式;
(2)求 .
【答案】(1) ;(2)
解析:(1)设等比数列 的公比为q(q>1),则 ,
整理可得: ,
解析:(1)由已知 得 ,且 , ,
取 ,由 得 ,
由于 为数列 的前n项积,
所以 ,

所以数列 是以 为首项,以 为公差等差数列;
(2)由(1)可得,数列 是以 为首项,以 为公差的等差数列,
,
,
当n=1时, ,
当n≥2时, ,显然对于n=1不成立,
∴ .
【点睛】本题考查等差数列的证明,考查数列的前n项和与项的关系,数列的前n项积与项的关系,其中由 ,得到 ,进而得到 是关键一步;要熟练掌握前n项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.

数列的通项公式为: .
(2)由于: ,故:

【题目栏目】数列\数列的综合应用\数列的综合问题
【题目来源】2020新高考II卷(海南卷)·第18题
8.(2021年高考全国乙卷理科·第19题)记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;
(2)求 的通项公式.
【答案】(1)证明见解析;(2) .
当 时, ,当 时, 满足等差数列的定义,此时 为等差数列;
当 时, , 不合题意,舍去.
综上可知 为等差数列.
【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.

2024年高考真题汇总 数列(解析版)

2024年高考真题汇总 数列(解析版)

专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。

全国卷数列高考题汇总附答案完整版

全国卷数列高考题汇总附答案完整版

全国卷数列高考题汇总附答案完整版全国卷数列高考题汇总附答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】数列专题高考真题2014·I 17.已知数列{aa}的前a项和为a,a1=1,aa≠0,aaa+1=aaa−1,其中a为常数.Ⅰ)证明:aa+2−aa=a;Ⅱ)是否存在a,使得{aa}为等差数列并说明理由.2014·II 17.已知数列{aa}满足a1=1,aa+1=3aa+1.Ⅰ)证明{aa+2}是等比数列,并求{aa}的通项公式;Ⅱ)证明:a1+a3+⋯+aa<xxxxxxx a.2015·I 17.aa为数列{aa}的前a项和.已知aa>aa2+2aa=4aa+3。

Ⅰ)求{aa}的通项公式:Ⅱ)设a1=1,求数列{aa}的前a项和。

2015·II 4.等比数列{aa}满足a1=3,a1+a3+a5=21,则a3+a5+a7=42.2015·II 16.设Sn是数列{aa}的前n项和,且a1=−1,a a+1=SnSn+1,则Sn=__________.2016·I 3.已知等差数列{aa}前9项的和为27,a10=8,则a100=98.2016·I 15.设等比数列{aa}满足a1+a3=10,a2+a4=5,则a1a2…aa的最大值为__________.2016·II 17.Sn为等差数列{aa}的前a项和,且a1=1,a7=28记aa=[aaaaa],其中[a]表示不超过a的最大整数,如[.9]=0,[aa99]=1.I)求a1,a11,a101;II)求数列{aa}的前1 000项和.2016·III 12.定义“规范01数列”{aa}如下:{aa}的每一项为0或1,且不存在连续的1.例如,{0,1,0,0,1,0}和{0,1,0,1,0,1}是规范01数列,而{0,1,1,0}和{1,0,1,0,0}不是规范01数列.Ⅰ)证明:长度为n的规范01数列的个数为F(n+2),其中F(n)为斐波那契数列的第n项;Ⅱ)已知规范01数列{aa}的前n项和Sn,求{aa}的第n项。

2023年全国各省份高考数学真题数列汇总全文

2023年全国各省份高考数学真题数列汇总全文

2023年全国各省份高考数学真题数列汇总一、单选题二、填空题8.(2023年全国乙卷(理数)第15题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.9.(2023年全国甲卷(文数)第13题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.10.(2023年北京卷第14题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =___________;数列{}n a 所有项的和为____________.三、解答题15.(2023年北京卷第21题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.16.(2023年天津卷第19题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和1212n n ii a --=∑.(2)已知{}n b 为等比数列,对于任意*N k ∈,若1221k k n -≤≤-,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及其前n 项和.a-【详解】由题意可得:当1n =时,2122a a =+,即1122a q a =+,①当2n =时,()31222a a a =++,即()211122a q a a q =++,②联立①②可得12,3a q ==,则34154a a q ==.故选:C.二、填空题三、解答题为奇数反证:假设满足11n n r r +->的最小正整数为11j m ≤≤-,当i j ≥时,则12i i r r +-≥;当1i j ≤-时,则11i i r r +-=,则()()()112100m m m m m r r r r r r r r ---=-+-+⋅⋅⋅+-+()22m j j m j ≥-+=-,又因为11j m ≤≤-,则()2211m r m j m m m m ≥-≥--=+>,假设不成立,故11n n r r +-=,即数列{}n r 是以首项为1,公差为1的等差数列,所以01,n r n n n =+⨯=∈N .(3)(ⅰ)若mmA B ≥,构建,1n n n r S A B n m =-≤≤,由题意可得:0n S ≥,且n S 为整数,反证,假设存在正整数K ,使得K S m ≥,则1,0K K K r K r A B m A B +-≥-<,可得()()111K K K K K r r r K r K r b B B A B A B m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≤-.①若存在正整数N ,使得0N N N r S A B =-=,即N Nr A B =,可取0,,N r p q N s r ====,使得p s q r B B A A +=+;②若不存在正整数N ,使得0NS =,因为{}1,2,1n S m m ∈⋅⋅⋅-,且1n m ≤≤,所以必存在1X Y m ≤<≤,使得X Y S S =,即X Y X r Y r A B A B -=-,可得Y X X r Y r A B A B +=+,可取,,,Y X p X s r q Y r r ====,使得p s q r B B A A +=+;(ⅱ)若m m A B <,构建,1n n r n S B A n m =-≤≤,由题意可得:0n S ≤,且n S 为整数,反证,假设存在正整数K ,使得K S m ≤-,则1,0K K r K r K B A m B A +-≤-->,可得()()111K K K K K r r r r K r K b B B B A B A m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≥-.①若存在正整数N ,使得0N N r N S B A =-=,即N Nr A B =,可取0,,N r p q N s r ====,使得p s q r B B A A +=+;②若不存在正整数N ,使得0NS =,因为{}1,2,,1n S m ∈--⋅⋅⋅-,且1n m ≤≤,。

(完整版)历年数列高考题及答案

(完整版)历年数列高考题及答案

1. (福建卷)已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A .15B .30C .31D .642. (湖南卷)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a = ( )A .0B .3-C .3D .233. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )1894. (全国卷II ) 如果数列{}n a是等差数列,则( )(A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 5. (全国卷II ) 11如果128,,,a a a 为各项都大于零的等差数列,公差0d ≠,则( )(A)1845a a a a >(B) 1845a a a a < (C) 1845a a a a +>+ (D) 1845a a a a =6. (山东卷){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( )(A )667 (B )668 (C )669 (D )6707. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。

已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。

8. (湖北卷)设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .9. (全国卷II ) 在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______10. (上海)12、用n 个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。

2024高考题分类训练(数学)专题五 数列

2024高考题分类训练(数学)专题五 数列

专题五数列考点17 等差数列题组一、选择题1. [2023全国卷甲,5分]记S n为等差数列{a n}的前n项和.若a2+a6=10,a4a8=45,则S5= ( C )A. 25B. 22C. 20D. 15[解析]解法一由a2+a6=10,可得2a4=10,所以a4=5,又a4a8=45,所以a8=9.设等差数列{a n}的公差为d,则d=a8−a48−4=9−54=1,又a4=5,所以a1=2,所以S5=5a1+5×42×d=20,故选C.解法二设等差数列{a n}的公差为d,则由a2+a6=10,可得a1+3d=5①,由a4a8=45,可得(a1+3d)(a1+7d)=45②,由①②可得a1=2,d=1,所以S5=5a1+5×42×d=20,故选C.2. (2023全国卷乙,5分)已知等差数列{a n}的公差为2π3,集合S={cosa n|n∈N∗},若S={a,b},则ab= ( B )A. −1B. −12C. 0 D. 12[解析]由题意得a n=a1+2π3(n−1),cosa n+3=cos(a1+2π3(n+2))=cos(a1+2π3n+4π3)=cos(a1+2π3n+2π−2π3)=cos(a1+2π3n−2π3)=cosa n,所以数列{cosa n}是以3为周期的周期数列,又cosa2=cos(a1+2π3)=−12cosa1−√32sina1,cosa3=cos(a1+4π3)=−12cosa1+√32sina1,因为集合S中只有两个元素,所以有三种情况:cosa1=cosa2≠cosa3,cosa1=cosa3≠cosa2,cosa2=cosa3≠cosa1.下面逐一讨论:①当cosa1=cosa2≠cosa3时,有cosa1=−12cosa1−√32sina1,得tana1=−√3,所以ab=cosa1(−12cosa1+√32sina1)=−12cos2a1+√32sina1cosa1=−1 2cos2a1+√32sina1cosa1sin2a1+cos2a1=−12+√32tana1tan2a1+1=−12−323+1=−12.②当cosa1=cosa3≠cosa2时,有cosa1=−12cosa1+√32sina1,得tana1=√3,所以ab=cosa1(−12cosa1−√32sina1)=−12cos2a1−√32sina1cosa1=−1 2cos2a1−√32sina1cosa1sin2a1+cos2a1=−12−√32tana1tan2a1+1=−12−323+1=−12.③当cosa2=cosa3≠cosa1时,有−12cosa1−√32sina1=−12cosa1+√32sina1,得sina1=0,所以ab=cosa1(−12cosa1−√32sina1)=−12cos2a1=−12(1−sin2a1)=−12.综上,ab=−12,故选B.【速解】取a1=−π3,则cosa1=12,cosa2=cos(a1+2π3)=12,cosa3=cos(a1+4π3)=−1,所以S={12,−1},ab=−12,故选B.3. [2021北京,4分]已知{a n}和{b n}是两个等差数列,且a kb k(1≤k≤5)是常值,若a1=288 ,a5=96 ,b1=192,则b3的值为( C )A. 64B. 100C. 128D. 132[解析]因为{a n}和{b n}是两个等差数列,所以2a3=a1+a5=288+96=384,所以a3=192.因为当1≤k≤5时,a kb k 是常值,所以a3b3=a1b1=288192=192b3,从而b3=128.故选C.4. [2020全国卷Ⅱ,5分]如图,北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( C )A. 3 699块B. 3 474块C. 3 402块D. 3 339块[解析]由题意知,由天心石开始向外的每环的扇面形石板块数构成一个等差数列,记为{a n},设数列{a n}的公差为d,前n项和为S n,易知其首项a1=9,d=9,所以a n=a1+(n−1)d=9n.由等差数列的性质知S n,S2n−S n,S3n−S2n也成等差数列,所以2(S2n−S n)=S n+S3n−S2n,所以(S3n−S2n)−(S2n−S n)=S2n−2S n=2n(9+18n)2−2×n(9+9n)2=9n2=729,得n=9,所以三层共有扇面形石板的块数为S3n=3n(9+27n)2=3×9×(9+27×9)2=3402,故选C.5. [2020浙江,4分]已知等差数列{a n}的前n项和为S n ,公差d≠0,且a1d≤1 .记b1=S2,b n+1=S2n+2−S2n ,n∈N∗ ,下列等式不可能成立的是( D )A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8 [解析]由b n+1=S2n+2−S2n,得b2=a3+a4=2a1+5d,b4=a7+a8=2a1+13d,b6=a11+a12,b8=a15+a16=2a1+29d.由等差数列的性质易知A成立;若2b4=b2+b6,则2(a7+a8)=a3+a4+a11+a12=2a7+2a8,故B成立;若a42=a2a8,即(a1+3d)2=(a1+d)(a1+7d),则a1=d,故C可能成立;若b42=b2b8,即(2a1+13d)2=(2a1+5d)(2a1+29d),则a1d =32,与已知矛盾,故D不可能成立.6. [2020北京,4分]在等差数列{a n}中,a1=−9 ,a5=−1 .记T n=a1a2…a n(n=1,2,…) ,则数列{T n} ( B )A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项[解析]设等差数列{a n}的公差为d,∵a1=−9,a5=−1,∴a5=−9+4d=−1,∴d=2,∴a n=−9+(n−1)×2=2n−11.令a n=2n−11≤0,则n≤5.5,∴n≤5时,a n<0;n≥6时,a n>0.∴T1=−9<0,T2=(−9)×(−7)= 63>0,T3=(−9)×(−7)×(−5)=−315<0,T4=(−9)×(−7)×(−5)×(−3)=945>0,T5=(−9)×(−7)×(−5)×(−3)×(−1)=−945<0,当n≥6时,a n>0,且a n≥1,∴T n+1<T n<0,∴T n=a1a2…a n(n=1,2,…)有最大项T4,无最小项,故选B.7. [2019全国卷Ⅰ,5分]记S n为等差数列{a n}的前n项和.已知S4=0,a5= 5,则( A )A. a n =2n −5B. a n =3n −10C. S n =2n 2−8nD. S n =12n 2−2n[解析]解法一 设等差数列{a n } 的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2,∴a n =a 1+(n −1)d =−3+2(n −1)=2n −5 ,S n =na 1+n (n−1)2d =n 2−4n .故选A .解法二 设等差数列{a n } 的公差为d ,∵{S 4=0,a 5=5,∴{4a 1+4×32d =0,a 1+4d =5,解得{a 1=−3,d =2.选项A ,a 1=2×1−5=−3 ;选项B ,a 1=3×1−10=−7 ,排除B ;选项C ,S 1=2−8=−6 ,排除C ;选项D ,S 1=12−2=−32 ,排除D .故选A .【方法技巧】 等差数列基本运算的常见类型及解题策略 (1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1 和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解,或利用等差中项间接求解.二、填空题8. [2022全国卷乙,5分]记S n 为等差数列{a n } 的前n 项和.若2S 3=3S 2+6 ,则公差d = 2.[解析]因为2S 3=3S 2+6 ,所以2(a 1+a 2+a 3)=3(a 1+a 2)+6 ,化简得3d =6 ,得d =2 .9. [2020新高考卷Ⅰ,5分]将数列{2n −1} 与{3n −2} 的公共项从小到大排列得到数列{a n } ,则{a n } 的前n 项和为3n 2−2n .[解析]设b n =2n −1 ,c n =3n −2 ,b n =c m ,则2n −1=3m −2 ,得n =3m−12=3m−3+22=3(m−1)2+1 ,于是m −1=2k ,k ∈N ,所以m =2k +1 ,k ∈N ,则a k =3(2k +1)−2=6k +1 ,k ∈N ,得a n =6n −5 ,n ∈N ∗.故S n =1+6n−52×n =3n 2−2n .10. (2019全国卷Ⅲ,5分)记S n为等差数列{a n}的前n项和.若a1≠0,a2= 3a1,则S10S5=4.[解析]设等差数列{a n}的公差为d,由a2=3a1,即a1+d=3a1,得d=2a1,所以S10S5=10a1+10×92d5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.11. [2019北京,5分]设等差数列{a n}的前n项和为S n .若a2=−3,S5=−10,则a5=0,S n的最小值为−10 .[解析]设等差数列{a n}的公差为d,∵{a2=−3,S5=−10,即{a1+d=−3,5a1+10d=−10,∴可得{a1=−4,d=1,∴a5=a1+4d=0.∵S n=na1+n(n−1)2d=12(n2−9n),∴当n=4或n=5时,S n取得最小值,最小值为−10.12. [2019江苏,5分]已知数列{a n}(n∈N∗)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是16.[解析]解法一设等差数列{a n}的公差为d,则a2a5+a8=(a1+d)(a1+4d)+ a1+7d=a12+4d2+5a1d+a1+7d=0,S9=9a1+36d=27,解得a1=−5,d=2,则S8=8a1+28d=−40+56=16.解法二设等差数列{a n}的公差为d.S9=9(a1+a9)2=9a5=27,a5=3,又a2a5+a8=0,则3(3−3d)+3+3d=0,得d=2,则S8=8(a1+a8)2=4(a4+a5)= 4(1+3)=16.【方法技巧】在等差数列{a n}中,若m+n=p+q ,m ,n ,p ,q∈N∗,则a m+a n=a p+a q .三、解答题13. [2023全国卷乙,12分]记S n为等差数列{a n}的前n项和,已知a2=11 ,S10=40 .(1)求{a n}的通项公式;[答案]设{a n}的公差为d,则{a2=a1+d=11,S10=10a1+45d=40,解得a1=13,d=−2.所以{a n}的通项公式为a n=13+(n−1)⋅(−2)=15−2n.(2)求数列{|a n|}的前n项和T n .[答案]由(1)得∣a n∣={15−2n,n≤7, 2n−15,n≥8.当n≤7时,T n=S n=13n+n(n−1)2×(−2)=14n−n2,当n≥8时,T n=−S n+2S7=−(14n−n2)+2(14×7−72)=98−14n+ n2.综上,T n={14n−n2,n≤7,98−14n+n2,n≥8.14. [2023新高考卷Ⅰ,12分]设等差数列{a n}的公差为d,且d>1 .令b n=n2+na n,记S n ,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3 ,S3+T3=21 ,求{a n}的通项公式;[答案]因为3a2=3a1+a3,所以3(a2−a1)=a1+2d,所以3d=a1+2d,所以a1=d,所以a n=nd.因为b n=n2+na n ,所以b n=n2+nnd=n+1d,所以S3=3(a1+a3)2=3(d+3d)2=6d,T3=b1+b2+b3=2d+3d+4d=9d.因为S3+T3=21,所以6d+9d =21,解得d=3或d=12,因为d>1,所以d=3.所以{a n}的通项公式为a n=3n.(2)若{b n}为等差数列,且S99−T99=99,求d . [答案]因为b n=n2+na n,且{b n}为等差数列,所以2b2=b1+b3,即2×6a2=2a1+12a3,所以6a1+d −1a1=6a1+2d,所以a12−3a1d+2d2=0,解得a1=d或a1=2d.①当a1=d时,a n=nd,所以b n=n2+na n =n2+nnd=n+1d,S99=99(a1+a99)2=99(d+99d)2=99×50d,T99=99(b1+b99)2=99(2d+100d)2=99×51d.因为S99−T99=99,所以99×50d−99×51d=99,即50d2−d−51=0,解得d=5150或d=−1(舍去).②当a1=2d时,a n=(n+1)d,所以b n=n2+na n =n2+n(n+1)d=nd,S99=99(a1+a99)2=99(2d+100d)2=99×51d,T99=99(b1+b99)2=99(1d+99d)2=99×50d.因为S99−T99=99,所以99×51d−99×50d=99,即51d2−d−50=0,解得d=−5051(舍去)或d=1(舍去).综上,d=5150.15. [2022全国卷甲,12分]记S n为数列{a n}的前n项和.已知2S nn+n=2a n+1 . (1)证明:{a n}是等差数列;[答案]由2S nn+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②−①,得2a n+1+2n+1=2a n+1(n+1)−2a n n+1,化简得a n+1−a n=1,所以数列{a n}是公差为1的等差数列.(2)若a4 ,a7 ,a9成等比数列,求S n的最小值.[答案]由(1)知数列{a n}的公差为1.由a72=a4a9,得(a1+6)2=(a1+3)(a1+8),解得a1=−12.所以S n=−12n+n(n−1)2=n2−25n2=12(n−252)2−6258,所以当n=12或13时,S n取得最小值,最小值为−78.16. [2021新高考卷Ⅱ,10分]记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5 ,a2a4=S4 .(1)求数列{a n}的通项公式;[答案]设等差数列{a n}的公差为d(d≠0),则由题意,得{a1+2d=5a1+10d,(a1+d)(a1+3d)=4a1+6d得{a1=−4,d=2所以a n=a1+(n−1)d=2n−6.(2)求使S n>a n成立的n的最小值.[答案]S n=n(a1+a n)2=n(2n−10)2=n2−5n,则由n2−5n>2n−6,整理得n2−7n+6>0,解得n<1或n>6.因为n∈N∗,所以使S n>a n成立的n的最小值为7.17. [2021全国卷甲,12分]已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n }是等差数列;③a2=3a1 .注:若选择不同的组合分别解答,则按第一个解答计分.[答案]①③⇒②.已知{a n}是等差数列,a2=3a1.设数列{a n}的公差为d,则a2=3a1=a1+d,得d=2a1,所以S n=na1+n(n−1)2d=n2a1.因为数列{a n}的各项均为正数,所以√S n=n√a1,所以√S n+1−√S n=(n+1)√a1−n√a1=√a1(常数),所以数列{√S n}是等差数列.①②⇒③.已知{a n}是等差数列,{√S n}是等差数列.解法一易得√S3+√S1=2√S2,即√3a2+√a1=2√a1+a2,两边同时平方得3a2+a1+2√3a1a2=4(a1+a2),整理得(√3a1−√a2)2=0,所以a2=3a1.解法二设数列{a n}的公差为d,则S n=na1+n(n−1)2d=12n2d+(a1−d2)n.因为数列{√S n}是等差数列,所以数列{√S n}的通项公式是关于n的一次函数,则a1−d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{√S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{√S n}的公差为d,d>0,则√S2−√S1=√4a1−√a1=d,得a1= d2,所以√S n=√S1+(n−1)d=nd,所以S n=n2d2,所以a n=S n−S n−1=n2d2−(n−1)2d2=2d2n−d2(n≥2),所以a n−a n−1=2d2(n≥2),所以数列{a n}是等差数列.考点18 等比数列题组一、选择题1. [2023全国卷甲,5分]设等比数列{a n}的各项均为正数,前n项和为S n ,若a1=1,S5=5S3−4,则S4= ( C )A. 158B. 658C. 15D. 40[解析]解法一若该数列的公比q=1,代入S5=5S3−4中,有5=5×3−4,不成立,所以q≠1.由1−q 51−q =5×1−q31−q−4,化简得q4−5q2+4=0,所以q2=1(舍)或q2=4,由于此数列各项均为正数,所以q=2,所以S4=1−q41−q= 15.故选C.解法二由已知得1+q+q2+q3+q4=5(1+q+q2)−4,整理得(1+q)(q3−4q)=0,由于此数列各项均为正数,所以q=2,所以S4=1+q+q2+q3=1+2+4+8=15.故选C.2. [2023天津,5分]已知{a n}为等比数列,S n为数列{a n}的前n项和,a n+1= 2S n+2 ,则a4的值为( C )A. 3B. 18C. 54D. 152[解析]解法一因为a n+1=2S n+2,所以当n≥2时,a n=2S n−1+2,两式相减得a n+1−a n=2a n,即a n+1=3a n,所以数列{a n}是公比q=a n+1a n=3的等比数列.当n=1时,a2=2S1+2=2a1+2,又a2=3a1,所以3a1=2a1+ 2,解得a1=2,所以a4=a1q3=2×33=54,故选C.解法二设等比数列{a n}的公比为q,因为a n+1=2S n+2,所以公比q≠1,且a1q n=2a1(1−q n)1−q +2=−2a11−qq n+2a11−q+2,所以{a1=−2a11−q,0=2a11−q+2,又a1≠0,所以q=3,a1=2,所以a4=a1q3=2×33=54,故选C.3. [2023新高考卷Ⅱ,5分]记S n 为等比数列{a n } 的前n 项和,若S 4=−5 ,S 6=21S 2 ,则S 8= ( C ) A. 120B. 85C. −85D. −120[解析]解法一 设等比数列{a n } 的公比为q (q ≠0) ,由题意易知q ≠1 ,则{a 1(1−q 4)1−q=−5,a1(1−q6)1−q=21×a 1(1−q 2)1−q,化简整理得{q 2=4,a 11−q =13. 所以S 8=a 1(1−q 8)1−q=13×(1−44)=−85 .故选C . 解法二 易知S 2 ,S 4−S 2 ,S 6−S 4 ,S 8−S 6 ,…… 为等比数列,所以(S 4−S 2)2=S 2⋅(S 6−S 4) ,解得S 2=−1 或S 2=54.当S 2=−1 时,由(S 6−S 4)2=(S 4−S 2)⋅(S 8−S 6) ,解得S 8=−85 ;当S 2=54 时,结合S 4=−5得{a 1(1−q 4)1−q =−5a 1(1−q 2)1−q =54,化简可得q 2=−5 ,不成立,舍去.所以S 8=−85 ,故选C .4. [2022全国卷乙,5分]已知等比数列{a n } 的前3项和为168,a 2−a 5=42 ,则a 6= ( D ) A. 14B. 12C. 6D. 3[解析]解法一 设等比数列{a n } 的公比为q ,由题意可得{a 1+a 2+a 3=168,a 2−a 5=42,即{a 1(1+q +q 2)=168,a 1q (1−q 3)=a 1q (1−q )(1+q +q 2)=42, 解得{a 1=96,q =12, 所以a 6=a 1q 5=3 ,故选D .解法二 设等比数列{a n } 的公比为q ,易知q ≠1 ,由题意可得{a 1(1−q 3)1−q=168,a 1q (1−q3)=42,解得{a 1=96,q =12,所以a 6=a 1q 5=3 ,故选D .5. [2021全国卷甲,5分]记S n 为等比数列{a n } 的前n 项和.若S 2=4 ,S 4=6 ,则S 6= ( A ) A. 7B. 8C. 9D. 10[解析]解法一因为S2=4,S4=6,所以公比q≠1,所以由等比数列的前n项和公式,得{S2=a1(1−q2)1−q=a1(1+q)=4,S4=a1(1−q4)1−q =a1(1+q)(1+q2)=6,两式相除,(技巧点拨:与等比数列有关的方程组,求解时通常利用两式相除,达到消元、降次的目的)得q2=12,所以{a1=4(2−√2),q=√22或{a1=4(2+√2),q=−√22,所以S6=a1(1−q6)1−q=7.故选A.解法二易知公比q≠−1,则S2,S4−S2,S6−S4构成等比数列,所以S2(S6−S4)=(S4−S2)2,即4(S6−6)=22,所以S6=7.故选A.6. [2020全国卷Ⅰ,5分]设{a n}是等比数列,且a1+a2+a3=1 ,a2+a3+ a4=2 ,则a6+a7+a8= ( D )A. 12B. 24C. 30D. 32[解析]解法一设等比数列{a n}的公比为q,所以a2+a3+a4a1+a2+a3=(a1+a2+a3)qa1+a2+a3=q=2,由a1+a2+a3=a1(1+q+q2)=a1(1+2+22)=1,解得a1=17,所以a6+a7+a8=a1(q5+q6+q7)=17×(25+26+27)=17×25×(1+2+22)=32,故选D.解法二令b n=a n+a n+1+a n+2(n∈N∗),则b n+1=a n+1+a n+2+a n+3.设数列{a n}的公比为q,则b n+1b n =a n+1+a n+2+a n+3a n+a n+1+a n+2=(a n+a n+1+a n+2)qa n+a n+1+a n+2=q,所以数列{b n}为等比数列,由题意知b1=1,b2=2,所以等比数列{b n}的公比q=2,所以b n=2n−1,所以b6=a6+a7+a8=25=32,故选D.7. [2020全国卷Ⅱ,5分]数列{a n}中,a1=2 ,a m+n=a m a n .若a k+1+a k+2+⋯+a k+10=215−25 ,则k= ( C )A. 2B. 3C. 4D. 5[解析]令m=1,则由a m+n=a m a n,得a n+1=a1a n,即a n+1a n=a1=2,所以数列{a n}是首项为2、公比为2的等比数列,所以a n=2n,所以a k+1+a k+2+⋯+a k+10=a k(a1+a2+⋯+a10)=2k×2×(1−210)1−2=2k+1×(210−1)=215−25=25×(210−1),解得k=4,故选C.8. [2019全国卷Ⅲ,5分]已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3= ( C )A. 16B. 8C. 4D. 2[解析]设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2= 4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2= 4.二、填空题9. [2023全国卷乙,5分]已知{a n}为等比数列,a2a4a5=a3a6 ,a9a10=−8 ,则a7=−2 .[解析]解法一设数列{a n}的公比为q,则由a2a4a5=a3a6,得a1q⋅a1q3⋅a1q4=a1q2⋅a1q5.又a1≠0,且q≠0,所以可得a1q=1①.又a9a10=a1q8⋅a1q9=a12q17=−8②,所以由①②可得q15=−8,q5=−2,所以a7=a1q6=a1q⋅q5=−2.解法二设数列{a n}的公比为q.因为a4a5=a3a6≠0,所以a2=1.又a9a10= a2q7⋅a2q8=q15=−8,于是q5=−2,所以a7=a2q5=−2.10. [2019全国卷Ⅰ,5分]记S n为等比数列{a n}的前n项和.若a1=13,a42=a6,则S5=1213.[解析]解法一设等比数列{a n}的公比为q,因为a42=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=13,所以q=3,所以S5=a1(1−q5)1−q=13×(1−35)1−3=1213.解法二设等比数列{a n}的公比为q,因为a42=a6,所以a2a6=a6,所以a2=1,又a1=13,所以q=3,所以S5=a1(1−q5)1−q=13×(1−35)1−3=1213.三、解答题11. [2020全国卷Ⅰ,12分]设{a n}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{a n}的公比;[答案]设{a n}的公比为q,由题设得2a1=a2+a3,即2a1=a1q+a1q2.所以q2+q−2=0,解得q=1(舍去)或q=−2.故{a n}的公比为−2.(2)若a1=1,求数列{na n}的前n项和.[答案]记S n为{na n}的前n项和.由(1)及题设可得,a n=(−2)n−1.所以S n=1+2×(−2)+⋯+n×(−2)n−1,−2S n=−2+2×(−2)2+⋯+(n−1)×(−2)n−1+n×(−2)n.可得3S n=1+(−2)+(−2)2+⋯+(−2)n−1−n×(−2)n=1−(−2)n3−n×(−2)n.所以S n=19−(3n+1)(−2)n9.12. [2020新高考卷Ⅰ,12分]已知公比大于1的等比数列{a n}满足a2+a4= 20 ,a3=8 .(1)求{a n}的通项公式;[答案]设{a n}的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q=12(舍去)或q=2.由题设得a1=2.所以{a n}的通项公式为a n=2n.(2)记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100 .[答案]由题设及(1)知b1=0,且当2n≤m<2n+1时,b m=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+⋯+(b32+b33+⋯+b63)+ (b64+b65+⋯+b100)=0+1×2+2×22+3×23+4×24+5×25+6×(100−63)=480.【方法技巧】求解本题第(2)问的关键在于找准m的取值和a n的联系,可从小到大进行列举,找规律,从而可得结果.13. [2019全国卷Ⅱ,12分]已知{a n}是各项均为正数的等比数列,a1=2 ,a3= 2a2+16 .(1)求{a n}的通项公式;[答案]设{a n}的公比为q,由题设得2q2=4q+16,即q2−2q−8=0.解得q=−2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n−1=22n−1.(2)设b n=log2a n ,求数列{b n}的前n项和.[答案]由(1)得b n =(2n −1)log 22=2n −1 ,因此数列{b n } 的前n 项和为1+3+⋯+2n −1=n 2 .考点19 递推数列与数列求和题组一一、选择题1. [2021浙江,4分]已知数列{a n } 满足a 1=1 ,a n+1=n 1+√a n ∈N ∗) ,记数列{a n } 的前n 项和为S n ,则( A ) A. 32<S 100<3B. 3<S 100<4C. 4<S 100<92D. 92<S 100<5[解析]因为a 1=1 ,a n+1=n 1+√a ,所以a n >0 ,a 2=12 ,所以S 100>32.1an+1=1+√a n a n =1a n+√a =(√a +12)2−14 .所以1a n+1<(√a +12)2,两边同时开方可得√a <√a +12 ,则√a <√a +12 ,… ,√a <√a 12 ,由累加法可得√a <√a +n2=1+n2 ,所以√a ≤1+n−12=n+12,所以√a n ≥2n+1 ,所以a n+1=n 1+√a ≤a n1+2n+1=n+1n+3a n ,即a n+1a n≤n+1n+3 ,则a nan−1≤n n+2 ,… ,a 2a 1≤24 ,由累乘法可得当n ≥2 时,a n =a n a 1≤nn+2×n−1n+1×n−2n ×…×35×24=6(n+2)(n+1)=6(1n+1−1n+2) ,所以S 100<1+6(13−14+14−15+⋯+1101−1102)=1+6(13−1102)<1+2=3 ,故选A .【方法技巧】利用放缩法,结合累加法与累乘法求得a n ≤6(1n+1−1n+2) ,从而利用裂项相消法计算S 100 的取值范围.二、填空题2. [2021新高考卷Ⅰ,5分]某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm ×12dm 的长方形纸,对折1次共可以得到10dm ×12dm ,20dm ×6dm 两种规格的图形,它们的面积之和S 1=240dm 2 ,对折2次共可以得到5dm ×12dm ,10dm ×6dm ,20dm ×3dm 三种规格的图形,它们的面积之和S 2=180dm 2 ,以此类推.则对折4次共可以得到不同规格图形的种数为5;如果对折n 次,那么∑nk=1S k = 240(3−n+32n) dm 2 .[解析]依题意得,S 1=120×2=240 ;S 2=60×3=180 ;当n =3 时,共可以得到5dm ×6dm ,52dm ×12dm ,10dm ×3dm ,20dm ×32dm 四种规格的图形,且5×6=30 ,52×12=30 ,10×3=30 ,20×32=30 ,所以S 3=30×4=120 ;当n =4 时,共可以得到5dm ×3dm ,52dm ×6dm ,54dm ×12dm ,10dm ×32dm ,20dm ×34dm 五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15 ,52×6=15 ,54×12=15 ,10×32=15 ,20×34=15 ,所以S 4=15×5=75 ; ……所以可归纳S k =2402k×(k +1)=240(k+1)2k.所以∑n k=1S k =240(1+322+423+⋯+n2n−1+n+12n) ①,所以12×∑nk=1S k =240(222+323+424+⋯+n2n +n+12n+1) ②,由①−② 得,12×∑nk=1S k =240(1+122+123+124+⋯+12n −n+12n+1)=240(1+122−12n ×121−12−n+12n+1)=240(32−n+32n+1) ,(提示:用等比数列的前n 项和公式S n =a 1−a n q 1−q(q ≠1) ,可避免计算数列项数时出错)所以∑nk=1S k =240(3−n+32n)dm 2 .3. [2020全国卷Ⅰ,5分]数列{a n } 满足a n+2+(−1)n a n =3n −1 ,前16项和为540,则a 1= 7.[解析]因为数列{a n } 满足a n+2+(−1)n a n =3n −1 ,所以当n =2k(k ∈N ∗) 时,a 2k+2+a 2k =6k −1(k ∈N ∗) ,所以(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)=5+17+29+41=92 .当n =2k −1(k ∈N ∗) 时,a 2k+1−a 2k−1=6k −4(k ∈N ∗) ,所以当k ≥2 时,a 2k−1=a 1+(a 3−a 1)+(a 5−a 3)+(a 7−a 5)+⋯+(a 2k−1−a 2k−3)=a 1+2+8+14+⋯+[6(k −1)−4]=a 1+(2+6k−10)(k−1)2=a 1+(3k −4)(k −1) ,当k =1 时上式也成立,所以a 2k−1=a 1+(3k −4)(k −1)(k ∈N ∗) ,即a 2k−1=a 1+3k 2−7k +4(k ∈N ∗) .解法一所以a1+a3+a5+a7+⋯+a15=8a1+3×(12+22+32+⋯+82)−7×(1+2+3+⋯+8)+4×8=8a1+3×8×(8+1)×(2×8+1)6−7×(1+8)×82+32=8a1+612−252+32=8a1+392.又前16项和为540,所以92+8a1+ 392=540,解得a1=7.解法二所以a2k−1=a1+(3k2+3k+1)−10k+3=a1+[(k+1)3−k3]−10k+3,所以a1+a3+a5+a7+⋯+a15=8a1+(23−13)+(33−23)+⋯+(93−83)−10×(1+8)×82+3×8=8a1+93−13−360+24=8a1+392.又前16项和为540,所以92+8a1+392=540,解得a1=7.【拓展结论】12+22+32+42+⋯+n2=n(n+1)(2n+1)6.三、解答题4. [2023全国卷甲,12分]记S n为数列{a n}的前n项和,已知a2=1,2S n= na n .(1)求{a n}的通项公式;[答案]当n=1时,2S1=a1,即2a1=a1,所以a1=0.当n≥2时,由2S n=na n,得2S n−1=(n−1)a n−1,两式相减得2a n=na n−(n−1)a n−1,即(n−1)a n−1=(n−2)a n,当n=2时,可得a1=0,故当n≥3时,a na n−1=n−1n−2,则a na n−1⋅a n−1a n−2⋅…⋅a3a2=n−1n−2⋅n−2n−3⋅…⋅21,整理得a na2=n−1,因为a2=1,所以a n=n−1(n≥3).当n=1,n=2时,均满足上式,所以a n=n−1.(2)求数列{a n+12n}的前n项和T n .[答案]令b n=a n+12n =n2n,则T n=b1+b2+⋯+b n−1+b n=12+222+⋯+n−12n−1+n2n①,1 2T n=122+223+⋯+n−12n+n2n+1②,由①−②得12T n=12+122+123+⋯+12n−n2n+1=12(1−12n)1−12−n2n+1=1−2+n2n+1,即T n=2−2+n2n.5. [2019全国卷Ⅱ,12分]已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1= 3a n−b n+4,4b n+1=3b n−a n−4 .(1)证明:{a n+b n}是等比数列,{a n−b n}是等差数列;[答案]由题设得4(a n+1+b n+1)=2(a n+b n),即a n+1+b n+1=12(a n+b n).又因为a1+b1=1,所以{a n+b n}是首项为1,公比为12的等比数列.由题设得4(a n+1−b n+1)=4(a n−b n)+8,即a n+1−b n+1=a n−b n+2.又因为a1−b1=1,所以{a n−b n}是首项为1,公差为2的等差数列.(2)求{a n}和{b n}的通项公式.[答案]由(1)知,a n+b n=12n−1,a n−b n=2n−1.所以a n=12[(a n+b n)+(a n−b n)]=12n+n−12,b n=12[(a n+b n)−(a n−b n)]=12n−n+12.【方法技巧】破解此类题的关键:一是用定义,即根据所给的等式的特征,将其转化为数列相邻两项的差(比)的关系,利用等差(比)数列的定义,即可证明数列为等差(比)数列;二是用公式,即会利用等差(比)数列的通项公式,得到各个数列的通项所满足的方程(组),解方程(组),即可求出数列的通项公式.【易错警示】在利用等差(比)数列的定义时,既需注意是从第二项起,又需注意是后项与前项的差(比),在运用等比数列的通项公式时,注意不要与等比数列的前n项和公式搞混.题组二解答题1. [2023新高考卷Ⅱ,12分]已知{a n}为等差数列,b n={a n−6,n为奇数2a n,n为偶数.记S n,T n分别为数列{a n} ,{b n}的前n项和,S4=32,T3=16 . (1)求{a n}的通项公式;[答案]设等差数列{a n}的公差为d.因为b n={a n−6,n为奇数, 2a n,n为偶数,所以b1=a1−6,b2=2a2=2a1+2d,b3=a3−6=a1+2d−6.(提示:由于数列{b n}是一个奇偶项数列,因此求项时需“对号入座”)因为S4=32,T3=16,所以{4a1+6d=32,(a1−6)+(2a1+2d)+(a1+2d−6)=16,(方法技巧:求等差数列的基本量时,常根据已知条件建立方程组求解)解得{a1=5,d=2,所以{a n}的通项公式为a n=2n+3.(提示:等差数列的通项公式为a n=a1+(n−1)d)(2)证明:当n>5时,T n>S n . [答案]由(1)知a n=2n+3,所以S n=n[5+(2n+3)〗2=n2+4n,b n={2n−3,n为奇数,4n+6,n为偶数,当n为奇数时,T n=(−1+14)+(3+22)+(7+30)+⋯+[(2n−7)+(4n+2)]+2n−3= [−1+3+7+⋯+(2n−7)+(2n−3)]+[14+22+30+⋯+(4n+2)]=n+12(−1+2n−3)2+n−12(14+4n+2)2=3n2+5n−102.(方法技巧:如果数列的奇数项、偶数项构成等差或等比数列,则求其前n项和时可以使用分组求和方法,使具有相同结构的部分求和,然后将结果相加、化简即可)当n>5时,T n−S n=3n2+5n−102−(n2+4n)=n2−3n−102=(n−5)(n+2)2>0,所以T n>S n.当n为偶数时,T n=(−1+14)+(3+22)+(7+30)+⋯+[(2n−5)+ (4n+6)]=[−1+3+7+⋯+(2n−5)]+[14+22+30+⋯+(4n+6)]= n2(−1+2n−5)2+n2(14+4n+6)2=3n2+7n2.当n>5时,T n−S n=3n2+7n2−(n2+4n)=n2−n2=n(n−1)2>0,所以T n>S n.综上可知,当n>5时,T n>S n.2. [2022新高考卷Ⅰ,10分]记S n为数列{a n}的前n项和,已知a1=1 ,{S na n}是公差为13的等差数列.(1)求{a n}的通项公式;[答案]因为a1=1,所以S1a1=1,又{S na n }是公差为13的等差数列,所以S na n =1+(n−1)×13=n+23.所以S n=n+23a n.因为当n≥2时,a n=S n−S n−1=n+23a n−n+13a n−1,所以n+13a n−1=n−13a n(n≥2),所以a na n−1=n+1n−1(n≥2),所以a2a1×a3a2×…×a n−1a n−2×a na n−1=31×42×53×…×nn−2×n+1n−1=n(n+1)2(n≥2),所以a n=n(n+1)2(n≥2),又a1=1也满足上式,所以a n=n(n+1)2(n∈N∗).(2)证明:1a1+1a2+⋯+1a n<2 .[答案]因为a n=n(n+1)2,所以1a n=2n(n+1)=2(1n−1n+1),所以1a1+1a2+⋯+1a n=2[(1−12)+(12−13)+⋯+(1n−1−1n)+(1n−1n+1)]=2(1−1n+1)<2.3. [2021全国卷乙,12分]记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n +1b n=2 .(1)证明:数列{b n}是等差数列. [答案]因为b n是数列{S n}的前n项积,所以n≥2时,S n=b nb n−1,代入2S n +1b n=2可得,2b n−1b n+1b n=2,整理可得2b n−1+1=2b n,即b n−b n−1=12(n≥2).又2S1+1b1=3b1=2,所以b1=32,故{b n}是以32为首项,12为公差的等差数列.(2)求{a n}的通项公式.[答案]由(1)可知,b n=n+22,则2S n+2n+2=2,所以S n=n+2n+1,当n=1时,a1=S1=32,当n≥2时,a n=S n−S n−1=n+2n+1−n+1n=−1n(n+1).故a n={32,n=1,−1n(n+1),n≥2.【易错警示】研究数列{a n}的通项与前n项和S n的关系时,一定要检验n=1的情况.4. [2021新高考卷Ⅰ,10分]已知数列{a n}满足a1=1 ,a n+1={a n+1,n为奇数, a n+2,n为偶数.(1)记b n=a2n ,写出b1 ,b2 ,并求数列{b n}的通项公式;[答案]因为b n=a2n,且a1=1,a n+1={a n+1,n为奇数, a n+2,n为偶数,所以b1=a2=a1+1=2,b2=a4=a3+1=a2+2+1=5.因为b n=a2n,所以b n+1=a2n+2=a2n+1+1=a2n+1+1=a2n+2+1=a2n+3,所以b n+1−b n=a2n+3−a2n=3,所以数列{b n}是以2为首项,3为公差的等差数列,b n=2+3(n−1)=3n−1,n∈N∗.(2)求{a n}的前20项和.[答案]因为a n+1={a n+1,n为奇数, a n+2,n为偶数,所以k∈N∗时,a2k=a2k−1+1=a2k−1+1,即a2k=a2k−1+1①,a2k+1=a2k+2②,a2k+2=a2k+1+1=a2k+1+1,即a2k+2=a2k+1+1③,所以①+②得a2k+1=a2k−1+3,即a2k+1−a2k−1=3,所以数列{a n}的奇数项是以1为首项,3为公差的等差数列;②+③得a2k+2=a2k+3,即a2k+2−a2k=3,又a2=2,所以数列{a n}的偶数项是以2为首项,3为公差的等差数列.所以数列{a n } 的前20项和S 20=(a 1+a 3+a 5+⋯+a 19)+(a 2+a 4+a 6+⋯+a 20)=10+10×92×3+20+10×92×3=300 .5. [2020全国卷Ⅲ,12分]设数列{a n } 满足a 1=3 ,a n+1=3a n −4n . (1) 计算a 2 ,a 3 ,猜想{a n } 的通项公式并加以证明; [答案]a 2=5 ,a 3=7 . 猜想a n =2n +1 .由已知可得 a n+1−(2n +3)=3[a n −(2n +1)] , a n −(2n +1)=3[a n−1−(2n −1)] , …a 2−5=3(a 1−3) .因为a 1=3 ,所以a n =2n +1 . (2) 求数列{2n a n } 的前n 项和S n . [答案]由(1)得2n a n =(2n +1)2n ,所以S n =3×2+5×22+7×23+⋯+(2n +1)×2n ①. 从而2S n =3×22+5×23+7×24+⋯+(2n +1)×2n+1 ②.①−② 得−S n =3×2+2×22+2×23+⋯+2×2n −(2n +1)×2n+1 . 所以S n =(2n −1)2n+1+2 .6. [2019天津,14分]设{a n } 是等差数列,{b n } 是等比数列.已知a 1=4 ,b 1=6 ,b 2=2a 2−2 ,b 3=2a 3+4 . (Ⅰ) 求{a n } 和{b n } 的通项公式;[答案]设等差数列{a n } 的公差为d ,等比数列{b n } 的公比为q .依题意得{6q =6+2d,6q 2=12+4d,解得{d =3,q =2, 故a n =4+(n −1)×3=3n +1 ,b n =6×2n−1=3×2n .所以{a n } 的通项公式为a n =3n +1 ,{b n } 的通项公式为b n =3×2n . (Ⅱ) 设数列{c n } 满足c 1=1 ,c n ={1,2k <n <2k+1,b k ,n =2k, 其中k ∈N ∗ . (ⅰ) 求数列{a 2n (c 2n −1)} 的通项公式;[答案]a 2n (c 2n −1)=a 2n (b n −1)=(3×2n +1)(3×2n −1)=9×4n −1 . 所以数列{a 2n (c 2n −1)} 的通项公式为a 2n (c 2n −1)=9×4n −1 .(ⅱ) 求∑2ni=1a i c i (n ∈N ∗) .[答案]∑2n i=1a i c i =∑2ni=1[a i +a i (c i −1)]=∑2ni=1a i +∑ni=1a 2i (c 2i −1)=[2n×4+2n (2n −1)2×3]+∑ni=1(9×4i −1)=(3×22n−1+5×2n−1)+9×4(1−4n )1−4−n=27×22n−1+5×2n−1−n −12(n ∈N ∗) .考点20 数列的综合应用题组一一、选择题1. [2021北京,4分]数列{a n } 是递增的整数数列,且a 1≥3 ,a 1+a 2+a 3+⋯+a n =100 ,则n 的最大值为( C ) A. 9B. 10C. 11D. 12[解析]因为数列{a n } 满足三个特征,整数数列,递增,前n 项和为100,所以欲求n 的最大值,需要保证a k+1−a k (k ≤n −1) 的值取最小的正整数.又a 1≥3 ,故可取a 1=3 ,a k+1−a k =1 ,则数列{a n } 的前10项为3,4,5,6,7,8,9,10,11,12,第11项a 11=100−(3+4+5+6+7+8+9+10+11+12)=25 ,满足题意,取数列{a n } 的前11项为3,4,5,6,7,8,9,10,11,12,13,则第12项a 12=100−(3+4+5+6+7+8+9+10+11+12+13)=12 ,不满足题意,故n 的最大值为11.二、填空题2. [2020江苏,5分]设{a n } 是公差为d 的等差数列,{b n } 是公比为q 的等比数列.已知数列{a n +b n } 的前n 项和S n =n 2−n +2n −1(n ∈N ∗) ,则d +q 的值是4.[解析]解法一 当n =1 时,S 1=a 1+b 1=1 ①,当n ≥2 时,a n +b n =S n −S n−1=2n −2+2n−1 ,则a 2+b 2=4 ②,a 3+b 3=8 ③,a 4+b 4=14 ④,②−① 得d +b 1(q −1)=3 ⑤,③−② 得d +b 2(q −1)=4 ⑥,④−③ 得d +b 3(q −1)=6 ⑦,⑥−⑤ 得b 1(q −1)2=1 ,⑦−⑥ 得b 2(q −1)2=2 ,则q =2 ,b 1=1 ,d =2 ,所以d +q =4 .解法二 由题意可得S 1=a 1+b 1=1 ,当n ≥2 时,a n +b n =S n −S n−1=2n −2+2n−1 ,易知当n =1 时也成立,则a 1+(n −1)d +b 1q n−1=dn +a 1−d +b 1q n−1=2n −2+2n−1 对任意正整数n 恒成立,则d =2 ,q =2 ,d +q =4 . 【速解】 由等差数列和等比数列的前n 项和的特征可得等差数列{a n } 的前n 项和H n =n 2−n ,等比数列{b n } 的前n 项和T n =2n −1 ,则d =2 ,q =2 ,d +q =4 .【方法技巧】 公差为d 的等差数列{a n } 的前n 项和S n =An 2+Bn ,其中A =d2 ,B =a 1−d 2 ;公比为q 的等比数列{b n } 的前n 项和T n =C −Cq n,其中C =b11−q(公比q 不等于1).三、解答题3. [2023天津,15分]已知数列{a n } 是等差数列,a 2+a 5=16 ,a 5−a 3=4 . (1) 求{a n } 的通项公式和∑2n −1i=2n−1a i .[答案]设{a n } 的公差为d , 由{a 2+a 5=16,a 5−a 3=4, 得{a 1+d +a 1+4d =16,a 1+4d −(a 1+2d )=4,解得{a 1=3,d =2,所以{a n } 的通项公式为a n =3+2(n −1)=2n +1 .a 2n−1=2⋅2n−1+1=2n +1 ,a 2n −1=2(2n −1)+1=2n+1−1 .(易错:不要把a 2n−1 和a 2n −1 的表达式理解成等比数列的通项公式)从a 2n−1 到a 2n −1 共有2n −1−2n−1+1=2n−1 (项).(提醒:下标相减算项数时要加1) 所以∑2n −1i=2n−1a i =(2n +1+2n+1−1)⋅2n−12=(2n +2⋅2n )⋅2n−12=3⋅2n ⋅2n−12=3⋅22n−2 .( 或∑2n −1i=2n−1a i =2n−1⋅(2n+1)+2n−1(2n−1−1)2⋅2=3⋅22n−2)(2) 已知{b n } 为等比数列,对于任意k ∈N ∗,若2k−1≤n ≤2k −1 ,则b k <a n <b k+1 .(ⅰ) 当k ≥2 时,求证:2k −1<b k <2k +1 ; [答案]因为当2k−1≤n ≤2k −1 时,b k <a n <b k+1 , 所以当2k ≤n +1≤2k+1−1 时,b k+1<a n+1<b k+2 , 可得a n <b k+1<a n+1 .因为{a n}为递增数列,所以若2k−1≤n≤2k−1,则a2k−1≤a n≤a2k−1,得2k+ 1≤a n≤2k+1−1.同理可得2k+1+1≤a n+1≤2k+2−1.故可得2k+1−1<b k+1<2k+1+1,(提醒:大于大的,小于小的)所以2k−1<b k<2k+1.综上,当k≥2时,2k−1<b k<2k+1.(ⅱ)求{b n}的通项公式及其前n项和.[答案]由题意知{b n}是q≠1的正项等比数列,(若q=1,则{b n}为常数列,与(i)矛盾)设{b n}的通项公式为b n=p⋅q n(p>0,q>0且q≠1),(点拨:若设成b n= b1⋅q n−1,不利于下一步的化简)由(i)知,2n−1<b n<2n+1,即2n−1<p⋅q n<2n+1,则有1−12n <p⋅(q2)n<1+12n.①当q2>1,即q>2时,∃n0∈N∗,使得p⋅(q2)n0>2,与p⋅(q2)n0<1+12n0矛盾;②当0<q2<1,q≠1,即0<q<2且q≠1时,∃n1∈N∗,使得p⋅(q2)n1<12,与p⋅(q2)n1>1−12n1矛盾.故q=2.(思路引导:从(i)的结论可以观察出b n=2n,通过反证法证明q>2和0<q<2且q≠1时不等式不成立,从而得到q=2)因为2n−1<b n<2n+1,所以b n=2n.设{b n}的前n项和为S n,则S n=2(1−2n)1−2=2n+1−2.4. [2022新高考卷Ⅱ,10分]已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4 .(1)证明:a1=b1 ;[答案]设等差数列{a n}的公差为d,由a2−b2=a3−b3得a1+d−2b1=a1+2d−4b1,即d=2b1,由a2−b2=b4−a4得a1+d−2b1=8b1−(a1+3d),即a1=5b1−2d,将d=2b1代入,得a1=5b1−2×2b1=b1,即a1=b1.。

全国卷历年高考数列真题归类分析(含答案)

全国卷历年高考数列真题归类分析(含答案)

全国卷历年高考数列真题归类分析(含答案)1.(2016年1卷3)已知等差数列{an}前9项的和为27,a10=8,则求a100.解析:由已知,9a1+36d=27,a1+9d=8,解得a1=-1,d=1,a100=a1+99d=-1+99=98,选C。

2.(2017年1卷4)记Sn为等差数列{an}的前n项和,若a4+a5=24,S6=48,则{an}的公差为多少?解析:S6=48,即a1+a6=16,a4+a5=24,代入公差d的通项公式an=a1+(n-1)d,得到a8-a6=8=2d,故d=4,选C。

3.(2017年3卷9)等差数列{an}的首项为1,公差不为0.若a2、a3、a6成等比数列,则{an}前6项的和为多少?解析:设公差为d,则a3(a1+2d)=(a1+d)(a1+5d),代入a1=1解得d=-2,故a6=a1+5d=-9,前6项和为S6=6a1+15d=-24,选A。

4.(2017年2卷15)等差数列{an}的前项和为Sn,则1=∑k=1nSk,求an。

解析:设a1=1,d=2,Sn=n(2a1+(n-1)d)/2=n(n+1),代入an=a1+(n-1)d=2n-1,故1=∑k=1nSk=∑k=1n(k+1)-(k-1)=2n,故n=1/2,代入an=2n-1=-1,选D。

5.(2016年2卷17)Sn为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lga1+2Sn-1]/[lga1+2],求b7.解析:由等差数列前n项和的通项公式Sn=n(2a1+(n-1)d)/2=n(2+(n-1)d)/2,代入a1=1,S7=28,得到d=4,an=1+4(n-1)=4n-3,代入bn=[lga1+2Sn-1]/[lga1+2],得到b7=[XXX(2×28-1)]/[lg3]=2,选B。

题目一:求等比数列中的数值要求:改写成完整的句子,避免使用符号表示1.求b1,b11,b101;2.求数列{bn}的前1000项和。

高考数列测试题及答案

高考数列测试题及答案

高考数列测试题及答案一、选择题(每题4分,共20分)1. 下列数列中,哪一个是等差数列?A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 2, 4, 8, 16D. 3, 5, 7, 11, 13答案:A2. 已知数列{a_n}的通项公式为a_n = 2n - 1,求a_5的值。

A. 7B. 9C. 11D. 13答案:C3. 等比数列{b_n}中,b_1 = 2,公比q = 3,求b_4的值。

A. 24B. 48C. 72D. 96答案:C4. 已知数列{c_n}的前n项和S_n = n^2 + 2n,求c_3的值。

A. 7B. 8C. 9D. 10答案:A5. 等差数列{d_n}中,d_1 = 3,d_2 = 7,求d_5的值。

A. 17B. 19C. 21D. 23答案:A二、填空题(每题4分,共20分)6. 等差数列{e_n}中,e_3 = 10,e_5 = 16,求公差d。

答案:37. 等比数列{f_n}中,f_1 = 4,f_3 = 64,求公比q。

答案:48. 已知数列{g_n}的前n项和S_n = 3n^2 + 5n,求g_2的值。

答案:119. 等差数列{h_n}中,h_1 = 5,h_3 = 17,求h_5的值。

答案:2910. 等比数列{i_n}中,i_1 = 2,i_4 = 64,求i_2的值。

答案:4三、解答题(每题15分,共30分)11. 已知数列{j_n}是等差数列,且j_1 = 1,j_2 + j_3 = 10,求数列{j_n}的通项公式。

解答:设数列{j_n}的公差为d,则j_2 = 1 + d,j_3 = 1 + 2d。

根据题意,有(1 + d) + (1 + 2d) = 10,解得d = 3。

因此,数列{j_n}的通项公式为j_n = 1 + 3(n - 1) = 3n - 2。

12. 已知数列{k_n}是等比数列,且k_1 = 6,k_2 = 9,求数列{k_n}的前5项和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国卷数列高考题汇总附答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】数列专题高考真题(2014·I) 17. (本小题满分12分)已知数列{a a}的前a项和为a a,a1=1,a a≠0,a a a a+1=aa a−1,其中a为常数.(Ⅰ)证明:a a+2−a a=a;(Ⅱ)是否存在a,使得{a a}为等差数列并说明理由.(2014·II) 17.(本小题满分12分)已知数列{a a}满足a1=1,a a+1=3a a+1.(Ⅰ)证明{a a+12}是等比数列,并求{a a}的通项公式;(Ⅱ)证明:1a1+1a2+⋯+1a a<32.(2015·I)(17)(本小题满分12分)a a为数列{a a}的前a项和.已知a a>0,a a2+2a a=4a a+3,(Ⅰ)求{a a}的通项公式:(Ⅱ)设a a=1a a a a+1,求数列{a a}的前a项和。

(2015·I I)(4)等比数列{a a}满足a1=3(A)21 (B)42 (C)63 (D)84(2015·I I)(16n.(2016·I)(3)已知等差数列{a a}前9项的和为27,a10=8,则a100=(A)100 (B)99 (C)98 (D)97(2016·I)(15)设等比数列{a a}满足a1+a3=10,a2+a4=5,则a1a2…a a的最大值为__________。

(2016·II)(17)(本题满分12分)S为等差数列{a a}的前a项和,且a1=1 ,a7=28 记a a=[aaa a a],其中n[a]表示不超过a的最大整数,如[0.9]=0,[aa99]=1.(I)求a1,a11,a101;(II)求数列{a a}的前1 000项和.(2016·III)(12)定义“规范01数列”{a a}如下:{a a}共有2a项,其中a项为0,a项为1,且对任意a≤2a,a1,a2,,a a中0的个数不少于1的个数.若a=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个(2016·III)(17)(本小题满分12分)已知数列{a n}的前a项和S n=1+aa a,其中a≠0(I)证明{a n}是等比数列,并求其通项公式;,求a.(II)若S n=3132(2017·I)4A.1 B.2 C.4D.8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。

为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,162的整数幂。

那么该款软件的激活码是A.440 B.330 C.220D.110(2017·I I)15.(2017·I II)9.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为A.-24 B.-3 C.3D.8(2017·I II)14.设等比数列{a a}满足a1+a2=−1,a1−a3=−3,则a4=________.(2018·I)4.记a a为等差数列{a a}的前a项和.若3a3=a2+a4,a1=2,则a5=A.−12B.−10C.10D.12(2018·I)14..(2018·II)17.(12分)(1(2(2018·III)17.(12分)(1(2(2019·I)9{a a}的前a项和.已知a4=0,a5=5,则A.a a=2a−5 B.a a=3a−10 C.a a=2a2−8a D.a a=12a2−2a(2019·I) 14{a a }的前a 项和.若a 1=13,a 42=a 6,则a 5=____________. (2019·II)5.已知各项均为正数的等比数列{a a }的前4项和为15,且a 5=3a 3+4a 1,则a 3=A .16B .8C .4D .2(2019·II)14{a a }的前a 项和,a 1≠0,a 2=3a 1,则a 10a 5=___________.(2019·III)19.(12分)已知数列{a a }和{a a }满足a 1=1,a 1=0,4a a +1=3a a −a a +4,4a a +1=3a a −a a −4(1)证明:{a a +a a }是等比数列,{a a −a a }是等差数列; (2)求{a a }和{a a }的通项公式.数列专题参考答案(2014·I) 17.(Ⅰ)由题设,a a a a+1=aa a−1,a a+1a a+2=aa a+1−1两式相减得a a+1(a a+2−a a)=aa a+1,由于a a+1≠0,∴a a+2−a a=a………………………………………6分(Ⅱ)a1a2=aa1−1=aa1−1,而a1=1,解得a2=a−1,由(Ⅰ)知a3=a+a2令2a2=a1+a3,解得a=4。

故a a+2−a a=4,由此可得{a2a−1}是首项为1,公差为4的等差数列,a2a−1=4a−3;{a2a}是首项为3,公差为4的等差数列,a2a=4a−1。

所以a a=2a−1,a a+1−a a=2因此存在a=4,使得{a a}为等差数列。

…………………………………12分(2014·II) 17.(Ⅰ)证明:由a a+1=3a a+1得a a+1+12=3(a a+12)又a1+12=32,所以{a a+12}是首项为32,公比为3的等比数列a a+12=3a2,因此{a a}的通项公式为a a=3a−12(Ⅱ)由(Ⅰ)知1a a =23a−1因为当a≥1时,3a−1≥2×3a−1,所以13a−1≤12×3a−1于是1a1+1a2+1a3+?+1a a<1+131+132+?+13a−1=1−13a1−13=32(1−13a)<32所以1a1+1a2+1a3+?+1a a<32(2015·I)(17)解:(Ⅰ)由a a 2+2a a =4a a +3,可知a a +12+2a a +1=4a a +1+3 可得a a +12−a a 2+2(a a +1−a a )=4a a +1,即2(a a +1+a a )=a a +12−a a 2=(a a +1+a a )(a a +1−a a )由于a a >0,可得a a +1−a a =2又a 12+2a 1=4a 1+3,解得a 1=−1(舍去),a 1=3所以{a a }是首项为3,公差为2的等差数列,通项公式为a a =2a +1…………………6分 (Ⅱ)由a a =2a +1可知a a =1a a a a +1=1(2a +1)(2a +3)=12(12a +1−12a +3)设数列{a a }的前a 项和为a a ,则a a =a 1+a 2+...+a a=12[(13−15)+(15−17)+...+(12a +1−12a +3)]=a3(2a +3)…………………………………………………………………………12分 (2016·II)17. (Ⅰ)先求公差、通项,再根据已知条件求;(Ⅱ)用分段函数表示,再由等差数列的前项和公式求数列的前1 000项和. 试题解析:(Ⅰ)设的公差为,据已知有,解得所以的通项公式为(Ⅱ)因为所以数列的前项和为考点:等差数列的的性质,前项和公式,对数的运算. (2016·III)(17)解:(Ⅰ)由题意得a 1=a 1=1+aa 1,故a ≠1,a 1=11−a ,a 1≠0.由a a =1+aa a ,a a +1=1+aa a +1得a a +1=aa a +1−aa a ,即a a +1(a −1)=aa a .由a 1≠0,a ≠0得a a ≠0,所以a a +1a a=aa −1.因此{a a }是首项为11−a ,公比为aa −1的等比数列,于是a a =11−a (aa −1)a −1. (Ⅱ)由(Ⅰ)得a a =1−(a a −1)a ,由a 5=3132得1−(a a −1)5=3132,即=-5)1(λλ132,解得a =−1.(2018·II)17.(1)设{}n a 的公差为d ,由题意得13315a d +=-. 由17a =-得d =2.所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当n =4时,n S 取得最小值,最小值为?16.(2018·III)17.解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.(2019·III)19.解:(1)由题设得4(a a+1+a a+1)=2(a a+a a),即a a+1+a a+1=12(a a+a a).又因为a1+b1=l,所以{a a+a a}是首项为1,公比为12的等比数列.由题设得4(a a+1−a a+1)=4(a a−a a)+8,即a a+1−a a+1=a a−a a+2.又因为a1–b1=l,所以{a a−a a}是首项为1,公差为2的等差数列.(2)由(1)知,a a+a a=12a−1,a a−a a=2a−1.所以a a=12[(a a+a a)+(a a−a a)]=12a+a−12,a a=12[(a a+a a)−(a a−a a)]=12a−a+12.。

相关文档
最新文档