转子动力学求解转子临界转速与固有频率
高速永磁同步电机电磁分析与转子动力学研究

高速永磁同步电机电磁分析与转子动力学研究1. 本文概述本文旨在深入研究高速永磁同步电机(PMSM)的电磁分析与转子动力学特性。
随着现代工业技术的发展,高速永磁同步电机以其高效率、高功率密度和良好的调速性能,在航空航天、机床工具、新能源发电等领域得到了广泛应用。
对高速永磁同步电机进行深入的电磁分析和转子动力学研究,对于优化电机设计、提高电机性能、拓宽应用领域具有重要意义。
本文将首先介绍高速永磁同步电机的基本结构和工作原理,为后续分析提供理论基础。
随后,文章将重点围绕电磁分析展开,包括电机绕组设计、磁路分析、电磁场计算等方面,以揭示电机内部电磁过程的本质规律。
在此基础上,本文将进一步探讨高速永磁同步电机的转子动力学特性,包括转子动力学模型建立、模态分析、振动噪声控制等内容,以揭示电机在高速运行过程中的动态响应和稳定性问题。
本文将对高速永磁同步电机的电磁分析与转子动力学研究进行总结,归纳出电机设计优化的关键因素,为未来的电机研发和应用提供有益的参考。
通过本文的研究,期望能为高速永磁同步电机的技术进步和产业发展做出一定的贡献。
2. 高速永磁同步电机的基本理论高速永磁同步电机(HighSpeed Permanent Magnet Synchronous Machine, HSPMSM)是一种广泛应用于航空航天、高速列车、风力发电等领域的电机。
其基本工作原理基于电磁感应定律和洛伦兹力定律。
在电机中,通过在转子上安装永磁体和在定子上布置三相绕组,当三相交流电通过绕组时,产生旋转磁场。
这个旋转磁场与永磁体的磁场相互作用,产生转矩,驱动转子旋转。
电磁场的分析是理解HSPMSM运行特性的关键。
主要分析内容包括磁场的分布、磁通量的路径以及电磁力的大小和方向。
这些分析通常基于麦克斯韦方程组,通过有限元分析(Finite Element Analysis, FEA)等数值方法进行。
通过电磁场分析,可以准确预测电机的电磁性能,如转矩、反电动势和效率。
转子动力学求解转子临界转速与固有频率.

J
L dj
lk ak 1 3 2 j l l la l a j 2 d 12 k k 1 ak lk ak
s 2
• 低速轴集总后的参数列 表为:
传递矩阵法
• 对于转子中的第i个轴段,其左右两端截面的编号分 别为i与i+1,则截面i的挠度X i ,斜率 Ai ,弯矩M i 及剪力 Qi 所组成的列阵,称为该截面的状态向量zi 。即:
R j k 1
s
(d) dj (d) pj (d) j
J J J J
R dj R pj R j
L dj 1 L pj 1 L j 1
la k
lj
l l j a s k mL l k m R j j l k 1 k 1 j
K K b mb 2 K K b mb 2
其中K为油膜刚度, 为转子的涡动角速度,Kb 是轴承座的参振 刚度,mb 是轴承座的参振质量。 • 计算中代入案例中已知的各项参数以及低速轴的正常运行时的 受载状况,无论是传统传递矩阵法还是Riccati传递矩阵法, 运用Matlab运算工具,均可以求解得到低速轴的各阶临界转速 和固有频率。
f N 1 SN 1eN 1
f1 0, e1 0, f N 1 0, eN 1 0
存在非零解的条件为
S N 1 0
这就是Riccati传递矩阵法进行求解临界转速时的系统频率方程式 。
参数计算
• 支承刚度计算: 根据高等转子动力学中计算第j个支承的总刚度为
K sj
• 将各个变截面轴段所具有的质量和转动惯量都集总 到左右的两个端点位置,形成集总的刚性刚性波圆 盘。
电动机制造中的电机转子动力学分析考核试卷

四、判断题(本题共10小题,每题1分,共10分,正确的请在答题括号中画√,错误的画×)
1.电机转子在高速运转时,轴承的摩擦力对振动影响较小。()
2.电机转子的临界转速越高,其工作转速范围就越宽。()
3.转子的质量分布均匀时,不会产生不平衡。()
B.滑动轴承
C.气浮轴承
D.磁浮轴承
14.在电机转子动力学分析中,以下哪些方法可以用来评估转子的稳定性?()
A.线性稳定性分析
B.非线性稳定性分析
C.疲劳分析
D.振动分析
15.下列哪些措施可以减小电机转子在运输和安装过程中的损伤?()
A.使用防震包装
B.严格控制安装工艺
C.增加转子材Leabharlann 的硬度D.避免在临界转速附近操作
A.材料密度不均匀
B.加工误差
C.装配不当
D.轴承磨损
9.下列哪些情况可能导致电机转子产生耦合振动?()
A.转子与定子间的电磁力
B.转子与轴承间的相互作用
C.多级转子间的相互作用
D.外界环境的变化
10.在进行电机转子模态分析时,以下哪些参数是重要的?()
A.转子的质量
B.转子的刚度
C.转子的阻尼
D.电机的工作温度
D.电机的温度
3.下列哪些方法可以改善电机转子的动力学特性?()
A.调整轴承间隙
B.改善转子的质量分布
C.增加转子的质量
D.提高轴承的刚度
4.电机转子的一阶弯曲振动包括以下哪些部分?()
A.轴向振动
B.弯曲振动
C.扭转振动
D.纵向振动
5.下列哪些因素会影响电机转子的临界转速?()
临界转速的计算

一、临界转速分析的目的临界转速分析的主要目的在于确定转子支撑系统的临界转速,并按照经验或有关的技术规定,将这些临界转速调整,使其适当的远离机械的工作转速,以得到可靠的设计。
例如设计地面旋转机械时,如果工作转速低于其一阶临界转速Nc1,应使N<0.75Nc1, 如果工作转速高于一阶临界转速,应使 1.4Nck<N<0.7Nck+1,而对于航空涡轮发动机,习惯做法是使其最大工作转速偏离转子一阶临界转速的10~20%。
二、选择临界转速计算方法要较为准确的确定出转子支撑系统的临界转速,必须注意以下两点1.所选择的计算方法的数学模型和边界条件要尽可能的符合系统的实际情况。
2.原始数据的(系统支撑的刚度系数和阻尼系数)准确度,也是影响计算结果准确度的重要因素。
3.适当的考虑计算速度,随着转子支撑系统的日益复杂,临界转速的计算工作量越来越大,因此选择计算方法的效率也是需要考虑的重要因素。
三、常用的计算方法2.Prohl-Myklestad莫克来斯塔德法传递矩阵法基本原理:传递矩阵法的基本原理是,去不同的转速值,从转子支撑系统的一端开始,循环进行各轴段截面状态参数的逐段推算,直到满足另一端的边界条件。
优点:对于多支撑多元盘的转子系统,通过其特征值问题或通过建立运动微分方程的方法求解系统的临界转速和不平衡响应,矩阵的维数随着系统的自由度的增加而增加,计算量往往较大:采用传递矩阵法的优点是矩阵的维数不随系统的自由度的增加而增大,且各阶临界转速计算方法相同,便于程序实现,所需存储单元少,这就使得传递矩阵法成为解决转子动力学问题的一个快速而有效的方法。
缺点:求解高速大型转子的动力学问题时,有可能出现数值不稳定现象。
今年来提出的Riccati 传递矩阵法,保留传递矩阵的所有优点,而且在数值上比较稳定,计算精度高,是一种比较理想的方法,但目前还没有普遍推广。
轴段划分:首先根据支撑系统中刚性支撑(轴承)的个数划分跨度。
基于有限元法的转子临界转速计算

基于有限元法的转子临界转速计算下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 简介在机械工程中,转子的临界转速是一个关键参数,它决定了系统的稳定性和安全性。
转子动力学大作业

转子动力学大作业学院:姓名:班级:学号:目录一、作业题目介绍二、转子动力学理论简介三、参数的选择和计算四、Ansys分析临固有频率和临界转速五、失稳转速影响因素及计算一、大作业题目1、 计算临界转速;2、 圆轴承,长颈比为0.8,油膜间隙2‰3、 计算失稳转速注:转子两端各一个轴承,支点在左右两端。
二、转子动力学理论知识由于制造中的误差,转子各微段的质心一般对回转轴线有微小偏离。
因此,当转子转动时,会出现横向干扰,在某些转速下还会引起系统强烈振动,出现这种情况时的转速就是临界转速。
为保证系统正常工作或避免系统因振动而损坏,转动系统的转子工作转速应尽可能避开临界转速,若无法避开,则应采取特殊防振措施。
这也是研究临界转速的意义。
临界转速和转子不旋转时横向振动的固有频率相同,也就是说,临界转速与转子的弹性和质量分布等因素有关,n kmω=。
当圆盘不装在两支撑的中点而偏于一边时,转轴变形后,圆盘的转轴线与两支点A 和B 的连线有一夹角ψ。
设圆盘的自转角速度Ω,极转动惯量为p J ,则圆盘对质心o '的动量矩为 p H J =Ω。
它与轴线AB 的夹角也应该是ψ,见图1。
当转轴有自然振动时,设其频率为n ω,则圆盘中心o '与轴线AB 所构成的平面绕AB 轴有进动角速度n ω。
由于进动,圆盘的动量矩H 将不断改变方向。
因此有惯性力矩()g n n p n M H H J ωωω=-⨯=⨯=Ω⨯方向与平面o AB '垂直,大小为sin g p n M J ωψ=Ω1800mm980mm 8040170170100 转子结构尺寸示意图轮盘轮盘轮盘这一惯性力矩称为陀螺力矩或回转力矩。
因夹角ψ较小,sin ψψ≈,上式可写作g p n M J ωψ=Ω。
这一力矩与ψ成正比,相当于弹性力矩。
在正进动(0/2ψπ<<)的情况下,它使转轴的变形减小,因而提高了转轴的弹性刚度,即提高了转子的临界角速度。
大学机械振动考试题目及答案

大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。
A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。
A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。
A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。
A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。
答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。
答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。
答案:线性9. 振动系统的动态响应可以通过______分析法求解。
答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。
答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。
答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。
在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
12. 解释什么是阻尼振动,并说明其特点。
答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。
其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。
13. 描述什么是受迫振动,并给出其稳态响应的条件。
答案:受迫振动是指系统在周期性外力作用下的振动。
当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。
转子动力学——旋转机械的动力学特性

第一阶、第二阶、第三阶等等。
▲ 每一阶临界转速下,转子有一个相对应的振型。 ▲ 临界转速的数值可以用计算法求得,或用实验法测得。
单圆盘转子的临界转速
O’
r/e
m A
1
0
k
O
c
d2 x m kx m e 2 cos t dt 2 d2 y m ky m e 2 s i nt dt 2 临界转速 c k m
转子的不平衡响应 转子的运动形象 (平衡的理论和方法 另题讲授)
强迫振动和自激振动的比较
转子动力学的任务和内容
转子动力学研究旋转机械的动力学现象和动力学 特性,它是旋转机械的设计、制造、安全运行、故
障诊断的力学基础。主要内容:
▲ 临界转速 物理概念,确定方法,影响因素。 ▲ 不平衡响应 转子运动形态,平衡理论和平衡方法。 ▲ 稳定性
较小可不计
如W>0,就可能会失稳。
油膜轴承的半速涡动
C+e
流入油 0.5R (C+e)
流出油 0.5R (C-e) 故多余的油为R e 如轴颈绕O 作角速度为 的 涡动,就留出空间 2R e
o e
R
o1
C-e 为维持流量平衡,就有
2R e = R e
得 = 0.5 ,是为半速涡动
0
软
支承刚度
硬
K
支承刚度降低,临界转速随之下降;反之亦然。振型也随之变化。
支承刚度对临界转速的影响,在不同支承刚度范围内是很不同的。
回转效应对临界转速的影响
此园盘轴线方向不
变,没有回转效应 此园盘轴线方向变化, 回转效应增加轴的刚性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J
R Pj k 1
s
s
a lk ak
2 k
2
ak2
2
j pk lk
J
J
R dj s
L Pj
lk ak 2 j l 2 pk k k 1 ak lk ak
2 ak 2
2 k 1 ak lk ak
1 3 jd l l la l j a 12 k
• 假设转子模型左右端面都是自由端,则其边界条件 为 M1 0, Q1 0, M N 0, QN 0 ,于是
a1 M Q N 1 a3
该式存在非零解的条件为
a2 X a4 N A 1
2
a
a1
3
a2 a4
zi X, A, M , Q i
T
• 任一部件两端截面的状态向量总存在一定的关系, 即: zi1 T i zi • T i 即称为该部件的传递矩阵。对于质量模型,有 z2 T 1 z1
z3 T 2 z2 T 2 T 1 z1 zi T i1 zi1 T i1 T i2 T 1 z1
i i
iHale Waihona Puke i• 于是得到f u11 e u21 i 1
u12 f e i u22 i
展开可以得到
f i 1 u11i f i u12 i ei ei 1 u21i f i u22 i ei
转子动力学求解转子 临界转速与固有频率
背景
• 旋转机械在当今机械行业有着非常广泛的应用,如 水轮机、汽轮机、加工车床和机械传动轴系等。转 子是旋转机械的主要部件。旋转轴系转子存在自身 固有频率,当转子旋转频率接近或等于其固有频率 时,旋转系统会发生剧烈振动,这时的转速称为临 界转速。临界转速的求解是转子动力学中非常重要 的研究课题。
计算结果
• 其中 为第j个节点处的支撑总刚度,E为弹性模 量,I为轴段的截面矩,l为轴段长度, 为考虑剪切 6 EI 影响的系数。 2
kt GAl
• 传统传递矩阵法: Z N 1 与左端开始截面 • 转子系统右端终止截面状态向量 状态矢量 Z1 之间的关系为: Z N 1 TNTN 1 T1Z1 AN Z1
K K b mb 2 K K b mb 2
其中K为油膜刚度, 为转子的涡动角速度,Kb 是轴承座的参振 刚度,mb 是轴承座的参振质量。 • 计算中代入案例中已知的各项参数以及低速轴的正常运行时的 受载状况,无论是传统传递矩阵法还是Riccati传递矩阵法, 运用Matlab运算工具,均可以求解得到低速轴的各阶临界转速 和固有频率。
• 将各个变截面轴段所具有的质量和转动惯量都集总 到左右的两个端点位置,形成集总的刚性刚性波圆 盘。
• 对于简化后的节点j,它具有的直径转动惯量 J dj ,极 转动惯量 J pj 以及总质量 m j 的计算方法分别如下:
J dj J J Pj J
• 其中,
s
mj m m m
m
模型离散化处理
• 将转子质量及转动惯量集总到28个节点之后,模型 可以简化为
• 把低速轴分成27段之后,可以计算出每段等截面轴 的长度、质量、极转动惯量和直径转动惯量。各段 参数列表如下:
集总处理方法
• 假设两个相邻节点之间的轴段是第j个轴段,这个轴 段是由s个截面尺寸不同的等截面轴段组成的。
R j k 1
s
(d) dj (d) pj (d) j
J J J J
R dj R pj R j
L dj 1 L pj 1 L j 1
la k
lj
l l j a s k mL l k m R j j l k 1 k 1 j
u12i l m 2 K sj 2 m K sj
其中,
1 l u11i 0 1 i
J
2 J p d 0 i
u21i
l2 2 EI l EI
3 2 l3 l l 2 2 1 1 1 m K l J J sj p d 6 EI 6 EI 2 EI u22i 2 2 l l l 2 2 m K 1 J J sj p d 2 EI EI i 2 EI i
J
L dj
lk ak 1 3 2 j l l la l a j 2 d 12 k k 1 ak lk ak
s 2
• 低速轴集总后的参数列 表为:
传递矩阵法
• 对于转子中的第i个轴段,其左右两端截面的编号分 别为i与i+1,则截面i的挠度X i ,斜率 Ai ,弯矩M i 及剪力 Qi 所组成的列阵,称为该截面的状态向量zi 。即:
案例选取
• 选取一篇硕士论文《高速列车传动齿轮箱齿轮转子 动力学特性研究》中传动齿轮箱中低速轴进行研究 。
• 实际的转子是一个质量连续分布的弹性系统,具有 无穷多个自由度。在转子动力学中经常把转子简化 为具有若干个集总质量的多自由度系统。即沿轴线 把转子质量及转动惯量集总到若干个节点上,这些 节点一般选在叶轮、轴颈中心、联轴器、轴的截面 有突变处以及轴的端部等位置,并按顺序编号。
f N 1 SN 1eN 1
f1 0, e1 0, f N 1 0, eN 1 0
存在非零解的条件为
S N 1 0
这就是Riccati传递矩阵法进行求解临界转速时的系统频率方程式 。
参数计算
• 支承刚度计算: 根据高等转子动力学中计算第j个支承的总刚度为
K sj
• 引入Riccati变换,
1
fi Si ei
,得到,
1
ei u21S u22 i ei 1
可知,
fi 1 u11S u12 i u21S u22 i ei
1
Si 1 u11S u12 i u21S u22 i
对于右端截面N+1则有 由初始边界条件可知,
• 传递矩阵法是将集总了转动惯量和质量的刚性薄圆 盘和没有质量的等截面弹性轴结合起来,作为一个 组合构件来考虑,组合构件的传递矩阵为:
l3 l2 2 2 1 6 EI 1 m K sj l 2 EI J p J d l2 l 2 m K 1 J p Jd 2 sj Ti 2 EI EI l m 2 K sj J p Jd 2 2 m K sj 0 l2 2 EI l EI 1 0 l3 1 6 EI 2 l 2 EI l 1
计算方法
• 目前对临界转速的计算方法主要有:
• 传递矩阵法
先把转子分成若干段,每段左、右端四个截面参数(挠度、 挠角、弯矩和剪力)之间的关系可用该段的传递矩阵描述 。如此递推,可得系统左右两端面的截面参数间的总传递 矩阵,再由边界条件和固有振动时有非零解的条件,藉试 凑法得出各阶临界转速,并随后求得相应的振型。 • 有限元法 将连续系统分割成适当大小的单元,单元内的位移等状态量 用以节点的相应状态量为未知数的一系列函数表示,使系 统的能量之差即动能、势能之差为最小来调整节点的状态 ,从而得到相应的矩阵方程。
N
0
这是传统传递矩阵法的系统的频率方程,也就是求解临界转速的 方程式。
• Riccati传递矩阵法
• 在计算过程中引入了一个Riccati变换,可以将一开始求解 微分方程两个边界条件的问题转变为一个初始值的问题, 这种转变一方面保留了传动传递矩阵法求解过程中所具有 的优点,另一方面直接提高了传递矩阵方法计算过程中数 值的稳定性。 • 把状态矢量Z进行分组,具有0值的元素为一组,用矢量f表 示,非0值为另一组,表示为矢量e,于是状态向量简化成 为 f ,左右端面都是自由端时,弯矩和剪力为0,而 Z i 径向位移和挠角不为0,于是有 e T T i f M Q e X A