人教版七年级数学平方根与立方根同步练习题
人教版七年级实数平方根与立方根
平方根与立方根 知识点一:算术平方根1.定义一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的__________.2.表示方法a 的算术平方根记为__________,读作“根号a ”,a 叫被开方数.3.算术平方根的性质①正数a a②0的算术平方根是00=__________;③负数没有算术平方根.④a a 是非负数,即a ≥0a a ≥0.【例1-1】求下列各数的算术平方根.①10 ②25 ③6449 ④0.01 ⑤23【例1-2】设3-a 是一个数的算术平方根,那么( ).A .a ≥0B .a >0C .a >3D .a ≥3【例1-3】算术平方根等于它本身的数有__________.【例1-4】13-m 的算术平方根是2,16-+n m 的算术平方根是3,求n m 29+的算术平方根.举一反三1. 16的算术平方根是________.2. 已知正方形的边长为 a ,面积为 S ,下列说法中:①a S =;①S a =;①S 是a 的算术平方根;①a 是S 的算术平方根.正确的是( )A .①①B .①①C .①①D .①①3. 12+x 的算术平方根是2,则x =________.4. 已知,()132++-=b a y ,当b a ,取不同的值时,y 也有不同的值.当y 最小时,求a b 的非算术平方根.知识点二:平方根1. 平方根的概念一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的________或二次方根.【注意】在这里,a 是x 的平方数,它的值是正数或零,因为任何数的平方都不可能是负数,即a ≥0.2. 平方根的性质①一个正数a 有_______个平方根,其中一个是“a ”,另一个为“a -”,它们互为相反数; ②0的平方根是0;③负数没有平方根.3. 开平方的概念求一个数a 的平方根的运算,叫做__________.4. 利用平方根的定义解方程将各式转化为等号的左边是含x 的一个式子的平方式,右边是一个非负数的形式,如m x =2或()()02≥=+m m b ax ,然后利用平方根的定义得到m x ±=或m b ax ±=+,进而得到原方程的解.5.平方根与算术平方根的区别①定义不同;②个数不同,一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个; ③表示方法不同,正数a 的平方根表示为a a a ;④取值范围不同,正数的算术平方根一定是正数,正数的平方根为一正一负.【例2-1】25的平方根是( ).A .5B .-5C .5±D .±5【例2-2】 下列说法正确的( ). ①2-是2的一个平方根;②4-的算术平方根是2;③16的平方根是±2;④0没有平方根.A .①②③B .①④C .①③D .②③④【例2-3】求下列各式的值: ①144 ②81.0- ③196121±④256【例2-4】 求下列各式中的x .x 2=17 0491212=-x 【例2-5】若一个正数的算术平方根是a ,则比这个数大3的正数的平方根是( ). A .32+a B .32+-a C .32+±a D .3+±a举一反三1. ()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.492. 下列说法中正确的是( )A .81的平方根是3±B .1的立方根是±1C .11±=D .5-是5的平方根的相反数3. 计算.=412___________ =±169___________ =-2894___________ 4. 求下列各式中x 的值. ()16142=-x ()011242=-+x5. 已知9的算术平方根是a ,b 的平方是25,求ab 的值.知识点三:立方根1.立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的__________或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.2. 表示方法:一个数a 的立方根,用符号3a 表示,读作:“三次根号a ”,其中a 是被开方数,3是根指数.注:互为相反数的两数的立方根也互为相反数.3.开立方求一个数的立方根的运算,叫做__________. 性质:①正数的立方根是正数,负数的立方根是__________,0的立方根是0;33a a -= ③3333()a a =a .开立方是一种运算,正如开平方与平方互为逆运算一样,开立方与立方也互为__________.开立方所得的结果就是立方根.4.平方根和立方根的区别和联系①被开方数的取值范围不同 在a a 是非负数,即a ≥03a 中,被开方数a 是任意数.②运算后的数量不同一个正数有两个平方根,负数没有平方根,而一个正数有一个正的立方根,负数有一个负的立方根.【例3-1】 -64的立方根是( ).A .-4B .4C .±4D .不存在【例3-2】 下列计算中,错误的是( ).A 30.125B 3273644-=-C 3313182=D .3821255-=-【例3-3】若83-=a ,则a =__________.【例3-4】已知,一个正数的平方根是12-a 与a -2,求a 的平方的相反数的立方根.【例3-5】 已知12-a 的平方根是3±,13-+b a 的立方根是4,求b a +的平方根.举一反三 1. 33(1)- ).A .-1B .0C .1D .±1 2. 求下列各式的值:(130.001 (23343125- (3)327191--.3. 求下列各式中的x .012583=+x ()2733=+x4. 若32+a 和12-a 是数m 的平方根,求m 的值.5. 已知12+x 1362-+y x 的立方根是2.(1)求y x ,的值;(2)求xy 3的平方根.知识点四:非负性的运用非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
人教版数学七年级下册-《立方根》习题精选
立方根1.在下述的四个说法中:(1)﹣27的立方根是3;(2)49的算术平方根为±7;(3)的立方根为;(4)的平方根为.正确的说法的个数是()A.1 B. 2 C.3 D. 42.下列各式中正确的是()A.B.C.D.3.一个立方体的体积是9,则它的棱长是()A.3 B.3C.D.4.的立方根是()A.8 B.±2 C.4 D.25.如果是数a的立方根,﹣是b的一个平方根,则a10×(﹣b)9等于()A.2 B.﹣2 C.1 D. 16.若一个数的平方根是±8,则这个数的立方根是()A.±2 B.±4 C.2 D. 47.下列说法中正确的是()A.的平方根是±6 B.的平方根是±2 C.|﹣8|的立方根是﹣2 D.的算术平方根是48.下列各式中错误的是()A. B.C.D.9.的立方根()A.﹣9 B. 9,﹣9 C. 9 D.10.下列表达式不正确的是()A.B. C.D.11.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A. x2=±20 B.x20=2 C.x±20=20 D.x3=±2012.下列说法:(1)1的平方根是1;(2)﹣1的平方根是﹣1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根.其中正确的有()A.1个B.2个C.3个D. 4个13.下列说法正确的是()A.的平方根是±3 B.1的立方根是±1 C.=±1 D.>0 14.下列计算中,正确的有()①=±2;②=2;③±=±25;④=±5.A.0个B.1个C.2个D. 3个15.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零16.下列判断错误的是()A.B. C.的算术平方根是4 D.17.下列说法不正确的是()A.27的立方根是±3 B.的立方根是C.﹣2的立方是﹣8 D.﹣8的立方根是﹣218.下列结论中不正确的是()A.平方为9的数是+3或﹣3 B.立方为27的数是3或﹣3C.绝对值为3的数是3或﹣3 D.倒数等于原数的数是1或﹣119.下列说法中,正确的是()A.6是36的算术平方根B.﹣9的平方根是﹣3C.的算术平方根是5 D.9的立方根是320.下列各式中,运算正确的是()A.B.C.D.21.的立方根是()A.﹣4 B. ±4 C. ±2 D.﹣222.﹣的平方根是()A. ±4 B. 2 C. ±2 D.不存在23.在实数中,算术平方根与立方根相同的数是()A. 0 B. 0,1 C. 1 D. ±124.下列各式中,正确的是()A.=±4 B.=﹣3 C.±=4 D.=﹣4 25.一个数的算术平方根与这个数的立方根的和为0,则这个数是()A.﹣1 B.±1 C.0 D.不存在26.下列各式计算正确的是()A.=±2 B.=±2 C.=﹣1 D.±=3 27.在下列式子中,正确的是()A.B.C.D.=±2 28.下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1. A.①③B.②④C.①④D.③④29.求下列各式中的x值:(1)2x2=8 (2)(x﹣1)3=8.30.(1)﹣+;(2)﹣+.立方根参考答案与试题解析1.在下述的四个说法中:(1)﹣27的立方根是3;(2)49的算术平方根为±7;(3)的立方根为;(4)的平方根为.正确的说法的个数是()A.1B.2C.3D.4解:∵﹣27的立方根是﹣3,∴(1)错误;∵49的算术平方根为+7,∴(2)错误;∵的立方根为,∴(3)正确;∵的平方根为±,∴(4)错误;∴正确的说法的个数是1个,故选A.2.下列各式中正确的是()A.B.C.D.解:A、=|﹣7|=7,故本选项错误;B、=4,故本选项错误;C、(﹣)2=3,故本选项错误;D、=﹣3,故本选项正确;故选D.3.一个立方体的体积是9,则它的棱长是()A.3B.3C.D.解:设立方体的棱长为a,则a3=9,∴a=.故选D.4.的立方根是()A.8B.±2 C.4D.2解:∵=8而8的立方根等于2,∴的立方根是2.故选D.5.如果是数a的立方根,﹣是b的一个平方根,则a10×(﹣b)9等于()A.2B.﹣2 C.1D.1解:由题意得,a=﹣2,b=所以a10×(﹣b)9=(﹣2)10×(﹣)9=﹣2 故选B.6.若一个数的平方根是±8,则这个数的立方根是()A.±2 B.±4 C.2D.4解:∵一个数的平方根是±8,∴这个数为(±8)2=64,故64的立方根是4.故选D.7.下列说法中正确的是()A.的平方根是±6 B.的平方根是±2C.|﹣8|的立方根是﹣2 D.的算术平方根是4解:A、=6,6的平方根是±,故选项错误;B、的平方根是±2,故选项正确;C、|﹣8|=8,8的立方根﹣2,故选项错误;D、=4,4的算术平方根是2,故选项错误.故选B.8.下列各式中错误的是()A.B.C.D.解:A、,故说法正确;B、原式=﹣,故说法错误;C、,故说法正确;D、,故说法正确.故选B.9.的立方根()A.﹣9 B.9,﹣9 C.9D.解:∵=9,∴的立方根是.故选D.10.下列表达式不正确的是()A.B.C.D.解:A、=a,故本选项错误;B、=﹣a,故本选项错误;C、=|a|,故本选项正确;D、=a,故本选项错误.选C.11.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A. x2=±20 B. x20=2 C. x±20=20 D. x3=±20解:根据题意,可知x20=2,能得出.故选B.12.下列说法:(1)1的平方根是1;(2)﹣1的平方根是﹣1;(3)0的平方根是0;(4)1是1的平方根;(5)只有正数才有立方根.其中正确的有()A.1个B.2个C.3个D.4个解:(1)1的平方根是±1,故说法错误;(2)﹣1的平方根是﹣1,负数没有平方根,故说法错误;(3)0的平方根是0,故说法正确;(4)1是1的平方根,故说法正确;(5)只有正数才有立方根,不对,负数也有立方根,故说法错误.故选B.13.下列说法正确的是()A.的平方根是±3 B.1的立方根是±1 C.=±1 D.>0 解:A、=9,9的平方根是±3,故选项正确;B、1的立方根是它本身1,故选项错误;C、=1,故选项错误;D、当x=0时,=0,故选项错误.故选A.14.下列计算中,正确的有()①=±2;②=2;③±=±25;④=±5.A.0个B.1个C.2个D.3个解:①结果应为2,故说法错误;②结果应为﹣2,故说法错误;③±=±25,故说法正确;④结果应为5,故说法错误.故选B.15.下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零解:A、一个数的立方根是这个数的本身的数有:1、0、﹣1,故选项A错误.B、0的立方根是0,u选项B错误.C、∵负数有一个负的立方根,故选项C错误.D、∵正数有一个正的立方根,负数有一个负的立方根,0的立方根是.故选项D正确.16.下列判断错误的是()A.B.C.的算术平方根是4 D.解:A、,故选项正确;B、,故选项正确;C、=4的算术平方根是2,故选项错误;D、,故选项正确.故选C.17.下列说法不正确的是()A.27的立方根是±3 B.的立方根是C.﹣2的立方是﹣8 D.﹣8的立方根是﹣2解:A、27的立方根是3,故选项错误;B、的立方根是,故选项正确;C、﹣2的立方是﹣8,故选项正确;D、﹣8的立方根是﹣2,故选项正确故选A.18.下列结论中不正确的是()故选B.A.平方为9的数是+3或﹣3 B.立方为27的数是3或﹣3C.绝对值为3的数是3或﹣3 D.倒数等于原数的数是1或﹣1 解:A、平方为9的数是+3或﹣3,故选项正确;B、立方为27的数是3,故选项错误;C、绝对值为3的数是3或﹣3,故选项正确;D、倒数等于原数的数是1或﹣1,故选项正确.19.下列说法中,正确的是()A.6是36的算术平方根B.﹣9的平方根是﹣3C.的算术平方根是5 D.9的立方根是3解:A、6是36的算术平方根正确,故本选项正确;B、﹣9没有平方根,故本选项错误;C、∵=5,∴的算术平方根是,故本选项错误;D、9的立方根是,故本选项错误.20.下列各式中,运算正确的是()A.B.C.D.解:A选项错误,应该为;B选项正确;C选项错误,根号下下的结果为25,故开平方后的结果为5,不是﹣5;D选项错误,由于>1,故应为.故答案选B.21.的立方根是()A.﹣4 B.±4 C.±2 D.﹣2解:∵=﹣8∴﹣8的立方根是﹣2,∴的立方根是﹣2.故选D.22.﹣的平方根是()A. ±4 B. 2 C. ±2 D.不存在解:∵(﹣4)3=﹣64∴﹣=4又∵(±2)2=4∴4的平方根为±2.故选C.23.在实数中,算术平方根与立方根相同的数是()A. 0 B. 0,1 C. 1 D. ±1解:∵=0,=1,=0,=1,=﹣1,﹣1没有平方根∴算术平方根与立方根相同的数是0,1.故选B.24.下列各式中,正确的是()A.=±4 B.=﹣3 C.±=4 D.=﹣4 解:A、=4,故本选项错误;B、=﹣3,故本选项正确;C、±=±4,故本选项错误;D、=4,故本选项错误;故选B.25.一个数的算术平方根与这个数的立方根的和为0,则这个数是()A.﹣1 B. ±1 C. 0 D.不存在解:根据算术平方根非负数,立方根不改变这个数的正负性,相加等于0,则这个数是0.故选C.26.下列各式计算正确的是()A.=±2 B.=±2 C.=﹣1 D.±=3 解;A、=2,故选项A错误;B、=2,故选项B错误;C、∵(﹣1)3=﹣1,∴﹣1的立方根是﹣1,故选项正确;D、±=±3,故选项D错误.故选C.27.在下列式子中,正确的是()A.B.C.D.=±2 解:A、,故选项A正确;B、没有意义,故选项B错误;C、,故选项C错误;D、=2,故选项D错误.故选A.28.下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A.①③B.②④C.①④D.③④解:∵①0.027的立方根是0.3,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,那么ab≥0(a、b同号),故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确.故选A.二.解答题(共2小题)29.求下列各式中的x值:(1)2x2=8 (2)(x﹣1)3=8.解:(1)∵x2=4,∴x=±2;(2)∵(x﹣1)3=8,∴x﹣1=2,∴x=3.30.(1)﹣+;(2)﹣+.(1)解:原式=0.5﹣2+2,=0.5;(2)解:原式=0.5﹣+,=﹣.。
算术平方根、平方根与立方根练习题
算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。
‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。
2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。
被开方数越大,对应的算术平方根也‗‗‗‗‗。
3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。
4、81的算术平方根是‗‗‗‗‗。
16的算术平方根是‗‗‗‗‗。
5、求下列各数的算术平方根。
(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。
8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。
比较大小:215-‗‗‗21。
9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。
10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。
平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。
七年级数学-立方根练习含解析 (2)
七年级数学-立方根练习含解析一.选择题(共12小题)1.正方体的体积为7,则正方体的棱长为()A.B.C.D.732.的平方根是()A.2 B.﹣2 C.D.±23.用计算器求35值时,需相继按“3”,“y x”,“5”,“=”键,若小颖相继按“”,“4”,“y x”“3”,“=”键,则输出结果是()A.6 B.8 C.16 D.484.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.95.若a满足,则a的值为()A.1 B.0 C.0或1 D.0或1或﹣16.若=a,则a的值不可能是()A.﹣1 B.0 C.1 D.37.﹣8的立方根是()A.2 B.﹣2 C.4 D.﹣0.58.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.19.若a2=16,=﹣2,则a+b的值是()A.12 B.12或4 C.12或±4 D.﹣12或410.若a3=﹣216,则a的相反数是()A.6 B.﹣6 C.36 D.﹣3611.计算的结果为()A.±B.﹣C.D.12.的立方根是()A.2 B.4 C.±2 D.±8二.填空题(共8小题)13.﹣的立方根为.14.已知x的平方根是±8,则x的立方根是.15.用计算器计算:≈(精确到0.01)16.已知2a﹣1的平方根是±3,则7+4a的立方根是.17.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根.18.=.19.﹣0.008的立方根是.20.算术平方根和立方根等于本身的数是.三.解答题(共4小题)21.求下列各式的值:(1)(2)(3)﹣(4).22.已知2x﹣1的算术平方根是3,y+3的立方根是﹣1,求代数式2x+y的平方根.23.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+b的立方根.24.已知﹣8的平方等于a,b立方等于﹣27,c+2的算术平方根为3.(1)写出a,b,c的值;(2)求+5c的平方根.2020年春人教版七年级下册同步练习:6.2 立方根参考答案与试题解析一.选择题(共12小题)1.正方体的体积为7,则正方体的棱长为()A.B.C.D.73【分析】由立方根的定义可得正方体的棱长为.【解答】解:正方体的体积为7,则正方体的棱长为,故选:B.2.的平方根是()A.2 B.﹣2 C.D.±2【分析】利用立方根定义计算即可求出值.【解答】解:=2,2的平方根是±,故选:C.3.用计算器求35值时,需相继按“3”,“y x”,“5”,“=”键,若小颖相继按“”,“4”,“y x”“3”,“=”键,则输出结果是()A.6 B.8 C.16 D.48【分析】计算器按键转为算式,计算即可.【解答】解:计算器按键转为算式=23=8,故选:B.4.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9【分析】利用计算器得到的近似值即可作出判断.【解答】解:∵≈2.646,∴与最接近的是2.6,故选:B.5.若a满足,则a的值为()A.1 B.0 C.0或1 D.0或1或﹣1【分析】只有0和1的算术平方根与立方根相等.【解答】解:∵,∴a为0或1.故选:C.6.若=a,则a的值不可能是()A.﹣1 B.0 C.1 D.3【分析】根据立方根的概念进行解答,可以设这个数为x,根据立方根是它本身,求出这个数.【解答】解:因为=a,所以a=0,﹣1,1,即a的值不可能是3.故选:D.7.﹣8的立方根是()A.2 B.﹣2 C.4 D.﹣0.5【分析】根据立方根的定义即可求出答案.【解答】解:﹣8的立方根为﹣2,故选:B.8.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.1【分析】根据开立方的意义,可得答案.【解答】解:立方根等于它本身的有﹣1,0,1.故选:B.9.若a2=16,=﹣2,则a+b的值是()A.12 B.12或4 C.12或±4 D.﹣12或4【分析】根据a2=16,=﹣2,可得:a=±,﹣b=(﹣2)3,据此分别求出a、b的值各是多少,再把它们相加,求出a+b的值是多少即可.【解答】解:∵a2=16,=﹣2,∴a=±=±4,﹣b=(﹣2)3=﹣8,∴a=±4,b=8,∴a+b=4+8=12或a+b=﹣4+8=4.故选:B.10.若a3=﹣216,则a的相反数是()A.6 B.﹣6 C.36 D.﹣36 【分析】先根据立方根的定义求出a,再根据相反数的定义即可求解.【解答】解:∵a3=﹣216,∴a==﹣6,则a的相反数是6.故选:A.11.计算的结果为()A.±B.﹣C.D.【分析】根据立方根的定义,可得答案.【解答】解:=,故选:C.12.的立方根是()A.2 B.4 C.±2 D.±8 【分析】根据立方根的定义,即可解答.【解答】解:=8,8的立方根的为2.故选:A.二.填空题(共8小题)13.﹣的立方根为﹣.【分析】根据立方根的定义即可求出﹣的立方根.【解答】解:﹣的立方根为﹣.14.已知x的平方根是±8,则x的立方根是 4 .【分析】根据平方根的定义,易求x,再求x的立方根即可.【解答】解:∵x的平方根是±8,∴x=(±8)2,∴x=64,∴==4,故答案是4.15.用计算器计算:≈12.63 (精确到0.01)【分析】在计算器中输入所求式子即可.【解答】解:在计算器中输入所求式子,得到≈12.63,故答案为12.63.16.已知2a﹣1的平方根是±3,则7+4a的立方根是 3 .【分析】利用平方根、立方根定义判断即可.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,解得:a=5,∴7+4a=7+20=27,则27的立方根是3,故答案为:317.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根±.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到2﹣b的平方根.【解答】解:由题意,有,解得.则a+b=5+6=11,所以a+b的平方根±.18.= 1 .【分析】原式利用立方根定义计算即可求出值.【解答】解:原式=﹣(﹣1)=1,故答案为:119.﹣0.008的立方根是﹣0.2 .【分析】利用立方根定义计算即可求出值.【解答】解:∵(﹣0.2)3=﹣0.008,∴﹣0.008的立方根是﹣0.2,故答案为:﹣0.220.算术平方根和立方根等于本身的数是0,1 .【分析】判断出算术平方根、立方根等于本身的数各有哪些,即可判断出算术平方根和立方根等于本身的数是哪个.【解答】解:∵算术平方根等于本身的数是0,1,立方根等于本身的数是0,1,﹣1,∴算术平方根和立方根等于本身的数是0,1.故答案为:0,1.三.解答题(共4小题)21.求下列各式的值:(1)(2)(3)﹣(4).【分析】各式利用立方根定义计算即可得到结果.【解答】解:(1)原式=﹣;(2)原式=;(3)原式=;(4)原式=.22.已知2x﹣1的算术平方根是3,y+3的立方根是﹣1,求代数式2x+y的平方根.【分析】利用算术平方根、立方根定义求出x与y的值,进而求出2x+y的值,即可求出平方根.【解答】解:∵2x﹣1的算术平方根为3,∴2x﹣1=9,解得:x=5,∵y+3的立方根是﹣1,∴y+3=﹣1,解得:y=﹣8,∴2x+y=2×5﹣8=2,∴2x+y的平方根是±.23.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+b的立方根.【分析】根据平方根的定义,即可得到2a﹣1=32,然后即可求得a的值;同理可以得到3a+b ﹣1=42,即可得到b的值,进而求得a+b的立方根.【解答】解:∵2a﹣1的平方根为±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根为4,∴3a+b﹣1=16.∵a=5,∴3×5+b﹣1=16,∴b=2,∴a+b=5+×2=8,∴a+b的立方根是2.24.已知﹣8的平方等于a,b立方等于﹣27,c+2的算术平方根为3.(1)写出a,b,c的值;(2)求+5c的平方根.【分析】(1)根据平方根与立方根的定义即可求出答案;(2)将a、b、c代入原式即可求出答案.【解答】解:(1)由题意可知:a=(﹣8)2=64,b3=﹣27,c+2=32,a=64,b=﹣3,c=7;(2)当a=64,b=﹣3,c=7时,=﹣2×9+5×7=49,的平方根为±7。
人教版数学七年级下册 第六章 实数 算术平方根、平方根、立方根的难点突破 专题练习题 含答案
第六章实数算术平方根、平方根、立方根的难点突破一、求算术平方根、平方根、立方根1. 一个自然数的算术平方根是a,则与这个自然数相邻的下一个自然数的算术平方根是2. 一个非负数的两个平方根分别是2a-1和a-5,则这个非负数是多少?3. 若x2=4,y2=9,且x>y,求x-y的平方根4. 已知x-2的平方根是±1,2x+y+17的立方根是3,求x2+y2的平方根和立方根.5. 已知M=m-1m+6是m+6的算术平方根,N=2m-3n+3n+6是n+6的立方根,试求M-N的值.二、算术平方根的非负性6. 若x -3有意义,则x 的取值范围是___________ __.7. 已知y =x -8+8-x +5,求x +y 的值8. 若y =x -12+12-x -6,求xy 的值.9. 已知实数x ,y ,z 满足|4x -4y +1|+132y +z +(z -12)2=0,求(y +z)·x 2的值.三、利用算术平方根、立方根解决实际问题10. 如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__________.11. 一种集装箱是正方体,它的体积是343 m3,则这种正方体集装箱的棱长是____________.12. 国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间.某地新建了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用于国际比赛吗?并说明理由.13. 在做浮力实验时,小华用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,溢出水的体积为40 cm3;小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.6 cm.请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器计算,结果精确到0.01 cm)14. 全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35 cm,问冰川约是在多少年前消失的?15. 将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.四、探究算术平方根、平方根、立方根的变化规律16. 观察分析下列数据:0,-3,6,-3,12,-15,18,…,根据以上数据排列的规律,第n个数据应是_______________________.(n为正整数) 17. 观察下列各式,并用所得出的规律解决问题:(1)2=1.414,200=14.14,20 000=141.4,…0.03=0.173 2,3=1.732,300=17.32,…由此可见,被开方数的小数点每向右移动_______位,其算术平方根的小数点向_______ __移动______ __位;(2)已知5=2.236,50=7.071,则0.5=_____________,500=___________; (3)31=1,31 000=10,31 000 000=100,…小数点变化的规律是:(4)已知310=2.154,3100=4.642,则310 000=__________,-30.1=______________.18. 先观察,再解决问题 3227=2327; 33326=33326; 34463=43463;…(1)请再写出一个类似的式子;(2)请用含n 的式子表示上述规律.19. 不用计算器,探究解决下列问题:(1)已知x 3=10 648,则x 的个位数字一定是____;∵8 000=203<10 648<303=27 000,∴x 的十位数字一定是____,∴x =________;(2)已知x 3=59 319,则x 的个位数字一定是____;∵27 000=303<59 319<403=64 000,∴x的十位数字一定是____,∴x=_________;(3)已知x3=148 877,则x的个位数字一定是____;∵125 000=503<148 877<603=216 000,∴x的十位数字一定是____,∴x=______;(4)按照以上思考方法,直接写出x的值.①若x2=857 375,则x=______;②若x3=373 248,则x=______.答案:一、1. a2+12. 解:根据题意,有(2a-1)+(a-5)=0,解得a=2.∴这个非负数为(2a-1)2=(2×2-1)2=9.3. 解:∵x2=4,y2=9,∴x=±2,y=±3.∵x>y,∴x=±2,y=-3.当x=2,y=-3时,x-y的平方根是±5;当x=-2,y=-3时,x-y的平方根是±1.4. 解:∵x-2的平方根是±1,∴x-2=1,则x=3.∵2x+y+17的立方根是3,∴2x+y+17=27.把x=3代入2x+y+17=27中,得y=4.∴x2+y2=32+42=25,∴x2+y2的平方根是±5,立方根是3 25.5. 解:由题意可知m-1=2,2m-3n+3=3,解得m=3,n=2.∴M=9=3,N=38=2,∴M-N=3-2=1.二、6. x≥37. 由题意可得x -8≥0,且8-x ≥0,∴x =8.当x =8时,y =5,∴x +y =13.8. 由题意可得x -12≥0,且12-x ≥0,∴x =12.当x =12时,y =-6,∴xy =12×(-6)=-3.9. 解:根据题意可得4x -4y +1=0,2y +z =0,z -12=0, ∴x =-12,y =-14,z =12,∴(y +z)·x 2=116. 三、 10. 611. 7m12. 解:这个足球场能用于国际比赛,理由:设足球场的宽为x m ,则长为1.5x m ,由题意得1.5x 2=7 560,∴x 2=5 040.∵x >0,∴x = 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71,∴70<x <71,∴105<1.5x <106.5,符合要求,∴这个足球场能用于国际比赛.13. 解:设铁块的棱长为a cm ,根据题意,得a 3=40,解得a≈3.42.设烧杯内部的底面半径为r cm ,根据题意,得πr 2×0.6=40,解得r≈4.61(舍去负值),则烧杯内部的底面半径约是4.61 cm ,铁块的棱长约是3.42 cm.14. 解:(1)当t =16时,d =7×t -12=7×2=14(cm ),则冰川消失16年后苔藓的直径为14 cm .(2)当d =35时,t -12=5,即t -12=25,解得t =37,则冰川约是在37年前消失的.15. 解:设每个小立方体铝块的棱长为x cm,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2),即每个小立方体铝块的表面积为0.54 m2.16. (-1)n+13(n-1)17. (1) 两右一(2) 0.7071 22.36(3) 被开方数的小数点向右(左)移动三位,其立方根的小数点向右(左)移动一位.(4) 21.54 -0.464218. (1) 解:355124=535124.(2) 解:3n+nn3-1=n3nn3-1(n≠1,且n为正整数).19. (1) 2 2 22(2) 9 3 39(3) 3 5 53(4) ① 95② 72。
平方根立方根实数练习题--5
平方根、立方根练习题一、选择题1、化简错误! 的结果是( )A .3 B.-3 C.±3 D.9 2.已知正方形的边长为a,面积为S,则( ) A .S a =B.±S a = C.a S = D .a S =±3、算术平方根等于它本身的数( )A、不存在;B、只有1个;C、有2个;D 、有无数多个; 4、下列说法正确的是( )A .a的平方根是±a ;B.a 的算术平方根是a ; C .a 的算术立方根3a ;D.-a 的立方根是-3a . 5、满足-2<x<3的整数x 共有( )A .4个;B.3个;C .2个;D.1个.6、如果a、b 两数在数轴上的位置如图所示,则()2b a +的算术平方根是();A、a +b;B 、a -b ;C 、b -a;D 、-a-b; 7、如果-()21x -有平方根,则x的值是( ) A 、x ≥1;B 、x ≤1;C 、x =1;D 、x≥0;8.已知a 中,a 是正数,如果a 的值扩大100倍,则a 的值( ) A 、扩大100倍;B、缩小100倍;C 、扩大10倍;D 、缩小10倍;9、2008年是北京奥运年,下列各整数中,与2008最接近的一个是( ) A.43;B、44;C 、45;D 、46;10.如果一个自然数的算术平方根是n,则下一个自然数的算术平方根是( ) A、n +1;B、2n +1;C 、1n +;D、21n +。
11. 以下四个命题①若a 是无理数,则a 是实数;②若a 是有理数,则a 是无理数;③若a 是整数,则a 是有理数;④若a 是自然数,则a 是实数.其中,真命题的是( ) A.①④ﻩB.②③ﻩ ﻩC .③ ﻩﻩD.④12. 当01a <<,下列关系式成立的是( ) A .a a >,3a a >ﻩﻩﻩB.a a <,3a a <a . -1. 0b .. 1.Ca <a >ﻩﻩDa >a <13. 下列说法中,正确的是( )A.27的立方根是33= B .25-的算术平方根是5C.a 的三次立方根是 D.正数a 14. 下列命题中正确的是( )(1)0.027的立方根是0.3;(2)3a 不可能是负数;(3)如果a 是b 的立方根,那么ab ≥0;(4)一个数的平方根与其立方根相同,则这个数是1. A .(1)(3) B.(2)(4) C .(1)(4) D .(3)(4) 15. 下列各式中,不正确的是( )> <D5=-16.若a<0,则aa 22等于( )A 、21 B 、21- C 、±21 D、0 二、填空题17、0.25的平方根是 ;125的立方根是 ;18.计算:412=___;3833-=___;1.4的绝对值等于 .19.若x 的算术平方根是4,则x=___;若3x =1,则x=___; 20.若2)1(+x -9=0,则x=___;若273x +125=0,则x =___; 21.当x___时,代数式2x +6的值没有平方根; 22.381264273292531+-+= ;23.若0|2|1=-++y x ,则x+y= ; 24.若642=x ,则3x =____. 25.立方根是-8的数是___,64的立方根是____。
七年级数学平方根立方根计算题
一、数学是学习的基础数学是一门非常重要的学科,它不仅在我们日常生活中起着重要的作用,而且在各个领域都扮演着不可或缺的角色。
作为数学的一部分,平方根和立方根是学生在学习数学过程中经常接触到的概念,它们对培养学生的逻辑思维能力和解决实际问题的能力有着重要的作用。
二、初步认识平方根和立方根1. 平方根平方根是指某个数的平方等于给定的数,√4 = 2,因为2的平方等于4。
在数学中,平方根通常用符号√来表示,它是一个非负的实数。
2. 立方根立方根是指某个数的立方等于给定的数,³√8 = 2,因为2的立方等于8。
与平方根类似,立方根也是一个非负的实数,通常用³√来表示。
三、平方根和立方根的计算1. 平方根的计算为了计算一个数的平方根,可以使用不同的方法,如牛顿迭代法、二分法等。
最常见的方法是使用计算器,输入待求的数,然后按下平方根键即可得到结果。
2. 立方根的计算计算一个数的立方根可以使用类似的方法,同样可以使用计算器进行计算,输入待求的数,然后按下立方根键即可得到结果。
四、七年级数学中的平方根和立方根计算题在七年级数学教学中,平方根和立方根是重要的知识点,学生在学习这些知识点的过程中需要进行大量的练习和应用。
下面是一些七年级数学中常见的平方根和立方根计算题:1. 计算以下各题中的平方根和立方根:(1)√16(2)√25(3)√36(4)³√27(5)³√64(6)³√1252. 比较大小(1)比较√20和√18的大小(2)比较³√50和³√45的大小3. 应用题(1)一个正方形的面积是25平方米,求它的边长。
(2)一个立方体的体积是64立方厘米,求它的边长。
(3)一个长方形的面积是36平方米,它的长是宽的3倍,求长和宽分别是多少?五、举一反三,灵活运用平方根和立方根在解决实际问题中,学生不仅需要灵活掌握平方根和立方根的计算方法,还需要能够运用所学知识解决具体问题。
初一数学下册综合算式专项练习题平方根与立方根运算
初一数学下册综合算式专项练习题平方根与立方根运算初一数学下册综合算式专项练习题:平方根与立方根运算算数是我们日常生活中必不可少的一部分,我们时常会遇到各种各样的计算问题。
在初一下学期的数学课程中,我们将学习到关于平方根和立方根的运算。
本文将重点介绍综合算式专项练习题,并对平方根和立方根进行详细的讲解和演示。
1. 平方根平方根是指一个数的平方等于这个数本身。
例如,数学符号√2表示的就是2的平方根。
计算平方根可以帮助我们解决一些与平方相关的问题。
练习题1:计算√25。
解答:√25 = 5。
因为5的平方等于25。
练习题2:计算√16。
解答:√16 = 4。
因为4的平方等于16。
练习题3:计算√36。
解答:√36 = 6。
因为6的平方等于36。
2. 立方根类似平方根,立方根是指一个数的立方等于这个数本身。
我们用符号³√来表示立方根。
练习题4:计算³√8。
解答:³√8 = 2。
因为2的立方等于8。
练习题5:计算³√27。
解答:³√27 = 3。
因为3的立方等于27。
练习题6:计算³√64。
解答:³√64 = 4。
因为4的立方等于64。
3. 平方根和立方根运算在实际运算中,我们有时需要对平方根和立方根进行一些组合运算。
下面是一些相关的练习题。
练习题7:计算√25 + ³√8。
解答:√25 + ³√8 = 5 + 2 = 7。
练习题8:计算√16 + ³√27。
解答:√16 + ³√27 = 4 + 3 = 7。
练习题9:计算√36 - ³√64。
解答:√36 - ³√64 = 6 - 4 = 2。
4. 综合题目现在让我们来解决一些综合的平方根和立方根运算题目。
练习题10:计算√(25 + 36)。
解答:首先计算括号内的算式:25 + 36 = 61。
然后计算√61。
这个数无法被简化为整数,所以我们保留√61作为答案。
立方根和平方根试题与答案
1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。
人教版七年级数学下册第六章《实数》同步练习(含答案)
)
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 18.(2017·广州四校联考期中)已知 a,b 为两个连续整数,且 a< 15<b,则 a+b 的值为 7. 19.(教材 P41 探究变式)如图,将两个边长为 3的正方形分别沿对角线剪开,将所得的 4 个三角形拼成一个大的 正方形,则这个大正方形的边长是 6.
20.(教材 P43 探究变式)观察:已知 5.217≈2.284, 521.7≈22.84,填空: (1) 0.052 17≈0.228__4, 52 170≈228.4; (2)若 x≈0.022 84,则 x≈0.000__521__7. 21.比较下列各组数的大小: (1) 12与 14; (2)- 5与- 7;
3 C.±2
81 D.16 D.0
A.0.7 B.-0.7 C.±0.7 4.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对 5.求下列各数的算术平方根: 9 64 (1)121; (2)1; (3) ; (4)0.01.
Байду номын сангаас
a=.小明按键输入
C.-6 ) C.±2
D. 6 D.2
中档题 14.下列各数,没有算术平方根的是( B ) A.2 B.-4 C.(-1)2 D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D ) A.1 B.-1 C.0 D.0 或 1 16.(2017·广州期中)已知一个自然数的算术平方根是 a,则该自然数的下一个自然数的算术平方根是( D A.a+1 B. a+1 C.a2+1 D. a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )
6.2 立方根 人教版七年级数学下册配套习题(含答案)
6.3立方根一、选择题(本大题共8小题)1. 下列计算正确的是( )A. √(−3)2=−3B. √−53=√53C. √36=±6D. −√0.36=−0.6 2. 下列式子没有意义的是( )A. −√3B. √(−3)2C. √−83D. √−33. 一个数的立方根是它本身,则这个数是( )A. 1B. 0或1C. −1或1D. 1,0或−1 4. 下列说法中,正确的是( )A. 一个数的立方根有两个,它们互为相反数B. 立方根是负数的数一定是负数C. 如果一个数有立方根,那么它一定有平方根D. 一个数的立方根是非负数5. 若a 2=16,√b 3=2,则a +b 的值为·( )A. 12B. 4C. 12或−4D. 12或46. 如图,数轴上点A 表示的数可能是( )A. 4的算术平方根B. 4的立方根C. 8的算术平方根D. 8的立方根7. 若√x 3+√y 3=0,则x 和y 的关系是 ( )A. x =y =0B. x 和y 互为相反数C. x 和y 相等D. 不能确定8. 下列说法: ①负数没有立方根. ②一个实数的立方根不是正数就是负数. ③一个正数或负数的立方根与这个数同号. ④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的是( )A. ① ② ③B. ① ② ④C. ② ③ ④D. ① ③ ④二、填空题(本大题共6小题)9. 一个数的立方根是它本身,这个数是 .10. 如果x 3=−27,那么x = .11. √64的立方根是________;√643的平方根是________.12. 若一个数的平方根与其立方根是同一个数,则这个数是.13. 小成编写了一个程序:输入x→x2→立方根→倒数→算术平方根→12,则x为.14. 若实数x,y满足,则xy的立方根为.三、计算题(本大题共1小题)15. 求下列各式的值:(1)−√−0.0273;(2)√−8273;(3)√1−37643;(4)√78−13.四、解答题(本大题共1小题)16. (本小题8.0分)已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为√2,f的算术平方根是8,求12ab+c+d5+e2+√f3的值.答案和解析1.【答案】D解:A 、√(−3)2=3,故此选项错误;B 、√−53=−√53,故此选项错误;C 、√36=6,故此选项错误;D 、−√0.36=−0.6,正确.故选D .2.【答案】D解:A 、被开方数是正数,该式子有意义,故本选项正确,不合题意;B 、(−3)2=9,被开方数是正数,该式子有意义,故本选项正确,不合题意;C 、三次根式的被开方数可以是任何数,该式子有意义,故本选项正确,不合题意.D 、被开方数是负数,该式子无意义,故本选项错误,符合题意.故选:D .3.【答案】D4.【答案】B解:A 选项,一个数的立方根有1个,故该选项不符合题意;B 选项,负数的立方根是负数,故该选项符合题意;C 选项,负数有立方根,但负数没有平方根,故该选项不符合题意;D 选项,正数的立方根是正数,负数的立方根是负数,0的立方根是0,故该选项不符合题意; 故选:B .5.【答案】D解:因为a 2=16,√b 3=2,所以a =±4,b =8,所以a +b 的值为12或4.6.【答案】C解:∵2<A <3,∴A 应该是8的算术平方根,故选C .7.【答案】B解:∵√x 3+√y 3=0,∴√x 3=−√y 3,∴x =−y ,即x 、y 互为相反数.故选B . 8.【答案】B9.【答案】0或±1解:一个数的立方根是它本身,则这个数是±1或0。
七年级数学下册第6章实数平方根和立方根复习测试题
3 a 七年级下册第 6 章实数( 6.1 平方根和 6.2 立方根复习测试题)第一部分知识点填空并加强背诵一、算术平方根一般地,如果的等于a,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为读作“根号a”,a 叫做.规定:0 的算术平方根是0. 也就是,在等式x 2 =a (x≥0)中,规定x = a 。
理解:x 2 =a (x≥0)<—> xa 是x 的平方x 的平方是a x 是a 的算术平方根 a 的算术平方根是x二、平方根1.平方根的定义:如果的平方等于a,那么这个数x 就叫做a 的.即:如果,那么x 叫做a的.理解:x 2 =a <—> x =a 是x 的平方x 的平方是a x 是a 的平方根 a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。
3.平方与开平方:±3 的平方等于9,9 的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数 a 的正的平方根可用表示,也是 a 的算术平方根;正数 a 的负的平方根可用 -表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。
2.一个数a 的立方根,记作,读作:“三次根号a ”,其中a 叫被开方数,3 叫根指数,不能省略,若省略表示平方。
理解:x3 =a <—>a 是x 的立方x 的立方是a x 是a 的立方根 a 的立方根是x3.一个正数有一个正的立方根;0 有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。
人教版七年级数学下册核心考点专题题型归纳04 平方根、立方根以及实数 (原卷版)
专题04 平方根、立方根以及实数【思维导图】◎考点题型1 求一个数的算术平方根例.(江苏·南师附中树人学校八年级期末)10的算术平方根是()A.10B C.D.10变式1.(江苏·扬州市江都区实验初级中学八年级阶段练习)下列说法正确的是() A.5-是25的平方根B.4±是16的算术平方根C.2是-4的算术平方根D.1的平方根是它本身)变式2.(江苏·A.3B.9±C.9-D.9变式3.(海南鑫源高级中学八年级期中)下列各数中,没有算术平方根的是( ) A .0.1 B .9 C .3(1)- D .0◎考点题型2 利用算术平方根的非负性解题例.(福建泉港·八年级期末)若实数x ,y 满足30x -=.则以x ,y 的值为两边长的等腰三角形的周长是( )A .9B .12C .15D .12或15变式1.(广东·40b -=,那么a b -=( )A .1B .-1C .-3D .-5变式2.(江苏兴化·八年级期中)已知实数x ,y 满足30x -,则以x ,y 的值为两边长的等腰三角形的周长为( )A .12B .15C .18D .12或15变式3.(云南·普洱市思茅区第四中学七年级期中)若1x -互为相反数,则xy 的值为( )A .6-B .5-C .5D .6◎考点题型3 估计算术平方根的取值范围例.(福建· )A .在1~2之间B .在2~3之间C .在3~4之间D .在4~5之间变式1.(安徽包河·最接近的整数是( )A .3B .4C .5D .7变式2.(重庆巴蜀中学一模)估计2的值应在( )A .4和5之间B .3和4之间C .2和3之间D .1和2之间变式3的运算结果应在哪两个连续自然数之间( ) A .1和2 B .2和3 C .3和4 D .4和5◎考点题型4 求算术平方根的整数部分和小数部分 2geti例.(北京朝阳·七年级期末)将边长分别1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长最接近整数( )A .4B .3C .1D .0变式.(北京·中考真题)已知2222431849,441936,452025,462116====.若n 为整数且1n n <<+,则n 的值为( )A .43B .44C .45D .46◎考点题型5 平方根的概念理解例.(山东·枣庄市台儿庄区教育局教研室八年级期中)下列说法错误的是( )A .1的平方根是±1B .1-的立方根是1-C .2的平方根D .3-变式1.(海南海口·八年级期中)下列说法正确的是( )A ±5B .﹣42的平方根是±4C .64的立方根是±4D )2=2变式2.(湖南·衡阳市华新实验中学八年级期中) 下列说法不正确的是( )A .3-是9的一个平方根B 8的立方根C .36的平方根是6±D .16的平方根是4变式3.(海南华侨中学八年级期中)下列说法中,其中不正确的是( )A .4的算术平方根是2B .2的一个平方根C .()21-的立方根是 1 D◎考点题型6 求一个数的平方根例.(江苏省无锡市经开区2021-2022学年八年级上学期期末数学试题)下列各式中,正确的是( )A .4± B 3=± C 3= D 4=-变式1.(广东大埔·八年级期末)9的平方根是( )A .3B .3±C .3-D .2±变式2.(四川巴中·八年级期末)下列说法正确的是( )A .1的平方根是1B .(﹣4)2的算术平方根是4C±3 D 是最简二次根式变式3(重庆万州·八年级期末)下列等式正确的是( ).A 8=±B .8=C .8±D 4=±◎考点题型7 求代数式的平方根例.(2019·浙江杭州·九年级)已知()24a -,则-a b 的平方根是( )A B C .D .变式1.(2019·河南兰考·八年级阶段练习)在实数范围内,|100|0b -=,则a 与b 的积的算术平方根是( )A .0B .10C .10-D .10±变式2.(2020·贵州·贵阳市白云区第九中学八年级阶段练习)若是169的算术平方根,是121的负的平方根,则(+)2的平方根为( )A .2B .4C .±2D .±4变式3.(2019·河南·南阳市第三中学八年级阶段练习)若3m =,代数式3m ( ) A .7 B .11 C .7- D .9±◎考点题型8 已知一个数的平方根,求这个数例.(全国·八年级)已知2m ﹣1和5﹣m 是a 的平方根,a 是( )A .9B .81C .9或81D .2变式1.(江苏·江阴市璜塘中学八年级阶段练习)如果一个正数a 的两个不同平方根是2x -2和6-3x ,则这个正数a 的值为( )A .4B .6C .12D .36变式2.(全国·八年级课时练习)若21x +和7x -是一个正数的平方根,则这个正数为( ) A .25 B .225 C .25或225 D .25±变式3.(湖南·长沙市北雅中学七年级阶段练习)一个正数的两个平方根分别是21a -与2a -+,则这个正数是( )A .1-B .3C .9D .3-◎考点题型9 利用平方根解方程例.(四川绵阳·七年级期末)已知2(23)4x -=,则x 的所有取值的和为( )A .0B .2C .52D .3变式1.(安徽无为·七年级期中)物体自由下落时,下落距离h (单位:米)可用公式25h t =来估算,其中t (t >0单位:秒)表示物体下落的时间.若一个篮球掉入80米深的山谷中,落入谷底前不与其他物体接触,则该篮球掉落到谷底需要的时间为( )A .2秒B .4秒C .16秒D .20秒变式2.(辽宁连山·九年级期末)方程x 2-9=0的解是( )A .x 1=3,x 2=-3B .x =0C .x 1=x 2=3D .x 1=x 2=-3变式3.(全国·九年级单元测试)若2(22)x +=,则x 的值是( )A4 B 2 C 2+2 D 2或2◎考点题型10 立方根的概念理解例.(重庆实验外国语学校七年级期末)下列运算中,正确的是( )A 2=B 2=-C .33=D 3=变式1.(贵州六盘水·八年级阶段练习)平方根和立方根都等于它本身的数是( ) A .±1 B .1 C .0 D .﹣1变式2.(浙江·九年级专题练习)下列各式中,错误的是( )A .B .(a ﹣b )2=(b ﹣a )2C .|﹣a |=aD .2a =变式3.(云南·昆明市实验中学七年级期中)下列计算正确的是( )A 2-B 3±C 3=-D .5=◎考点题型11 求一个数的立方根例.(福建洛江·八年级期末)−8 的立方根是( )A .−2B .2C .±D .64变式1.(广西港口·七年级期中)下列语句正确的是( )A .8的立方根是2B .﹣3是27的立方根C .125216的立方根是±56 D .(﹣1)2的立方根是﹣1变式2.(辽宁凌海·x ,27-的立方根是y ,则2x y -的值为( )A .7B .11C .1-或7D .11或5-变式3.(山东·( )A .28.72B .0.2872C .13.33D .0.1333◎考点题型12 已知一个数的立方根,求这个数例.(江西新余· 2.938 6.329=,=( ) A .632.9 B .293.8 C .2938 D .6329变式1.(河北· 6.882≈,68.82,则x 的值约为( )A .326000B .32600C .3.26D .0.326变式2.(甘肃·平川区四中七年级期中)已知x =6,y 3=-8,且0x y +<,则xy =( ) A .-8 B .-4 C .12 D .-12变式3.(2019·广东·佛山市南海区大沥镇许海初级中学八年级阶段练习)a+3的算术平方根是3,b-2的立方根是2, )A B .C .±6 D .6◎考点题型13 算术平方根和立方根的综合应用例.(山东薛城·八年级期中)已知x 为实数,=0,则x 2+x ﹣3的算术平方根为( )A .3B .2C .3和﹣3D .2和﹣2变式1.(2020·甘肃·武威第九中学七年级期中)若a,b ,则a+b 的值是( )A .4B .4或0C .6或2D .6变式2.(2020·河北·3270b -=,那么6()a b +的立方根是( )A .-1B .1C .3D .7变式3.(广东·连南瑶族自治县教师发展中心八年级期中)实数a ,b 在数轴上对应的点的位置如图||a b +化简的结果( )A .2a b +B .bC .2a b -D .3b◎考点题型14 无理数的概念理解例.(广东揭东·,2272π中无理数有( ) A .4个 B .3个 C .2个 D .1个变式1.(河南·郑州市第三中学八年级期末)下列各数:(每相邻两个3之间依次多一个1),2π,13无理数有( ) A .1个 B .2个C .3个D .4个 变式2.(湖南·株洲市天元区雷打石学校八年级期末)下列各数是无理数的是( )AB C .π D .227变式3.(江苏江都·2,72π-,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个◎考点题型15 实数的概念理解例.(全国·七年级课时练习)下列命题:①无理数都是实数;②实数都是无理数;③无限小数都是无理数:④带根号的数都是无理数;⑤不带根号的数都是有理数,其中错误的命题的个数是( )A .1B .2C .3D .4变式1.(福建·厦门双十中学八年级阶段练习)已知实数,m n 满足20n -=,则m n +的值为( )A .2B .1-C .1D .3变式2.(浙江·九年级专题练习)下列说法其中错误的个数( )①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③16的平方根是4±,用式子表示4=±;④负数没有立方根;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0. A .0 B .1 C .2 D .3变式3.(全国·七年级期末)下列说法中不正确的是( )A .0是绝对值最小的实数B 2=C .3是9的一个平方根D .负数没有立方根◎考点题型16 实数的分类例.(甘肃兰州·八年级期中)下列说法不正确的是( )A .有理数和无理数统称为实数B .实数是由正实数和负实数组成C .无限循环小数是有理数D .实数和数轴上的点一一对应变式1.(湖南·衡阳市华新实验中学八年级期中) 下列说法正确的是( )A .定理是真命题B .真命题是定理C .实数包括正实数和负实数D .无理数是实际不存在的数变式2.(广东普宁·八年级期中)下面说法中,正确的是( )A .实数分为正实数和负实数B .带根号的数都是无理数C .无限不循环小数都是无理数D .平方根等于本身的数是1和0变式3.(山东牡丹·八年级阶段练习)下列说法正确的是( ).A .实数分为正实数和负实数B .无理数与数轴上的点一一对应C .2-是4的平方根D .两个无理数的和一定是无理数◎考点题型17 实数的性质例.(江苏江阴·1的相反数是( )A .1+B .1C .1-+D .1-变式1.(2020·浙江省开化县第三初级中学七年级期中)下列说法正确的是( ) A .绝对值等于它本身的数一定是正数B .一个数的相反数一定比它本身小C .负数没有立方根D .实数与数轴上的点一一对应变式2.(2020·全国·八年级单元测试)化简3|的结果正确的是( )A 3B .3C 3D .3变式3.(全国·七年级单元测试)下列各组数中互为相反数的一组是( )A .2与12B .|2|-C .-2D .2◎考点题型18 实数与数轴例.(浙江海曙·七年级期末)如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若点E 在数轴上,(点E 在点A 的右侧)且AB AE =,则E 点所表示的数为( )A B .1 C D 2变式1.(重庆市实验学校八年级期中)如图,点C 所表示的数是( )A B C .1D 变式2.(北京·八年级期中)如图,数轴上的点A 表示的数是1-,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A.2.8 B .C .1 D .1变式3.(上海市罗南中学七年级期中)如图,数轴上点A 表示的数可能是( )A B C D◎考点题型19 实数的大小比较例.(重庆·忠县花桥镇初级中学校九年级期中)在实数4-,0,3-,2-中,最小的数是( ) A .4- B .0 C .3- D .2-变式1.(浙江北仑·223,0,7--中,最小的是( )A B .3- C .0 D .227-变式2.(河南郑州·九年级期末)在实数|﹣3.14|,﹣3,﹣π中,最小的数是( )A B.﹣3C.|﹣3.14|D.﹣π变式3.(广东阳山·八年级期末)在﹣3,0,2,,最小的数是()A.B.﹣3C.0D.2◎考点题型20 程序设计与实数运算例.(山东张店·二模)在使用科学计算器时,依次按键的方法如图所示,显示的结果在数轴上对应的点可以是()A.点A B.点B C.点C D.点D变式1.(全国·七年级期中)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.B.2C D.变式2.(全国·七年级期中)按如图所示的程序计算,若开始输入的值为9,则最后输出的y值是()A B.C.3D.±3变式3(2020·福建惠安·八年级期中)有一个数值转换器,流程如下:当输入的x为256时,输出的y是()AB.CD◎考点题型21 新定义下的实数运算例.(河南南召·九年级期末)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n -mn -3n ,如:1※2=12×2-1×2-3×2=-6.则(-2))A.B.-C.D.变式1.(广西·南宁二中七年级期末)规定一种新运算:b a b a a *=-,如2424412*=-=-.则()2*3-的值是( ).A .10- B .6- C .6 D .8变式2.(北京市第六十六中学七年级期中)a 为有理数,定义运算符号▽:当a >-2时,▽a =-a ;当a <-2时,▽a = a ;当a =-2时,▽a = 0.根据这种运算,则▽[4+▽(2-5)]的值为( ) A .1- B .7 C .7- D .1变式3.(贵州六盘水·九年级期中)对于任意实数a ,b ,定义一种新运算“☆”如下:22()()a b a a b a b ab b a b ⎧+≥=⎨+<⎩☆,若236m =☆,则实数m 等于( ) A .8.5 B .4 C .4或 4.5- D .4或 4.5-或8.5◎考点题型22 与实数运算的规律题例.(辽宁·阜新市第一中学七年级期中)如图五个正方形中各有四个数,各正方形中的四个数之间都有相同的规律,根据此规律,可推测出m 的值为( )A .0B .1C .4D .8变式1.(福建·厦门市集美区乐安中学八年级阶段练习)如图是一个按某种规律排列的数阵,根据数阵排列的规律,第2021行从左向右数第2020个数是( )A .2020B .2021 CD变式2.(湖南·雨花外国语学校八年级开学考试)观察下列运算(x ﹣1)(x +1)=x 2﹣1(x ﹣1)(x 2+x +1)=x 3﹣1(x ﹣1)(x 3+x 2+x +1)=x 4﹣1我们发现规律:(x ﹣1)(xn ﹣1+xn ﹣2+…+x 2+x +1)=xn ﹣1(n 为正整数):利用这个公式计算:32021+32020+…+33+32+3=( )A .32022﹣1B .2022312-C .2022312+D .2022332- 变式3.(辽宁连山·七年级期中)如图在表中填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .216B .147C .130D .442。
七年级数学平方根立方根计算题
七年级数学平方根立方根计算题在数学学科中,平方根和立方根是基础的运算概念。
它们在解决各类实际问题时都具有重要作用。
本文将围绕七年级数学平方根和立方根的计算题展开讨论。
1. 平方根计算题平方根是指一个数的平方等于给定的数。
计算平方根可以采用不同的方法,例如列方程、利用乘积表等。
以下是一些平方根计算题的例子:例题1:计算√9 + √16 - √25的值。
解析:首先计算每个平方根的值:√9 = 3,√16 = 4,√25 = 5。
然后将这些值代入原式,得到3 + 4 - 5 = 2的结果。
例题2:计算√(16 + √25)的值。
解析:首先计算内部的平方根:√25 = 5。
然后将这个结果代入原式,得到√(16+5) = √21的结果。
通过解析以上例题,我们可以清晰地了解到如何使用平方根计算式来求解问题。
2. 立方根计算题立方根是指一个数的立方等于给定的数。
计算立方根可以通过查表、使用计算器或者采用逼近法等方法。
以下是一些立方根计算题的例子:例题1:计算∛27的值。
解析:27可以表示为3的立方,因此∛27 = 3的结果。
例题2:计算∛(8 + ∛64)的值。
解析:首先计算内部的立方根:∛64 = 4。
然后将这个结果代入原式,得到∛(8+4) = ∛12的结果。
通过解析以上例题,我们可以清晰地了解到如何使用立方根计算式来求解问题。
需要注意的是,平方根和立方根这两个运算概念在数学中是十分重要的。
掌握它们的计算方法对于学习更高级的数学概念和解决实际问题具有重要意义。
在解答平方根和立方根计算题时,可以根据具体情况选择不同的计算方法。
总结起来,本文主要讨论了七年级数学中关于平方根和立方根的计算题。
通过解析例题,我们能够更好地理解如何运用平方根和立方根计算式来解决问题。
该文章的目的在于帮助读者提高对于数学平方根和立方根的理解和应用能力,为今后的学习打下坚实的基础。
(人教版)七年级数学下册第六章第1节《平方根、立方根》同步练习(含答案)
课题:6.1平方根授课类型:新授 执笔人: 修改人: 审核人学习目标:1.掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;2.能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系; 3.培养学生的探究能力和归纳问题的能力. 学习重点:平方根的概念和求数的平方根. 学习难点:平方根和算术平方根的联系与区别 . 教学过程: 一 、复习引入: 1. 什么叫算术平方根? 2. 求下列各数的算术平方根: (1)400; (2)1; (3)6449; (4)0.0001 (5)0 二、新授:问题: 如果一个数的平方等于9,这个数是多少? 又如:2542=x ,则x 等于多少呢? 填表:1.平方根的概念:如果一个数的平方等于a ,那么这个数就叫做a 的____________.即:如果a x =2,那么x 叫做a 的平方根.记作:±a ,读作“正、负根号a ”. 2. 开平方的概念:求一个数a 的平方根的运算,叫做_____________.例如:±3的平方等于9,9的平方根是±3,所以平方与开平方互为逆运算.例2:求下列各数的平方根:(1) 100 (2) 169(3) 0.25 (4)0思考:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?归纳:正数有____ 个平方根,它们____________________; 0的平方根是_________;负数_______________________________.引入符号:正数a 的算术平方根可用a 表示;正数a 的负的平方根可用-a 表示,正数a 的平方根可以用a ±表示. 例3:求下列各式的值:(1)144,(2)-81.0,(3)196121±(4)256,(5)()256 , (6三、课堂练习:课本第75页练习 1、2、3 1. 下面说法正确的是( )A 、 0的平方根是0 ;( )B 、 1的平方根是1;( )C 、 ﹣1的平方根是﹣1;( )D 、 (﹣1)2平方根是﹣1. ( ) 2. 求下列各数的平方根: (1)0.49 (2)4936(3)81 (4)0 (5)-100四、课堂检测:1.算术平方根等于它本身的数是__________________. 2. 下列各数没有平方根的是( )A 、64B 、0C 、(﹣2)3D 、(﹣3)43.(-3)2的平方根是( )A 、3B 、-3C 、±3D 、±94.下列各数有平方根吗?如果有,求出它的平方根;如果没有,说明理由. ⑴ 256 ⑵ 0 ⑶ (-4)2 ⑷ 1001⑸ -645.求下列各式的值-★6. x+2和3x -14是同一个数的平方根,则x 等于( ) A.-2 B.3或4 C.8 D.36.2《立方根》同步练习知识点:立方根:一般地,如果一个数的立方等于a ,那么这个数是a 的立方根 立方根性质:正数的立方根是正数 0的立方根是0 负数的立方根是负数3a - = —3a同步练习:【模拟试题】(共60分钟,满分100分) 一、认认真真选(每小题4分,共40分) 1.下列说法不正确的是( ) A.-1的立方根是-1 B.-1的平方是1 C.-1的平方根是-1 D.1的平方根是±1 2.下列说法中正确的是( ) A.-4没有立方根B.1的立方根是±1C.361的立方根是61D.-5的立方根是35-3.在下列各式中:327102=34,3001.0=0.1,301.0=0.1,-33)27(-=-27,其中正确的个数是( ) A.1B.2C.3D.4﹡4.若m<0,则m 的立方根是( )A.3mB.-3mC.±3mD.3m -﹡5.如果36x -是x -6的三次算术根,那么x 的值为( ) A.0 B. 3 C.5 D.66.已知x 是5的算术平方根,则x2-13的立方根是( ) A.5-13 B.-5-13 C.2 D.-27.在无理数5,6,7,8中,其中在218+与2126+之间的有( )A.1个B.2个C.3个D.4个﹡8.一个正方体的体积为28360立方厘米,正方体的棱长估计为( ) A.22厘米 B.27厘米 C.30.5厘米D.40厘米﹡9.已知858.46.23=,536.136.2=,则00236.0的值等于( ) A .485.8 B .15360 C .0.01536 D .0.04858﹡﹡10.若81-x3x 的值是( )A.0B. 21C. 81D. 161二、仔仔细细填(每小题4分,共32分)11.-81的立方根是 ,125的立方根是 。
七年级数学平方根和立方根同步练习含答案
6.1 平方根立方根一、基础训练1.9的算术平方根是()A.-3 B.3 C.±3 D.812.下列计算不正确的是()A±2 B=C=0.4 D3.下列说法中不正确的是()A.9的算术平方根是3 B 2C.27的立方根是±3 D.立方根等于-1的实数是-14的平方根是()A.±8 B.±4 C.±2 D5.-18的平方的立方根是()A.4 B.18C.-14D.146_______;9的立方根是_______.7______________(保留4个有效数字) 8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)234二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.1 C.-3或1 D.-112.已知x,y(y-3)2=0,则xy的值是()A.4 B.-4 C.94D.-9413.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.14.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,•小铁球的半径是多少厘米?(球的体积公式为V=43πR3)三、综合训练15.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0;(2)4(3x+1)2-1=0;(3)274x3-2=0;(4)12(x+3)3=4.参考答案1.B2.A .3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±23 7.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x+4=0且y-3=0.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.14.解:设小铁球的半径是rcm ,则有43πr 3×8=43π×123,r=6, ∴小铁球的半径是6cm .点拨:根据溶化前后的体积相等.15.解:(1)(2x-1)2=169,2x-1=±13,2x=1±13,∴x=7或x=-6.(2)4(3x+1)2=1,(3x+1)2=14, 3x+1=±12,3x=-1±12, x=-12或x=-16. (3)274x 3=2,x 3=2×427, x 3=827,x=23. (4)(x+3)3=8,x+3=2,x=-1.。
七八年级数学平方根立方根实数练习题
平方根练习题一、填空题1、 判断下列说法是否正确⑴5是25的算术平方根 ( ) ⑵56是2536的一个平方根 ( ) ⑶()24-的平方根是-4 ( ) ⑷ 0的平方根与算术平方根都是0 ( )2____,=⑵____,=⑶____,=⑷____=37=,则_____x =,x 的平方根是_____4 ) A 。
94± B 。
94 C 。
32± D 。
325、给出下列各数:49, 22,3⎛⎫- ⎪⎝⎭0, 4,- 3,-- ()3,-- ()45--,其中有平方根的数共有( )A 。
3个 B. 4个 C 。
5个 D. 6个6、若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,试求a b +的平方根。
7、求下列各数中的x 值 ⑴225x = ⑵2810x -= ⑶2449x = ⑷225360x -=8、如果一个正数的两个平方根为1a +和27a -,请你求出这个正数9。
因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 10的平方根是 11.非负的平方根叫 平方根 二、选择题12. 9的算术平方根是( )A .-3B .3C .±3D .81 13.下列计算正确的是( )A =±2B =。
636=± D.992-=-14.下列说法中正确的是( )A .9的平方根是3B 2C 。
4D 。
215. 64的平方根是( ) A .±8 B .±4 C .±2 D 16. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .—14 D .14三计算题17.计算:(1(2(3(4) 18.求下列各数的平方根.(1)100; (2)0; (3)925; (4)1; (5)11549; (6)0.0919_______;9的平方根是_______. 四、能力训练20.一个自然数的算术平方根是x,则它后面一个数的算术平方根是( )A .x+1B .x 2+1C +1 D21.若2m —4与3m —1是同一个数的平方根,则m 的值是( ) A .—3 B .1 C .-3或1 D .-122.已知x ,y +(y —3)2=0,则xy 的值是( ) A .4 B .-4 C .94 D .-9427.利用平方根、立方根来解下列方程.(1)(2x —1)2-169=0; (2)4(3x+1)2-1=0; (3)274x 3—2=0; (4)12(x+3)3=4.四、课后练习1、25的平方根是( )A 、5 B 、5- C 、5± D 、5±2.36的平方根是( )A 、6 B 、6± C 、6 D 、 6±3.当≥m 0时,m 表示( ) A .m 的平方根 B .一个有理数 C .m 的算术平方根 D .一个正数4.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-5.算术平方根等于它本身的数是( )A 、 1和0 B 、0 C 、1 D 、 1±和0 6.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±7.2)6(-的平方根是( )A 、-6 B 、36 C 、±6 D 、±68。
人教版七年级数学下册《平方根和立方根》同步练习含答案
第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。
公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。
2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。
数学综合算式练习题平方根与立方根运算
数学综合算式练习题平方根与立方根运算在数学学习中,算式练习题是提高数学综合能力的重要方法之一。
本文将针对平方根与立方根的运算,提供一些综合算式练习题,帮助读者巩固相关概念并提升运算能力。
一、平方根的运算练习题1. 计算下列各式的平方根:(1) √9(2) √16(3) √25(4) √36(5) √492. 求下列各式的平方根,并化简结果:(1) √18(2) √32(3) √50(4) √72(5) √983. 根据给定条件,计算下列各式的平方根:(1) 若x² = 121,则√x = ?(2) 若y² = 169,则√y = ?(3) 若a² = 144,则√a = ?(4) 若b² = 196,则√b = ?(5) 若c² = 225,则√c = ?4. 计算下列各式,并化简结果:(1) √(9 + 16)(2) √(25 - 9)(3) √(16 × 4)(4) √(36 ÷ 6)(5) √((18 + 15) ÷ 7)二、立方根的运算练习题1. 计算下列各式的立方根:(1) ³√8(2) ³√27(3) ³√64(4) ³√125(5) ³√2162. 求下列各式的立方根,并化简结果:(1) ³√16(2) ³√32(3) ³√48(4) ³√72(5) ³√1003. 根据给定条件,计算下列各式的立方根:(1) 若x³ = 64,则³√x = ?(2) 若y³ = 125,则³√y = ?(3) 若a³ = 216,则³√a = ?(4) 若b³ = 343,则³√b = ?(5) 若c³ = 512,则³√c = ?4. 计算下列各式,并化简结果:(1) ³√(27 - 8)(2) ³√(64 + 8)(3) ³√(125 × 4)(4) ³√(216 ÷ 6)(5) ³√((100 - 64) ÷ 9)三、综合运算练习题1. 计算下列各式的值:(1) √4 + ³√8(2) √9 + ³√27(3) √16 - ³√64(4) √25 × ³√125(5) √36 ÷ ³√2162. 求解下列等式:(1) √(x + 4) = 5(2) √(2y + 1) = 3(3) √(3z - 5) = 2(4) √(4w + 9) = 7(5) √(5t - 16) = 43. 根据给定条件,求解下列等式:(1) (√x)² + 5 = 14(2) 2(√y)² - 4 = 12(3) (√z)² - 7 = 18(4) 3(√w)² + 2 = 35(5) 4(√t)² - 6 = 58通过以上综合算式练习题的训练,相信读者对平方根与立方根的运算能力会得到有效提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根与立方根练习题
一、 选择题
1、若a x =2,则( )
A 、x>0
B 、x ≥0
C 、a>0
D 、a ≥0
2、一个数若有两个不同的平方根,则这两个平方根的和为( )
A 、大于0
B 、等于0
C 、小于0
D 、不能确定
3、一个正方形的边长为a ,面积为b ,则( )
A 、a 是b 的平方根
B 、a 是b 的的算术平方根
C 、b a ±=
D 、a b =
4、若a ≥0,则24a 的算术平方根是( )
A 、2a
B 、±2a
C 、a 2
D 、| 2a |
5、若正数a 的算术平方根比它本身大,则( )
A 、0<a<1
B 、a>0
C 、a<1
D 、a>1
6、若n 为正整数,则121+-n 等于( )
A 、-1
B 、1
C 、±1
D 、2n+1 7、若a<0,则a
a 22
等于( ) A 、21 B 、2
1- C 、±21 D 、0 8、若x-5能开偶次方,则x 的取值范围是( )
A 、x ≥0
B 、x>5
C 、x ≥5
D 、x ≤5
9下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()
A , 0个
B ,1个
C ,2个
D ,3个
10若一个数的平方根与它的立方根完全相同,则这个数是()
A , 1
B , -1
C , 0
D ,±1, 0
11,若x使(x-1)2=4成立,则x的值是( )
A ,3
B ,-1
C ,3或-1
D ,±2
12.如果a 是负数,那么2a 的平方根是( ).A .a B .a - C .a ± D .
13a 有( ).A .0个 B .1个 C .无数个 D .以上都不对
14.下列说法中正确的是( ).
A .若0a <0<
B .x 是实数,且2x a =,则0a >
C 有意义时,0x ≤
D .0.1的平方根是0.01±
15.若一个数的平方根是8±,则这个数的立方根是( ).
A .2
B .±2
C .4
D .±4
16.若22
(5)a =-,33(5)b =-,则a b +的所有可能值为( ). A .0 B .-10 C .0或-10 D .0或±10
17.若10m -<<,且n =m 、n 的大小关系是( ).
A .m n >
B .m n <
C .m n =
D .不能确定
18.27- ).
A .0
B .6
C .-12或6
D .0或-6
19.若a ,b 满足2|(2)0b +-=,则ab 等于( ).
A .2
B .12
C .-2
D .-12
20.下列各式中无论x 为任何数都没有意义的是( ).
A .二、填空
1的平方根是 ,3
5
±是 的平方根.
2、在下列各数中0,254,21a +,31()3--,2(5)--,|1|a -,||1a -有平方根的个数是 个.
3、 144的算术平方根是 ,16的平方根是 ;
4、327= , 64-的立方根是 ;
5、7的平方根为 ,21.1= ;
6、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;
7、平方数是它本身的数是 ;平方数是它的相反数的数是 ;
8、当x 时,13-x 有意义;当x 时,325+x 有意义;
9、若164=x ,则x= ;若813=n ,则n= ;
10、若3x x =,则x= ;若x x -=2,则x ;
11、若0|2|1=-++y x ,则x+y= ;
12、代数式3--的最大值为 ,这是,a b 的关系是 .
1335
=-,则x = ,若6=,则x = .
144k =-,则k 的值为 .
15、若1n n <<+,1m m <<+,其中m 、n 为整数,则m n += .
16、若正数m 的平方根是51a +和19a -,则m = .
三、解答题
1、求下列X 的值:
(1)0324)1(2=--x (2) 125-8x 3=0
(3 ) 264(3)90x --= (4) 2(41)225x -=
(5 ) 31
(1)802x -+=
( 6 ) 3125(2)343x -=-
2.计算下列各题
(7)|1
(8
(9)(10)
3互为相反数,求代数式
12x y +的值.
4.已知a x =M 的立方根,y =
x 的相反数,且37M a =-,请你求出x 的平方根.
5、已知:x -2的平方根是±2, 2 x +y+7的立方根是3,求x 2+ y 2的平方根.
6、若12112--+-=
x x y ,求x y 的值。