1.1.1 正弦定理(二)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场景记忆法小妙招
超级记忆法--身 体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆 方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产生 一 些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物, 正 常在我们常识中不可能发生的事情,会让我们印象更深。
身体记忆法小妙招
超级记忆法--故 事法
• 鲁迅本名:周树人
• 主要作品:《阿Q正传》、、 《药 》、
• 《狂人日记》、《呐喊》、《孔 乙己》
• 《故乡》、《社戏》、《祝福》(图片来自网络) 。
超级记忆法-记忆 方法
TIP1:NPC代入,把自己想成其中的人物,会让自己的记忆过程更加有趣 (比如你穿越回去,成为了岳飞的母亲,你会在什么背景下怀着怎样的心情在 背 上刺下“精忠报国”四个字);
TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
高效学习模型-内外脑 模型
2
内脑- 思考内化
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆 规律
记忆前
选择记忆的黄金时段
前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
案例式 学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必 备习惯
积极 主动
以终 为始
分清 主次
不断 更新
高效学习模型
高效学习模型-学习的完 整过程
方向
资料
筛选
认知
高效学习模型-学习的完 整过程
消化
固化
模式
Baidu Nhomakorabea
拓展
小思 考
TIP1:听懂看到≈认知获取;
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
也可取锐角; (4)若a≥b,则此时只有一解,即角B需取锐角.
C a
b a
A B B B′
B
设在△ABC中,已知a、b、A的值,则解该三角形 可能出现以下情况: 2.若A是钝角或直角 (1)若a > b,则此时只有一解,即角B需取锐角; (2)若a≤b,则此时无解.
C
a b
C a
b
A
B
A
B
讨论已知两边和一边对角的三角形的解:
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
Know--X分类法
费曼学习法--
实操
第二步 根据参考,复述你所获得的主要内容
(二) 根 据 参 考 复 述
1.参照教材、辅导书或笔记复述主要内容; 2.复述并不是照着读出来或死记硬背,而是用自己的话去理解 ,想象如果你要把
a sin
A
b sin
B
c sin C
=2R
(R为△ABC外接圆半径)
a 2R sin A, b 2R sin B, c 2R sin C(边换角)
sin A a ,sin B b ,sin C c (角换边)
2R
2R
2R
sin A : sin B : sin C a : b : c
1.1.1 正弦定理
回顾
一、正弦定理: a b c 2R sin A sin B sin C
二、可以用正弦定理解决的三角问题: ①知两角及一边,求其它的边和角
②知三角形任意两边及其中一边的对角,求 其它的边和角
练习:若ΔABC满足下列条件,求角B
(1) b=20,A=60°,a= 20 3 ; 30o
(图片来自网络)
1 费曼学习法--实操步骤 获取并理解
2 根据参考复述
费
3 仅靠大脑复述
曼
4 循环强化
学
5 反思总结
习
6 实践检验
法
费曼学习法--
实操
第一步 获取并理解你要学习的内容
(一) 理 解 并 获 取
1.知识获取并非多多益善,少而精效果反而可能更好,建议入门时选择一个概念或 知识点尝试就好,熟练使用后,再逐渐增加,但也不建议一次性数量过多(根据自 己实际情况,参考学霸的建议进行筛选); 2.注意用心体会“理解”的含义。很多同学由于学习内容多,时间紧迫,所以更 加急于求成,匆匆扫一眼书本,就以为理解了,结果一合上书就什么都不记得了。 想要理解,建议至少把书翻三遍。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
超级记忆法-记忆 规律
TIP1:我们可以选择恰当的记忆数量——7组之内! TIP2:很多我们觉得比较容易背的古诗词,大多不超过七个字,很大程度上也 是因 为在“魔力之七”范围内的缘故。我们可以把要记忆的内容拆解组合控制 在7组之 内(每一组不代表只有一个字哦,这7组中的每一组容量可适当加大)。 TIP3:比 如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3 组就可以了,记忆效率也会大大提高。
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
B
a=bsinA 一解
思考:小强有一根长为40cm的木棒,若他打算以该木棒
为边做一个三角形的木架,形状如下图所示,则另外还要 找两根多长的木棒?(精确到0.1cm)
C
40cm
30
A
45
D
B
【学习力-学习方法】
(2) b=20,A=60°,a= 10 3 ; 90o
(3) b=20,A=60°,a=15. 无解 思考:若ΔABC中 b=20,A=60°,当a为何值 角B有1解、2解、无解
设在△ABC中,已知a、b、A的值,则解该三角形 可能出现以下情况: 1.若A是锐角 (1)若a < bsinA,则此时无解; (2)若a = bsinA,则此时恰有一解,即角B为直角; (3)若bsinA< a <b,则此时有两解,即角B可取钝角,
如何利用规律实现更好记忆呢?
超级记忆法-记忆
规律
记忆后
选择巩固记忆的时间 艾宾浩斯遗忘曲线
超级记忆法-记忆 规律
TIP1:我们可以选择巩固记忆的时间! TIP2:人的记忆周期分为短期记忆和长期记忆两种。 第一个记忆周期是 5分钟 第二个记忆周期是30分钟 第三个记忆周期是12小时 这三个记忆周期属于短期记忆的范畴。
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4 天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆呢?
超级记忆法--场 景法
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是
等腰直角三角形
2、已知△ABC中,B=30o,C=120o,则a:b:c=
例3、在ABC中,若
a2 b2
tan A , 试判断ABC的形状 tan B
解:由正弦定理,得
sin2 sin2
A B
tan tan
A B
sin2 sin2
A B
sin cos
A A
cos sin
B B
sin A 0,sin B 0,
sin Acos A sin Bcos B,即sin2A sin2B
∴ sin A sin B sin C
故由正弦定理可得a≥b≥c
(2)若△ABC是钝角三角形,则∠A为钝角
∴-∠A<
2
,且-∠A=∠B+∠C>∠B≥∠C
∴ sin( A) sin B sin C
即 sin A sin B sin C
∴由正弦定理可得a>b≥c
三、小结:正弦定理,两种应用 已知两边和其中一边对角解斜三角形有两解 或一解(见图示)
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
1第一遍知道大概说了什么就行;
2第二遍知道哪块是重点;
3第三遍可以做出一些判断。
高效学习逻辑 思维
事实知识(know--what):知道是什么的知识, 主要叙述事实方面的知识; 原理知识(know--why):知道为什么的知识, 主 要是自然原理和规律方面的知识; 技能知识(know--how):知道怎么做的知识, 主要是对某些事物的技能和能力; 人力知识(know--who):知道是谁的知识, 主 要是谁知道以及谁知道如何做某些事的能力;
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编 故事时,让自己脑洞大开,尝试夸张怪诞些~
故事记忆法小妙招
费曼学习法
费曼学习法-简介
理查德·菲利普斯·费曼 (Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解, 这也是这个学习法命名的由来!
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论:
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆 方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧 室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从 左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
1:1: 3
变式训练
在ABC中,角A、B、C的对边分别 为a、b、c,若AB AC = BA BC = 1,c = 2.
(1)判断ABC的形状; (2)若 AB AC 6,求ABC的面积
答案:等腰三角形
3
2
小结:
一、正弦定理: a b c 2R sin A sin B sin C
其中,R是△ABC的外接圆的半径
超级记忆法--身 体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统
超级记忆法-记忆 方法
TIP1:在使用身体记忆法时,可以与前面提到过的五感法结合起来,比如产生 一 些听觉、视觉、触觉、嗅觉、味觉,记忆印象会更加深刻; TIP2:采用一些怪诞夸张的方法,比如上面例子中腿上面生长出了很多植物, 正 常在我们常识中不可能发生的事情,会让我们印象更深。
身体记忆法小妙招
超级记忆法--故 事法
• 鲁迅本名:周树人
• 主要作品:《阿Q正传》、、 《药 》、
• 《狂人日记》、《呐喊》、《孔 乙己》
• 《故乡》、《社戏》、《祝福》(图片来自网络) 。
超级记忆法-记忆 方法
TIP1:NPC代入,把自己想成其中的人物,会让自己的记忆过程更加有趣 (比如你穿越回去,成为了岳飞的母亲,你会在什么背景下怀着怎样的心情在 背 上刺下“精忠报国”四个字);
TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
高效学习模型-内外脑 模型
2
内脑- 思考内化
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆 规律
记忆前
选择记忆的黄金时段
前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
案例式 学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必 备习惯
积极 主动
以终 为始
分清 主次
不断 更新
高效学习模型
高效学习模型-学习的完 整过程
方向
资料
筛选
认知
高效学习模型-学习的完 整过程
消化
固化
模式
Baidu Nhomakorabea
拓展
小思 考
TIP1:听懂看到≈认知获取;
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
也可取锐角; (4)若a≥b,则此时只有一解,即角B需取锐角.
C a
b a
A B B B′
B
设在△ABC中,已知a、b、A的值,则解该三角形 可能出现以下情况: 2.若A是钝角或直角 (1)若a > b,则此时只有一解,即角B需取锐角; (2)若a≤b,则此时无解.
C
a b
C a
b
A
B
A
B
讨论已知两边和一边对角的三角形的解:
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
Know--X分类法
费曼学习法--
实操
第二步 根据参考,复述你所获得的主要内容
(二) 根 据 参 考 复 述
1.参照教材、辅导书或笔记复述主要内容; 2.复述并不是照着读出来或死记硬背,而是用自己的话去理解 ,想象如果你要把
a sin
A
b sin
B
c sin C
=2R
(R为△ABC外接圆半径)
a 2R sin A, b 2R sin B, c 2R sin C(边换角)
sin A a ,sin B b ,sin C c (角换边)
2R
2R
2R
sin A : sin B : sin C a : b : c
1.1.1 正弦定理
回顾
一、正弦定理: a b c 2R sin A sin B sin C
二、可以用正弦定理解决的三角问题: ①知两角及一边,求其它的边和角
②知三角形任意两边及其中一边的对角,求 其它的边和角
练习:若ΔABC满足下列条件,求角B
(1) b=20,A=60°,a= 20 3 ; 30o
(图片来自网络)
1 费曼学习法--实操步骤 获取并理解
2 根据参考复述
费
3 仅靠大脑复述
曼
4 循环强化
学
5 反思总结
习
6 实践检验
法
费曼学习法--
实操
第一步 获取并理解你要学习的内容
(一) 理 解 并 获 取
1.知识获取并非多多益善,少而精效果反而可能更好,建议入门时选择一个概念或 知识点尝试就好,熟练使用后,再逐渐增加,但也不建议一次性数量过多(根据自 己实际情况,参考学霸的建议进行筛选); 2.注意用心体会“理解”的含义。很多同学由于学习内容多,时间紧迫,所以更 加急于求成,匆匆扫一眼书本,就以为理解了,结果一合上书就什么都不记得了。 想要理解,建议至少把书翻三遍。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
超级记忆法-记忆 规律
TIP1:我们可以选择恰当的记忆数量——7组之内! TIP2:很多我们觉得比较容易背的古诗词,大多不超过七个字,很大程度上也 是因 为在“魔力之七”范围内的缘故。我们可以把要记忆的内容拆解组合控制 在7组之 内(每一组不代表只有一个字哦,这7组中的每一组容量可适当加大)。 TIP3:比 如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3 组就可以了,记忆效率也会大大提高。
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
B
a=bsinA 一解
思考:小强有一根长为40cm的木棒,若他打算以该木棒
为边做一个三角形的木架,形状如下图所示,则另外还要 找两根多长的木棒?(精确到0.1cm)
C
40cm
30
A
45
D
B
【学习力-学习方法】
(2) b=20,A=60°,a= 10 3 ; 90o
(3) b=20,A=60°,a=15. 无解 思考:若ΔABC中 b=20,A=60°,当a为何值 角B有1解、2解、无解
设在△ABC中,已知a、b、A的值,则解该三角形 可能出现以下情况: 1.若A是锐角 (1)若a < bsinA,则此时无解; (2)若a = bsinA,则此时恰有一解,即角B为直角; (3)若bsinA< a <b,则此时有两解,即角B可取钝角,
如何利用规律实现更好记忆呢?
超级记忆法-记忆
规律
记忆后
选择巩固记忆的时间 艾宾浩斯遗忘曲线
超级记忆法-记忆 规律
TIP1:我们可以选择巩固记忆的时间! TIP2:人的记忆周期分为短期记忆和长期记忆两种。 第一个记忆周期是 5分钟 第二个记忆周期是30分钟 第三个记忆周期是12小时 这三个记忆周期属于短期记忆的范畴。
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4 天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆呢?
超级记忆法--场 景法
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是
等腰直角三角形
2、已知△ABC中,B=30o,C=120o,则a:b:c=
例3、在ABC中,若
a2 b2
tan A , 试判断ABC的形状 tan B
解:由正弦定理,得
sin2 sin2
A B
tan tan
A B
sin2 sin2
A B
sin cos
A A
cos sin
B B
sin A 0,sin B 0,
sin Acos A sin Bcos B,即sin2A sin2B
∴ sin A sin B sin C
故由正弦定理可得a≥b≥c
(2)若△ABC是钝角三角形,则∠A为钝角
∴-∠A<
2
,且-∠A=∠B+∠C>∠B≥∠C
∴ sin( A) sin B sin C
即 sin A sin B sin C
∴由正弦定理可得a>b≥c
三、小结:正弦定理,两种应用 已知两边和其中一边对角解斜三角形有两解 或一解(见图示)
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
1第一遍知道大概说了什么就行;
2第二遍知道哪块是重点;
3第三遍可以做出一些判断。
高效学习逻辑 思维
事实知识(know--what):知道是什么的知识, 主要叙述事实方面的知识; 原理知识(know--why):知道为什么的知识, 主 要是自然原理和规律方面的知识; 技能知识(know--how):知道怎么做的知识, 主要是对某些事物的技能和能力; 人力知识(know--who):知道是谁的知识, 主 要是谁知道以及谁知道如何做某些事的能力;
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编 故事时,让自己脑洞大开,尝试夸张怪诞些~
故事记忆法小妙招
费曼学习法
费曼学习法-简介
理查德·菲利普斯·费曼 (Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解, 这也是这个学习法命名的由来!
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论:
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆 方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧 室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从 左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
1:1: 3
变式训练
在ABC中,角A、B、C的对边分别 为a、b、c,若AB AC = BA BC = 1,c = 2.
(1)判断ABC的形状; (2)若 AB AC 6,求ABC的面积
答案:等腰三角形
3
2
小结:
一、正弦定理: a b c 2R sin A sin B sin C
其中,R是△ABC的外接圆的半径