机械设计凸轮机构设计共52页文档
合集下载
机械设计基础第五章凸轮机构
其他应用实例
01
纺织机械
02
包装机械
03
印刷机械
在纺织机械中,凸轮机构被用于控制织 物的引纬、打纬和卷取等运动。通过合 理设计凸轮的形状和尺寸,可以实现织 物的高速、高效织造。
在包装机械中,凸轮机构常用于控制包 装材料的输送、定位、折叠和封口等操 作。通过凸轮的精确控制,可以实现包 装过程的自动化和高效化。
传动比的计算 根据凸轮的轮廓形状和尺寸,以及从动件的运动 规律,可以通过几何关系或解析方法计算出凸轮 机构的传动比。
传动比的影响因素 凸轮机构的传动比受到凸轮轮廓形状、从动件运 动规律、机构中的摩擦和间隙等因素的影响。
凸轮机构的压力角与自锁
压力角的定义
压力角是指从动件受力方向与从动件运动方向之间的夹角。在凸轮机构中,压力角的大小反 映了从动件所受推力的方向与其运动方向之间的关系。
等速运动规律
从动件在推程和回程中均保持匀速运动。
等加速等减速运动规律
从动件在推程和回程中按等加速和等减速规律运动。
简谐运动规律
从动件按简谐运动规律振动。
组合运动规律
根据实际需要,将从动件的运动规律组合成复杂的运动形式。
凸轮机构的尺寸设计
凸轮基圆半径的确定
根据从动件的运动规律和机构的结构要求,确定 凸轮的基圆半径。
03
凸轮机构的类型与特性
盘形凸轮机构
凸轮形状
盘形凸轮是一个具有特定 轮廓的圆盘,其轮廓线决 定了从动件的运动规律。
工作原理
通过凸轮的旋转,驱动从 动件按照预定的运动规律 进行往复直线运动或摆动。
应用范围
广泛应用于内燃机、压缩 机、自动机械等领域。
移动凸轮机构
凸轮形状
移动凸轮是一个在平面上移动的具有特定轮廓的 构件。
机械原理第10章 凸轮设计
移动从动件盘形凸轮机构凸轮廓线的设计 1)尖端从动件
①等分位移曲线;
②选定r0,画基圆;
③应用反转法逐点作图确 定 各 接 触 点 位 置 B0 , B1 , B2,……;
④光滑连接B0,B1,B2 , …… 点 , 就 得 所 要 设 计 的 凸轮廓线。
10.2 凸轮机构的廓线设计
2)滚子从动件
第10章 凸轮机构设计
Design of Cam Mechanisms
第10章 凸轮机构及其设计
1
凸轮机构的运动与传力特性
2
凸轮机构的廓线设计
10.1 凸轮机构的运动与传力特性
10.1.1 凸轮机构的工作循环
基圆——以凸轮轮廓的最小向径rb (或r0)为半径的圆。
图10-1 尖端移动从动件盘形凸轮机构的工作循环
从动件一方面随机架和导路以角速度-ω 绕O点转动,另一方面又在导 路中往复移动。由于尖端始终与凸轮轮廓相接触,所以反转后尖端的运动 轨迹就是凸轮轮廓。
10.2 凸轮机构的廓线设计
10.2.2 图解法设计过程
添加!
凸轮轮廓曲线的绘制 (图解法凸轮廓线的设计)
(26分钟)
10.2 凸轮机构的廓线设计
10.2 凸轮机构的廓线设计
10.2.3 凸轮廓线设计的解析方法
移动滚子从动件盘形凸轮机构
如图所示为一偏置移动滚子从动件盘形凸轮机构。建立直角坐标系oxy。若已
知凸轮以等角速度逆时针方向转动,凸轮基圆半径rb、滚子半径rr,偏距e,从动 件的运动规律s=s()。
1、理论廓线方程 B点坐标(凸轮的理论廓线方程)
s
v
a
j
h (1 cos)
①等分位移曲线;
②选定r0,画基圆;
③应用反转法逐点作图确 定 各 接 触 点 位 置 B0 , B1 , B2,……;
④光滑连接B0,B1,B2 , …… 点 , 就 得 所 要 设 计 的 凸轮廓线。
10.2 凸轮机构的廓线设计
2)滚子从动件
第10章 凸轮机构设计
Design of Cam Mechanisms
第10章 凸轮机构及其设计
1
凸轮机构的运动与传力特性
2
凸轮机构的廓线设计
10.1 凸轮机构的运动与传力特性
10.1.1 凸轮机构的工作循环
基圆——以凸轮轮廓的最小向径rb (或r0)为半径的圆。
图10-1 尖端移动从动件盘形凸轮机构的工作循环
从动件一方面随机架和导路以角速度-ω 绕O点转动,另一方面又在导 路中往复移动。由于尖端始终与凸轮轮廓相接触,所以反转后尖端的运动 轨迹就是凸轮轮廓。
10.2 凸轮机构的廓线设计
10.2.2 图解法设计过程
添加!
凸轮轮廓曲线的绘制 (图解法凸轮廓线的设计)
(26分钟)
10.2 凸轮机构的廓线设计
10.2 凸轮机构的廓线设计
10.2.3 凸轮廓线设计的解析方法
移动滚子从动件盘形凸轮机构
如图所示为一偏置移动滚子从动件盘形凸轮机构。建立直角坐标系oxy。若已
知凸轮以等角速度逆时针方向转动,凸轮基圆半径rb、滚子半径rr,偏距e,从动 件的运动规律s=s()。
1、理论廓线方程 B点坐标(凸轮的理论廓线方程)
s
v
a
j
h (1 cos)
《机械原理》第四章凸轮机构与其设计
标准传动函数介绍
刚性机构的输入参数x转变为输出参数y仅 与机构几何学有关。此关系在数学上理解 为机构的传动函数y=y(x)
标准传动函数f(z)的单位为1,满足定义域 z∈[0,1],值域f(z) ∈[0,1],且满足边界条 件f(0)=0, f(1)=1。
当满足f(z)=1-f(1-z)时为对称标准传动函 数。
基本概念
行程
从动件往复运动的最大 位移,用h表示。
10/16/2020
第四章 凸轮机构及其设计
基本概念
推程
从动件背离凸轮轴心运 动的行程。
推程运动角
与推程对应的凸轮转角。
10/16/2020
第四章 凸轮机构及其设计
基本概念
回程
从动件向着凸轮轴心运 动的行程。
回程运动角
与回程对应的凸轮转角。
Knowledge Points
凸轮机构的组成 凸轮机构的分类 凸轮机构的优点、缺点
10/16/2020
第四章 凸轮机构及其设计
凸轮机构的组成
凸轮是具有曲线轮廓 或凹槽的构件
凸轮机构一般由凸轮、 从动件和机架三个构 件组成。
10/16/2020
第四章 凸轮机构及其设计
凸轮机构的分类
按照凸轮的形状分类 按照从动件的型式分
形锁合
所谓形锁合型,是指 利用高副元素本身的 几何形状使从动件与 凸轮轮廓始终保持接 触。
10/16/2020
第四章 凸轮机构及其设计
凸轮机构的优点
结构简单、紧凑,占据空间较小;具有多 用性和灵活性,从动件的运动规律取决于 凸轮轮廓曲线的形状。对于几乎任意要求 的从动件的运动规律,都可以毫无困难地 设计出凸轮廓线来实现。
10/16/2020
机械原理第9章凸轮机构及其设计
第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。
机械设计基础之凸轮机构
总结词
印刷机传纸机构是利用凸轮机构来实现纸张的传递和定位的机构,它保证了印 刷机的高效稳定运行。
详细描述
在印刷机传纸机构中,凸轮的转动带动曲柄滑块机构的运动,从而实现纸张的 传递。通过合理设计凸轮的形状和尺寸,可以保证纸张传递的准确性和稳定性 ,提高印刷质量和效率。
谢谢聆听
B
C
紧固
使用合适的紧固件和润滑剂将凸轮与其他零 件连接并固定。
调整
对装配好的凸轮机构进行调整,确保其正常 运转和达到预期的性能。
D
凸轮机构的精度检测
径向跳动检测
检查凸轮的径向跳动是否符合要求,以确保 其运转平稳。
轴向窜动检测
检查凸轮的轴向窜动是否在允许范围内,以 确保其正常工作。
表面粗糙度检测
检查凸轮表面的粗糙度是否满足设计要求, 以确保良好的润滑和耐磨性。
运动学分析
通过分析凸轮机构在不同 工作阶段的运动特性,为 后续设计提供依据。
凸轮机构的压力角
定义
01
压力角是指与凸轮接触的推杆在运动方向上所受的力与该力的
作用线到回转中心的连线之间的夹角。
压力角的影响
02
压力角的大小直接影响到凸轮机构的传动效率和使用寿命,因
此设计中需要合理控制压力角的大小。
压力角的计算
机械设计基础之凸轮 机构
目录
• 凸轮机构概述 • 凸轮机构的基本理论 • 凸轮机构的设计 • 凸轮机构的制造与装配 • 凸轮机构的应用实例
01 凸轮机构概述
定义与特点
定义
凸轮机构是一种由凸轮、从动件和机 架三个基本构件组成的机构,通过凸 轮的轮廓曲线与从动件之间的相互作 用,实现预定的运动规律。
自动机的分度机构
总结词
印刷机传纸机构是利用凸轮机构来实现纸张的传递和定位的机构,它保证了印 刷机的高效稳定运行。
详细描述
在印刷机传纸机构中,凸轮的转动带动曲柄滑块机构的运动,从而实现纸张的 传递。通过合理设计凸轮的形状和尺寸,可以保证纸张传递的准确性和稳定性 ,提高印刷质量和效率。
谢谢聆听
B
C
紧固
使用合适的紧固件和润滑剂将凸轮与其他零 件连接并固定。
调整
对装配好的凸轮机构进行调整,确保其正常 运转和达到预期的性能。
D
凸轮机构的精度检测
径向跳动检测
检查凸轮的径向跳动是否符合要求,以确保 其运转平稳。
轴向窜动检测
检查凸轮的轴向窜动是否在允许范围内,以 确保其正常工作。
表面粗糙度检测
检查凸轮表面的粗糙度是否满足设计要求, 以确保良好的润滑和耐磨性。
运动学分析
通过分析凸轮机构在不同 工作阶段的运动特性,为 后续设计提供依据。
凸轮机构的压力角
定义
01
压力角是指与凸轮接触的推杆在运动方向上所受的力与该力的
作用线到回转中心的连线之间的夹角。
压力角的影响
02
压力角的大小直接影响到凸轮机构的传动效率和使用寿命,因
此设计中需要合理控制压力角的大小。
压力角的计算
机械设计基础之凸轮 机构
目录
• 凸轮机构概述 • 凸轮机构的基本理论 • 凸轮机构的设计 • 凸轮机构的制造与装配 • 凸轮机构的应用实例
01 凸轮机构概述
定义与特点
定义
凸轮机构是一种由凸轮、从动件和机 架三个基本构件组成的机构,通过凸 轮的轮廓曲线与从动件之间的相互作 用,实现预定的运动规律。
自动机的分度机构
总结词
机械零件设计 凸轮机构(2)
回程:在重力或弹簧的作 用下,从动件由B’回到最 近位置A的过程。
s2
B’
D δ’s
h
A rmin
o δt δs
回程运动角h :与回程对应的 凸轮转角h称为回程运动角。
δt
δh
ω1
δs 设计:潘存云 B
t δh δs’ δ1
近休止角s’ :从动件在最近 位置停留不动时,凸轮的转角。
C
图3-5 盘形凸轮机构
12
10
顶等条曲在光分④线各滑③①②各、将等曲运基等确选各分线动圆分定比点尖。角r位反例b占顶和,移转尺据点偏确曲后的距连l定,线从位圆接作反及动置e成位。转反件。一移向后尖 11
9
对应于各等分点的从动件的
位置。
10 9
3、对心滚子直动从动件盘形凸轮
滚子直动从动件凸轮机构中,已知凸轮的基圆
半径rmin,角速度ω1和从动件的运动规律,设
根据工作要求选定推杆运动规律,正确绘制运动简图 是凸轮轮廓曲线设计的基础。
一、名词术语与基本概念
名词术语:如图3-5所示 。
基圆:以凸轮轮廓的最小向径rmin为半径所绘的圆。
rmin (r0)——基圆半径
推程:凸轮以角速度1推动 从动件以一定运动规律由最 低 位 置 A 到 达 最 高 位 置 B' 的 过程。
运动规律:推杆在推程或回程时,其位移S2、速度V2、和加速
度a2 随时间t 的变化规律。 S2=S2(t)
V2=V2(t)
a2=a2(t)
s2 位移曲线
B’
以直角坐标中的横轴代表 凸轮转角δ1(t),纵轴代表
h
A
t
D δ’s rmin
o δt δs δh δ’s δ1
s2
B’
D δ’s
h
A rmin
o δt δs
回程运动角h :与回程对应的 凸轮转角h称为回程运动角。
δt
δh
ω1
δs 设计:潘存云 B
t δh δs’ δ1
近休止角s’ :从动件在最近 位置停留不动时,凸轮的转角。
C
图3-5 盘形凸轮机构
12
10
顶等条曲在光分④线各滑③①②各、将等曲运基等确选各分线动圆分定比点尖。角r位反例b占顶和,移转尺据点偏确曲后的距连l定,线从位圆接作反及动置e成位。转反件。一移向后尖 11
9
对应于各等分点的从动件的
位置。
10 9
3、对心滚子直动从动件盘形凸轮
滚子直动从动件凸轮机构中,已知凸轮的基圆
半径rmin,角速度ω1和从动件的运动规律,设
根据工作要求选定推杆运动规律,正确绘制运动简图 是凸轮轮廓曲线设计的基础。
一、名词术语与基本概念
名词术语:如图3-5所示 。
基圆:以凸轮轮廓的最小向径rmin为半径所绘的圆。
rmin (r0)——基圆半径
推程:凸轮以角速度1推动 从动件以一定运动规律由最 低 位 置 A 到 达 最 高 位 置 B' 的 过程。
运动规律:推杆在推程或回程时,其位移S2、速度V2、和加速
度a2 随时间t 的变化规律。 S2=S2(t)
V2=V2(t)
a2=a2(t)
s2 位移曲线
B’
以直角坐标中的横轴代表 凸轮转角δ1(t),纵轴代表
h
A
t
D δ’s rmin
o δt δs δh δ’s δ1
机械设计基础-凸轮机构设计
(1)取角度比例尺μφ,在横坐标轴上作出凸轮与行程h 对 应的推程角Φ,将其分成若 干等份(图中分为六等份),得到分 点1、2、…、6,过这些分点作横坐标轴的垂直线。
(2)取长度比例尺μl,在纵坐标轴上作出从动件的行程h。 (3)这些平行线与上述各对应的垂直线分别交于点1″、 2″、…、6″,将这些交点连成光 滑的曲线,即为余弦加速度运 动的位移线图。
凸轮机构设计
③ 等径凸轮:如图3-5(c)所示,从动件上装有两个滚子,其 中心线通过凸轮轴心,凸轮 与这两个滚子同时保持接触。这 种凸轮理论轮廓线上两异向半径之和恒等于两滚子的中心距 离,因此等径凸轮只能在180°范围内设计轮廓线,其余部分的 凸轮廓线需要按等径原则确定。
凸轮机构设计
④ 主回凸轮:如图3-5(d)所示,用两个固结在一起的盘形 凸轮分别与同一个从动件 上的两个滚子接触,形成结构封闭。 其中一个凸轮(主凸轮)驱使从动件向某一方向运动, 而另一 个凸轮(回凸轮)驱使从动件反向运动。主凸轮轮廓线可在 360°范围内按给定运动规 律设计,而回凸轮轮廓线必须根据 主凸轮轮廓线和从动件的位置确定。主回凸轮可用于高 精 度传动。
凸轮机构设计
二、 凸轮的分类 1.按凸轮的形状分类 (1)盘形凸轮。如图3-1所示,这种凸轮是绕固定轴转动并
且具有变化向径的盘形构 件,它是凸轮的基本形式。 (2)移动凸轮。这种凸轮外形通常呈平板状,如图3-2所示
的凸轮,可视作回转中心位于无穷远时的盘形凸轮,它相对于 机架作直线移动。
凸轮机构设计
凸轮机构设计
(6)远休止:从动件离转轴O 最远处静止不动。凸轮转过 角度Φs 称为远休止角。
(7)回程运动:从动件在弹簧力或重力作用下回到初始位 置,位移由Smax→0,凸轮转 过角度Φ'称为回程运动角。
(2)取长度比例尺μl,在纵坐标轴上作出从动件的行程h。 (3)这些平行线与上述各对应的垂直线分别交于点1″、 2″、…、6″,将这些交点连成光 滑的曲线,即为余弦加速度运 动的位移线图。
凸轮机构设计
③ 等径凸轮:如图3-5(c)所示,从动件上装有两个滚子,其 中心线通过凸轮轴心,凸轮 与这两个滚子同时保持接触。这 种凸轮理论轮廓线上两异向半径之和恒等于两滚子的中心距 离,因此等径凸轮只能在180°范围内设计轮廓线,其余部分的 凸轮廓线需要按等径原则确定。
凸轮机构设计
④ 主回凸轮:如图3-5(d)所示,用两个固结在一起的盘形 凸轮分别与同一个从动件 上的两个滚子接触,形成结构封闭。 其中一个凸轮(主凸轮)驱使从动件向某一方向运动, 而另一 个凸轮(回凸轮)驱使从动件反向运动。主凸轮轮廓线可在 360°范围内按给定运动规 律设计,而回凸轮轮廓线必须根据 主凸轮轮廓线和从动件的位置确定。主回凸轮可用于高 精 度传动。
凸轮机构设计
二、 凸轮的分类 1.按凸轮的形状分类 (1)盘形凸轮。如图3-1所示,这种凸轮是绕固定轴转动并
且具有变化向径的盘形构 件,它是凸轮的基本形式。 (2)移动凸轮。这种凸轮外形通常呈平板状,如图3-2所示
的凸轮,可视作回转中心位于无穷远时的盘形凸轮,它相对于 机架作直线移动。
凸轮机构设计
凸轮机构设计
(6)远休止:从动件离转轴O 最远处静止不动。凸轮转过 角度Φs 称为远休止角。
(7)回程运动:从动件在弹簧力或重力作用下回到初始位 置,位移由Smax→0,凸轮转 过角度Φ'称为回程运动角。
机械设计凸轮机构设计
2)滚子从动件:从动件的端部装有滚子。 特点: 从动件与凸轮之间可形成滚动摩擦,所以磨损显著减 少,能承受较大载荷,应用较广。但端部重量较大, 又不易润滑,故仍不宜用于高速。
3)平底从动件:从动件端部为一平底。 特点: 若不计摩擦,凸轮对从动件的作用力始终垂直于 平底,传力性能良好,且凸轮与平底接触面间易 形成润滑油膜,摩擦磨损小、效率高,故可用于 高速,缺点是不能用于凸轮轮廓有内凹的情况。
一、凸轮机构的基本术语
以尖顶从动件为对象予以介绍
基圆—以凸轮理论轮廓最小向
径r0为半径所作的圆。
基圆半径—r0 推程—从动件从距离凸轮回 转中心最近位置到距离凸轮 回转中心最远位置的过程, 称为推程。 推程运动角δt —从动件推程 过程,对应凸轮转角称为推
r0 对心式尖顶从动 件盘形凸轮机构
ω
δt
送料机构
内燃机气门机构
应用实例:
盘形凸轮机构
等径凸轮机构
在印刷机中的应用
在机械加工中的应用
利用分度凸轮 机构实现转位
圆柱凸轮机构在机 械加工中的应用
三、凸轮机构的分类 1、按凸轮的形状分类
1)盘形凸轮:凸轮为一绕固定轴线转动且有变化向 径的盘形构件。
盘形凸轮机构简单, 应用广泛,但限于凸 轮径向尺寸不能变化 太大,故从动件的行 程较短。
对于高速凸轮机构,宜选择 amax值较小的运动规律。
若干种从动件运动规律特性比较
运动规律 等速
( hw / δ t )
1.00
vmax
a max
( hw 2 / δ t )
2
冲 击 刚性 柔性 柔性
应用场合 低速轻负荷
∞
等加速等减速 余弦加速度
正弦加速度 3-4-5多项式 改进型等速 改进型正弦加速度 改进型梯形加速度
凸轮机构及其设计PPT课件
间的函数关系。 刚性冲击——由于加速度发生突变,其值在理论上达到无穷大,导致从动件
产生非常大的惯性力。 柔性冲击——由于加速度发生有限值的突变,导致从动件产生有限值的惯性
力突变而产生有限的冲击。
压力角、许用压力角 ——从动件在高副接触点所受的法向力与从动件该 点的速度方向所夹锐角α 。压力角过大时,会使机 构的传力性能恶化。工程上规定其临界值为许用压 力角[α]。不同的机器的许用压力角要求不同,凸轮 机构设计时要求 α ≤ [α]。
2) 摆动从动件的压力角
如下图所示, ω1和ω2同向,P点是瞬心点,过 P作垂直于AB延长线得D。由ΔBDP得
tanα =BD/PD
(2)
由ΔADP得
BD =AD-AB= APcos(ψ0 +ψ)-l
P
PD= APsin(ψ0 +ψ)
n
由瞬心性质有 AP ω2 =OP ω1 = (AP-a) ω1
解得
s=h[1-φ/Φ’ +sin(2πφ/Φ’)/2π] v=hω[cos(2πφ/Φ’)-1]/Φ’ a=-2πhω2 sin(2πφ/Φ’)/Φ’2
特点:无冲击,适于高速凸轮。
s
Φ v a
.
h φ
Φ’
φ
φ
21
改进型运动规律
单一基本运动规律不能满足工程要求时,
分别取一、二、五次项,就得到相应幂次的运动规律。
基本边界条件
凸轮转过推程运动角Φ ——从动件上升h 凸轮转过回程运动角Φ’——从动件下降h
将不同的边界条件代入以上方程组,可.求得待定系数Cபைடு நூலகம் 。
16
1) 一次多项式(等速运动)运动规律 边界条件
在推程起始点: φ =0, s=0 在推程终止点: φ =δ0 ,s=h 代入得:C0=0, C1=h/Φ
产生非常大的惯性力。 柔性冲击——由于加速度发生有限值的突变,导致从动件产生有限值的惯性
力突变而产生有限的冲击。
压力角、许用压力角 ——从动件在高副接触点所受的法向力与从动件该 点的速度方向所夹锐角α 。压力角过大时,会使机 构的传力性能恶化。工程上规定其临界值为许用压 力角[α]。不同的机器的许用压力角要求不同,凸轮 机构设计时要求 α ≤ [α]。
2) 摆动从动件的压力角
如下图所示, ω1和ω2同向,P点是瞬心点,过 P作垂直于AB延长线得D。由ΔBDP得
tanα =BD/PD
(2)
由ΔADP得
BD =AD-AB= APcos(ψ0 +ψ)-l
P
PD= APsin(ψ0 +ψ)
n
由瞬心性质有 AP ω2 =OP ω1 = (AP-a) ω1
解得
s=h[1-φ/Φ’ +sin(2πφ/Φ’)/2π] v=hω[cos(2πφ/Φ’)-1]/Φ’ a=-2πhω2 sin(2πφ/Φ’)/Φ’2
特点:无冲击,适于高速凸轮。
s
Φ v a
.
h φ
Φ’
φ
φ
21
改进型运动规律
单一基本运动规律不能满足工程要求时,
分别取一、二、五次项,就得到相应幂次的运动规律。
基本边界条件
凸轮转过推程运动角Φ ——从动件上升h 凸轮转过回程运动角Φ’——从动件下降h
将不同的边界条件代入以上方程组,可.求得待定系数Cபைடு நூலகம் 。
16
1) 一次多项式(等速运动)运动规律 边界条件
在推程起始点: φ =0, s=0 在推程终止点: φ =δ0 ,s=h 代入得:C0=0, C1=h/Φ
凸轮机构设计毕业设计
结论:凸轮机构 强度与刚度满足 设计要求
优化建议:优化 凸轮轮廓曲线, 提高强度与刚度
优化建议:优化 凸轮材料,提高 强度与刚度
优化建议:优化 凸轮结构,提高 强度与刚度
凸轮机构设计案例 分析
实用性:选择实际应用中常见的凸轮机构设计案例 创新性:选择具有创新性、独特性的凸轮机构设计案例 代表性:选择能够代表不同类型、不同用途的凸轮机构设计案例 难度适中:选择难度适中,能够体现设计能力的凸轮机构设计案例
减小噪音:优化凸轮机构的结 构,降低噪音
提高寿命:优化凸轮机构的材 料和加工工艺,提高使用寿命
减小体积:优化凸轮机构的结 构,减小体积,提高空间利用 率
凸轮机构材料选择
钢:强度高,耐磨性好,易于加工 铝:重量轻,耐腐蚀性好,易于加工
塑料:重量轻,耐腐蚀性好,易于成型
陶瓷:耐磨性好,耐高温,但脆性大
实例2:凸轮机构在机械加工 设备中的应用
实例1:凸轮机构在汽车发动 机中的应用
凸轮机构运动学分析:研究凸 轮机构在运动过程中的力学特 性和运动规律
实例3:凸轮机构在机器人控 制系统中的应用
实例4:凸轮机构在航空航天 设备中的应用
实例5:凸轮机构在医疗设备 中的应用
凸轮机构运动学分析主要包括运动学方程、速度分析、加速度分析等
精度要求:满足设计精度 要求,保证机构运动精度
安全要求:保证机构安全 运行,防止意外事故发生
环保要求:符合环保要求, 减少对环境的影响
经济性要求:降低制造成 本,提高经济效益
确定凸轮参数:根据设计目标, 确定凸轮的尺寸、齿数、模数 等参数
设计凸轮轮廓:根据设计目标, 选择合适的凸轮轮廓,如盘形 凸轮、圆柱凸轮等
运动学分析结论:凸轮机构的运动规律、运动特性、运动稳定性等
机械原理课程设计凸轮机构
Part Three
机械原理课程设计 凸轮机构方案
设计目的和要求
设计目的:掌握凸轮机构的基本原 理和设计方法
设计内容:包括凸轮机构的设计、 制造、装配和调试
添加标题
添加标题
添加标题
添加标题
设计要求:满足凸轮机构的运动要 求,如速度、加速度、行程等
设计步骤:明确设计任务、选择设 计方案、进行设计计算、绘制设计 图纸、制作模型、进行实验验证等
凸轮轮廓曲线的设计方法包括解析法、图 解法和计算机辅助设计等。
凸轮轮廓曲线的设计需要满足凸轮机构 的运动规律、负载、速度、加速度等要 求,同时需要考虑到凸轮的制造工艺和 成本等因素。
凸轮机构压力角计算
压力角定义:凸轮与从动件接触点 处法线与凸轮轮廓线之间的夹角
压力角影响因素:凸轮轮廓线形状、 从动件形状、凸轮半径、从动件半 径
凸轮机构工作原理
凸轮机构通过凸轮与从动件 的接触,实现从动件的位移 和运动
凸轮机构由凸轮、从动件和 机架组成
凸轮机构的工作原理是利用 凸轮的轮廓曲线,使从动件
产生预定的运动
凸轮机构的应用广泛,如汽 车、机床、机器人等领域
凸轮机构分类
按照凸轮运动规律分类:等 速运动凸轮、等加速运动凸 轮、等减速运动凸轮等
Part Six
凸轮机构运动仿真 与优化
运动仿真模型的建立
确定凸轮机构的类型和参数 建立凸轮机构的三维模型 设定运动仿真的初始条件和边界条件 设定运动仿真的时间步长和仿真时间 设定运动仿真的输出变量和观察点 运行运动仿真,观察仿真结果,并进行优化
运动仿真结果分析
凸轮机构运动仿 真结果:包括位 移、速度、加速 度等参数
凸轮从动件的类 型:滚子从动件、 滑块从动件、圆 柱从动件等