M序列发生器

合集下载

m序列发生器的作用

m序列发生器的作用

m序列发生器的作用
m序列发生器是一种能够产生伪随机序列的电子设备或算法。

它的主要作用有:
1. 加密通信:m序列发生器可以用于生成加密密钥序列,用于对通信数据进行加密,保护通信内容的安全性。

2. 伪随机数生成:m序列发生器可以用于生成伪随机数序列,可以应用在密码学中的伪随机数生成算法、模拟实验、随机化算法等应用中。

3. 信号处理:m序列发生器可以用于产生具有特定性质的信号序列,如具有较好频谱特性的序列、跳频信号序列等,广泛应用于通信领域、雷达系统、无线电测量等各种信号处理应用中。

4. 探测器测试:m序列发生器可以用于对数字通信中的接收机进行性能测试,通过与已知正常输入进行比较,可以检测接收机的误码率、误比特率、误帧率等性能指标。

总之,m序列发生器的作用主要体现在加密通讯、伪随机数生成、信号处理和探测器测试等方面。

M序列发生器

M序列发生器

M 序列发生器M 序列(即De Bruijn 序列)又叫做伪随机序列、伪噪声(PN)码或伪随机码。

可以预先确定并且可以重复实现的序列称为确定序列;既不能预先确定又不能重复实现的序列称随机序列;不能预先确定但可以重复产生的序列称伪随机序列。

m 序列发生器是一种反馈移位型结构的电路,它由n 级移位寄存器加异或反馈网络组成,其生成序列长度p =2n -1,且只有1 个冗余状态即全0 状态,所以称为最长线性反馈移位寄存器序列。

由于带有反馈,因此在移位脉冲作用下,移位寄存器各级的状态将不断变化,通常移位寄存器的最后一级做输出,输出序列为[a k ]=a 0a 1…a n -1…。

其组成框图如图3.1所示。

输出序列是一个周期序列,其特性由移位寄存器的级数、初始状态、反馈逻辑以及时钟速率(决定着输出码元的宽度)所决定。

当移位寄存器的级数与时钟确定时,输出序列就由移位寄存器的初始状态和反馈逻辑所完全确定。

当初始状态为全零状态时,移位寄存器输出全0 序列。

为了避免这种情况,需设置全0 排除电路。

数字基带信号V 1的本原多项式为84321)(x x x x x f ++++=,作为8级m 序列其最长时间周期为28-1=255,即第2,3,4,8级参与反馈经异或后送入第1 级。

所设计的8级m 序列如图3.3所示。

图3.1 m 序列组成框图a n-11a n-22a 1n-1a 0n C 1C 2C n-1C n =1C 0=1输出{a k }依据上图原理,设计了一种通过手动置数产生M 序列的电路,其电路设计如图3.4所示,该图由Protel SE99绘制,再根据该图搭建硬件电路,图中的单刀开关可以用拨码开关代替。

电路分析:全0状态时,采用此方法设计的m 序列发生器不具有自启动特性。

为了使电路启动,可以断开开关S 1,将74LS194 的工作方式控制端S 1置高电平,这时S 1和S 0均为高电平,即S 1S 0=11,74LS194 处于置数状态,把输入端的初始状态10000000 置到输出端。

基于VHDL的多波形m序列发生器的设计

基于VHDL的多波形m序列发生器的设计

1 、引言
VHDL(超高速硬件描述语言)是一种 符合 I E E E 工业标准的硬件描述语言,在 EDA(电子设计自动化)领域得到广泛的 应用。应用 VHDL 进行电子系统设计,可 以使用自顶向下的设计方法,设计成果标 准化,可移植性好,具有与硬件无关的特 性,因此特别适合于大规模的专用电子系 统的开发。
3.2 一般情况 为了得到纳米摩擦在一般情况下的规 律性,模拟过程中设置了相关可调参数,如 表 1 所示。 在 KBT=0.1 ε,势能 u0(0.01 ε~0.04 ε),UP(0.03~0.09),UA(0.03~0.09)情况 下,模拟 C 在(0.03~0.09)之间对摩擦系数 的影响。图 3 给出了不同势能 u0 大小,不 同 UP,UA 情况下得到的摩擦系数的倒数 随 C 的变化曲线。 由图可以看出,最显著的特点是在不 同摩擦条件下的摩擦系数倒数曲线随 C 的 变化在 C=0.5 处出现了汇聚且出现最小值, 而在两侧则离散增加。当 C=0.5 时出现摩 擦系数倒数最小值,也就是出现了摩擦系 数最大值,即在完全匹配的情况下出现摩 擦最大值。完全匹配处之所以出现摩擦最 大值的原因在于此时所有的附加原子步伐 统一,能够同时受到衬底原子的拉力而加 速移动,又能够同时受到阻力减速,相互之 间无法将能量转化为势能保存,而只能以 热量的形式进行耗散。曲线的聚合同时说 明对于纳米摩擦无论势能形式如何组合变 化,势能大小的如何变化,在对摩擦的调制 作用中界面晶格匹配度 C 对整个摩擦过程 的调制作用最为明显,在完全匹配的情况 下摩擦最大。 由图可以发现另一个特点,摩擦系数 在 C 为 0.5 两侧随C的增大或者减少而迅速 减小,但在 C 为 0.8 时出现了转折点。此转 折点在不同的条件下,对摩擦的调制作用 表现出不同程度的影响,说明此转折点为 复合势能情况下产生的影响,而这种调节 作用与势能周期比例 U P 和势能振幅比例 UA 之间存在非线性关系。转折点的出现原 因为附加原子在不同的衬底复合势能阱中 进行运动时受到衬底原子的拉扯作用产生 了强烈的声子振动所带来的影响,这种拉 扯作用主要受到势能振幅比例与势能周期 之间的比例关系的影响。当处于衬底势能 最高点时,附加原子将出现失稳并自动跳跃 到下一势能最低点,然后在此平衡位置剧烈 震荡和激发声子,从而使能量不可逆地以声

m序列

m序列

m序列基本概念:M序列(即De Bruijn序列)又叫做伪随机序列、伪噪声(PN)码或伪随机码。

可以预先确定并且可以重复实现的序列称为确定序列;既不能预先确定又不能重复实现的序列称随机序列;不能预先确定但可以重复产生的序列称伪随机序列。

具体解释于一个n级反馈移位寄存器来说,最多可以有2^n 个状态,对于一个线性反馈移位寄存器来说,全“0”状态不会转入其他状态,所以线性移位寄存器的序列的最长周期为2^n-1。

当n级线性移位寄存器产生的序列{ai}的周期为T= 2^n-1时,称{ai}为n级m序列。

当反馈函数f(a1,a2,a3,…an)为非线性函数时,便构成非线性移位寄存器,其输出序列为非线性序列。

输出序列的周期最大可达2^n ,并称周期达到最大值的非线性移位寄存器序列为1.m序列的产生原理和结构m序列是n 级二进制线性反馈移位寄存器除去输出为0的状态外,产生的周期为2 n -1 的最大可能长度序列,又称为最大长度线性反馈移位序列。

其产生的原理如图1所示。

PN序列发生器由n级移位寄存器,模二加法器和反馈线三个部分组成。

图中,c i ( i =1…n ) 为反馈系数,若c i =1,表示有连接,有反馈,若c i =0则表示断开,无反馈。

c i 的取值决定了移位寄存器的反馈连接和序列的结构,故是一个很重要的参量。

2.m序列的基本性质(1) 移位相加特性。

一个m序列与其任意次延迟移位后产生的另一个不同序列模2相加,得到的仍是该m 序列的延迟移位序列。

如,0100111向右移1次产生另一个序列1010011 ,模2相加后的序列为1110100 ,相当于原序列右移3次后得到的序列。

(2) 平衡特性。

在m序列的每个2n-1周期中,"1"码元出现的数目为次,"0"码元出现的数目为2n -1-1 次,即"0"的个数总是比"1"的个数少一个,这表明,序列平均值很小。

M序列发生器设计实验指导书

M序列发生器设计实验指导书

M序列发生器设计实验一、实验原理:M序列码也称伪随机序列码,其主要特点是:(1)每个周期中,“1”码出现2n-1次,“0”码出现2n-1次,即0、1出现概率几乎相等。

(2)序列中连1的数目是n,连0的数目是n-1。

(3)分布无规律,具有与白噪声相似的伪随机特性。

由于具有这些特点,m序列码在通信、雷达、系统可靠性测试等方面获得了广泛地应用。

m序列码发生器是一种反馈移位型结构的电路,它由n位移位寄存器加异或反馈网络组成,其序列长度M=2n-1,只有一个多余状态即全0状态,所以称为最大线性序列码发生器。

由于其结构已定型,且反馈函数和连接形式都有一定的规律,因此利用查表的方式就设计出m 序列码。

列出部分m序列码的反馈函数F和移存器位数n的对应关系。

如果给定一个序列信号长度M,则根据M=2n-1求出n,由n查表便可以得到相应的反馈函数F。

二、基于DSP Builder 的设计M 序列发生器可由线性反馈寄存器(Linear Feedback Shift Registers,LFSR )来产生,如图1所示。

图1 线性反馈移位寄存器的构成其特征多项式可表示为:∑==ni i i x C x F 1)(在图1中涉及的乘法和加法都是指模二运算的乘法和加法,即逻辑与和逻辑或。

要产生最长的线性反馈移位寄存器序列的n 级移位寄存器,其特征多项式必须是n 次本原多项式。

例如n=5,可以生成M 序列的5级LFSR 的特征多项式,即:125++x x ,此式可生成的M 序列的周期为:125-。

下面以M 序列发生器模型125++x x 为例,利用DSP Builder 构建一个伪随机序列发生器。

图2显示了上式的DSP Builder 模型表述,这里采用相连的延时单元级作为移位寄存器,用异或(XOR )完成模二加运算,输出为Output 。

图2 M 序列发生器模型但应注意,图2所示的电路一般无法正常工作。

这是由于在DSP Builder 默认的延时单元在开始工作时,存储内容为0,而对于M 序列来说,起始序列为全0,那么根据多项式,输出序列也将为0.全0序列不是正常的M 序列。

基于VHDL可编程m序列发生器的研制

基于VHDL可编程m序列发生器的研制


ECM(2)在cP(2)开始之前被足够优先地传到以确保STB 能够在CP(2)开始之前得到Cw(2)。
CA系统B通过产生一条包含2个CW信息的ECM来 达到同样的效果。在如时刻,ECMGen B收到CW(2),在£z 时刻,他就可以生成ECM(1)。ECM(1)内包含CW(1)和 CW(2),他在CP(1)的中间即t。时刻被传输。这就确保了 STB在CP(2)开始前得到CW(2)。当CP(2)开时后,即如时 刻,传输的ECM(2)中包含了CW(2)和CW(3)信息。
收稿日期t 2004一03—03
列的初相位。 智能控制器通过外三总线对该器件中的这6个字节
初始化,电路即可输出所需周期、初相位的m序列。
图l可编程m序列的逻辑电路结构
2多周期m序列生成单元的电路设计
m序列发生器一般由线性反馈移位寄存器组成,他的 反馈多项式为本原多项式。实现移位寄存器的长与反馈式 的编程选择,即可实现对m序列的控制。如图2所示电路, 该电路可以实现序列周期户一22—1~2‘一1的变化输出。 其中en是周期控制字ooh单元经译码后的输出值;LRN 与pm完成序列的初相位控制。PRN由olh~05h存储单 元的32 b数据给定。d—in为用户串行数据输入端。正常使 用时,首先CLRN=0,图2中所有的D触发器为零状态, 然后在CLRN与PRN联合作用下,置序列的初相位;最后 由en控制序列的周期。于是,就可以实现m序列的周期、 初相位的控制。显然,按照图2所示的电路结构,可以将 其扩展到32级线性移位寄存器电路,相应的en,prn也跟 随增加,即可实现我们最初的设计思想。d—off(j)为特征 反馈。
programmable on periods from 22—1 to 232—1.We explicated making principle and working course,furthermore,gave the hardwire

m序列笔记

m序列笔记

一.伪随机序列1.研究背景2.发展历史3.应用及其意义二.m 序列1. 概念由线性反馈移位寄存器产生的周期最长的序列。

它是由带线性反馈的移存器产生的周期最长的一种序列,是多级移位寄存器或其他延迟元件通过线性反馈产生的最长的码序列。

2. 产生原理一般来说,在一个n 级的二进制移位寄存器发生器中,所能产生的最大长度的码序周期为12-n 。

以m=4为例,若其初始状态为),0,0,0,1(),,,(0123=a a a a ,则在移位一次时,由3a 和0a 模2相加产生新的输入,1014=⊕=a 新的状态变为),0,0,1,1(),,,(0123=a a a a 这样移位15次后又回到初始状态,但若初始状态为(0,0,0,0),则移位后得到地全是0状态,这说意味着在这种反馈中要避免出现全0的状态.在4级移存器共有1624=种不同状态,除全0状态以外还有15种可用.即由任何4级反馈移存器产生的序列的周期最长为15,满足12-n (当n为4时).图1:m 序列的产生举例:4级m 序列产生器及其状态图2中,ai (i = 0 – n ) - 移存器状态。

ai = 0或1。

ci -反馈状态。

ci = 0表示反馈线断开,ci = 1表示反馈线连通。

如图2中示出的一个一般的纯属反馈移存器的组成,反馈线的连接状态用1c ,=i i c 表示表示此线接通(参加反馈),0=i c 表示断开,反馈线的接线状态不同,就可能以改变此移存器序列的周期.为了产生m 序列, 必须确定其特征多项式, 以此确定线性反馈移位寄存器的反馈结构, n 级线性反馈移位寄存器的特征方程定义为:其中c i ( i= 1, 2, ⋯⋯, n) 根据m 序列周期的不同, 取值为0 或1。

此特征多项式又称本原多项式, n ≤20 的本原多项式如表1 所示:此外, 本原多项式f ( x ) 的反多项式也是本原多项式, 反多项式的定义为:因为ci( i= 1, 2, ⋯⋯, n) 只取0或1值, 故上式可写成:其中d i( i= 1, 2, ⋯⋯, n) 也取0 或1 值, 因此按这两种本原多式构成的线性反馈移位器都可以产生m 序列。

基于FPGA的m序列发生器

基于FPGA的m序列发生器

基于FPGA的m序列发生器摘要m序列广泛应用于密码学、通信、雷达、导航等多个领域,本文提出了一种基于FPGA的伪随机序列产生方法,应用移位寄存器理论从序列的本原多项式出发,获得产生该序列的移位寄存器反馈逻辑式,结合FPGA芯片结构特点,在序列算法实现中采用元件例化语句。

算法运用VHDL语言编程,以A1tera的QuartusⅡ软件为开发平台,给出了序列的仿真波形。

序列的统计特性分析表明:该方法产生的序列符合m序列的伪随机特性,验证了算法的正确性。

关键词:m序列;移位寄存器理论;VHDL语言1 m序列m序列是伪随机序列的一种 ,结构简单 ,实现方便。

在现代工程实践中 , m 序列在通讯、导航、雷达、通信系统性能的测量等领域中有着广泛的应用。

例如 , 在连续波雷达中可用作测距信号 , 在遥控系统中可用作遥控信号 , 在多址通信中可用作地址信号 , 在数字通信中可用作群同步信号 ,还可用作噪声源及在保密通信中起加密作用等。

伪噪声发生器在测距、通信等领域的应用日益受到人们重视。

目前,m序列产生实现方法主要有3种:(1)门电路实现该方法设计简单,但随移位寄存器级数的增长,电路装调困难,且占用的印制板面积较大。

(2)DSP编程实现该方法专业性过强,不适合一般用户。

(3)VHDL与CPLD实现由于CPLD的高集成度,而且VHDL语言编程较为方便,故可以大大减少电路的装调的困难。

文章提出VHDL语言实现,,l序列电路是周期、初相位可编程变化的,其应用较为灵活,通过微处理器对其进行适当的初始化,即可产生用户所需周期、初相位的m序列输出。

用软件方式构成的特点是采用灵活的数据查询方式可以获得任意级数 n 的本原多项式系数 ,从而实现 m 序列的产生 , 但速度受到单片机工作速度的限制。

而 FPGA 具有硬件电路实现的优点 , 又具有设计上的灵活性 , 并且由于FPGA 便于实现大规模的数字系统。

1.1 理论基础m 序列是最长线性反馈移位寄存器序列的简称,它是由带线性反馈的移位寄存器产生的周期最长的一种序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M 序列发生器
M 序列(即De Bruijn 序列)又叫做伪随机序列、伪噪声(PN)码或伪随机码。

可以预先确定并且可以重复实现的序列称为确定序列;既不能预先确定又不能重复实现的序列称随机序列;不能预先确定但可以重复产生的序列称伪随机序列。

m 序列发生器是一种反馈移位型结构的电路,它由n 级移位寄存器加异或反馈网络组成,其生成序列长度p =2n -1,且只有1 个冗余状态即全0 状态,所以称为最长线性反馈移位寄存器序列。

由于带有反馈,因此在移位脉冲作用下,移位寄存器各级的状态将不断变化,通常移位寄存器的最后一级做输出,输出序列为[a k ]=a 0a 1…a n -1…。

其组成框图如图3.1所示。

输出序列是一个周期序列,其特性由移位寄存器的级数、初始状态、反馈逻辑以及时钟速率(决定着输出码元的宽度)所决定。

当移位寄存器的级数与时钟确定时,输出序列就由移位寄存器的初始状态和反馈逻辑所完全确定。

当初始状态为全零状态时,移位寄存器输出全0 序列。

为了避免这种情况,需设置全0 排除电路。

数字基带信号V 1的本原多项式为84321)(x x x x x f ++++=,作为8级m 序列其最长时间周期为28-1=255,即第2,3,4,8级参与反馈经异或后送入第1 级。

所设计的8级m 序列如图3.3所示。

图3.1 m 序列组成框图
a n-11a n-22a 1n-1a 0n C 1C 2C n-1C n =1C 0=1
输出{a k }
依据上图原理,设计了一种通过手动置数产生M 序列的电路,其电路设计如图3.4所示,该图由Protel SE99绘制,再根据该图搭建硬件电路,图中的单刀开关可以用拨码开关代替。

电路分析:全0状态时,采用此方法设计的m 序列发生器不具有自启动特性。

为了使电路启动,可以断开开关S 1,将74LS194 的工作方式控制端S 1置高电平,这时S 1和S 0均为高电平,即S 1S 0=11,74LS194 处于置数状态,把输入端的初始状态10000000 置到输出端。

然后再闭合开关S 1,使74LS194 的工作方式控制端S 1处于低电平状态。

这时工作方式控制端S 1与S 0分别为低电平和高电平,即S 1S 0=01,74LS194 处于右移状态,在时钟作用下通过不断移位产生m 序列,由后级芯片的Q D 即12引脚输出。

图3.3 8级m 序列发生器原理框图 a 71a 6
2a 53a 44a 35a 26a 17a 08输出a{k}图3.4 数字基带信号发生器电路
由于题目要求M序列的数据率为10~100kbps,按10kbps 步进可调,数据率误差绝对值不大于1%,为了得到比较精确的时钟信号,所以我们采用MC9S12XS128单片机的PWM来产生时钟信号V1-clock,单片机相应的PWM口接入两片芯片的CLK引脚,具体情况见后文时钟信号模块。

相关文档
最新文档