次函数问题周长最小或最值问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数问题周长最小或面积倍分专题复习

1如图,△ABC 的三个顶点坐标分别为A (-2,0)、B (6,0)、C (0,32 ),

抛物线y=ax 2+bx+c (a ≠0)经过A 、B 、C 三点。

(1)求直线AC 的解析式;

(2)求抛物线的解析式;

(3)若抛物线的顶点为D ,在直线AC 上是否存一点P ,使得

△BDP 的周长最小,若存在,求出P 点的坐标;若不存在,请说明理由。

2、(9分)如图13,抛物线y=ax 2+bx +c(a≠0)的顶点为(1,4),交x 轴于A 、B ,交y 轴于D ,其

中B 点的坐标为(3,0)

(1)求抛物线的解析式

(2)如图14,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中E 点的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为PQ 上一动点,则x 轴上是否存在一点H ,使D 、G 、F 、H 四点围成的四边形周长最小.若存在,求出这个最小值及G 、H 的坐标;若不存在,请说明理由.

(3)如图15,抛物线上是否存在一点T ,过点T 作x 的垂线,垂足为M ,过点M 作直线MN ∥BD ,交线段AD 于点N ,连接MD ,使△DNM ∽△BMD ,若存在,求出点T 的坐标;若不存在,说明理由.

3. 如图,二次函数y=ax 2

-5ax +4a(a ≠0)的图象与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交

于点C ,点C 关于抛物线对称轴的对称点为D ,连结BD .

(1)求A 、B两点的坐标;

(2)若AD ⊥BC ,垂足为P ,求二次函数的表达式;

(3)在(2)的条件下,若直线x=m 把△ABD 的面积分为1∶2的两部分,求m 的值.

4已知一元二次方程x2﹣4x+3=0的两根是m,n且m<n.如图,若抛物线y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n).

(1)求抛物线的解析式.

(2)若(1)中的抛物线与x轴的另一个交点为C.根据图象回答,当x取何值时,抛物线的图象在直线BC的上方?

(3)点P在线段OC上,作PE⊥x轴与抛物线交于点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.

5.如图,在平面直角坐标系xOy中,一抛物线的顶点坐标是(0,1),且过点(﹣2,2),平行四边形OABC的顶点A、B在此抛物线上,AB与y轴相交于点M.已知点C的坐标是(﹣4,0),点Q(x,y)是抛物线上任意一点.

(1)求此抛物线的解析式及点M的坐标;

(2)在x轴上有一点P(t,0),若PQ∥CM,试用x的代数式表示t;

(3)在抛物线上是否存在点Q,使得△BAQ的面积是△BMC的面积的2倍?若存在,求此时点Q 的坐标.

6在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.

(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.

7.如图,四边形OABC是矩形,点B的坐标为(8,6),直线AC和直线OB相交于点M,点P是OA 的中点,PD⊥AC,垂足为D.

(1)求直线AC的解析式;

(2)求经过点O、M、A的抛物线的解析式;

(3)在抛物线上是否存在Q,使得S△PAD:S△QOA=8:25,若存在,求出点Q的坐标,若不存在,请说明理由.

相关文档
最新文档