胶体金免疫色谱试纸条及微芯片

胶体金免疫色谱试纸条及微芯片
胶体金免疫色谱试纸条及微芯片

ORIGINAL PAPER

Microchip based and immunochromatographic strip assays for the visual detection of interleukin-6and of tumor necrosis factorαusing gold nanoparticles as labels

Yan Man&Xuefei Lv&Javed Iqbal&Guang Peng&

Da Song&Congxiao Zhang&Yulin Deng

Received:8June2014/Accepted:8September2014

#Springer-Verlag Wien2014

Abstract The enzyme-linked immunesorbent assay(ELISA) is most frequently used for the determination of interleukin-6 (IL-6)and tumor necrosis factor-α(TNF-α).However,this technique is time-consuming and requires a substantial sample volume.We have developed(a)a new kind of colloidal gold-based immunochromatographic strip,and(b)a colloidal gold-based immunochromatographic microchip for simultaneous, rapid,and visual detection of IL-6and TNF-α.The lowest limit of detection is62.5ng mL?1for IL-6,and30ng mL?1for TNF-α.Both the strip method and the microchip method are highly specific,user-friendly,and can be read out without the need for instrumentation.

Keywords Immunochromatographic strip.IL-6.TNF-α. Immunochromatographic microchip.Simultaneous detection Introduction

Interleukin-6(IL-6)is a well know pleiotropic cytokine main-ly produced by the immune system cells,vascular endothelial cells and adipocytes.It has a wide range of biological activ-ities in T cells,B cells,hepatocytes,hematopoietic and neural cells[1,2].Its critical role in the immune response,the acute phase response,hematopoiesis,oncogenesis,and inflamma-tion is of utmost importance[3–7].Tumor necrosis factor-α(TNF-α)is another important inflammatory cytokine pro-duced by macrophages,lymphoid cells,neuronal tissue and many other tissues.Numerous studies have shown that the expression of IL-6and TNF-αwas associated with a number of age-related chronic diseases,i.e.,cardiovascular disease, diabetes,cancer,physical disabilities,and cognitive decline [8].So,it is necessary to establish a rapid,simple,sensitive, and specific detection method both for IL-6and TNF-α.The sensitivity is defined as the percentage of positive test re-sponses and specificity as percentage of negative tests.

Presently,enzyme-linked immunosorbent assay(ELISA)is the conventional method used for the detection IL-6and TNF-α[9–13].However,this method is laborious,time-consuming and requires complicated cleanup steps,costly equipment and more sample quantity.All these limitations make ELISA unsuitable for the rapid diagnosis of plasma cytokines.

The immunochromatographic strip technique has been de-veloped as a popular platform for rapid diagnosis since it was first introduced in the https://www.360docs.net/doc/7f19242502.html,pared to ELISA,the immunochromatographic strip technique has a tendency to detect wide range of samples without pretreatment,low sam-ple volume requirement,long-term preservation,inexpensive and no need of high technology machinery.The critical role of the immunochromatographic strip technique is in point-of-care testing(POCT)[14]which is a test designed to be used at or near the site where the patient is located.This does not require permanent dedicated space and are performed outside the physical facilities of the clinical laboratories.In the immunochromatographic strip,colloidal gold nanoparticles are the most commonly used signal reporters due to their stability,controllable particles size,and good compatibility with biological molecules,i.e.,antibodies,antigens,DNA,and RNA[15].Chou[16]developed a manual self-assembled colloidal gold nanoparticle-immunochromatographic

strip Electronic supplementary material The online version of this article

(doi:10.1007/s00604-014-1362-y)contains supplementary material,

which is available to authorized users.

Y.Man

:X.Lv(*):J.Iqbal:G.Peng:D.Song:C.Zhang:

Y.Deng(*)

School of Life Science,Beijing Institute of Technology,

Beijing100081,China

e-mail:xuefeilv@https://www.360docs.net/doc/7f19242502.html,

e-mail:deng@https://www.360docs.net/doc/7f19242502.html,

Microchim Acta

DOI10.1007/s00604-014-1362-y

for detection of interferon-γup to very low concentrations (ng mL?1level).This strip can be used for homecare and point-of-care testing in health evaluation and preventive medi-cine.Tripathi et al.[17]developed a rapid colloidal gold nano-particles based competitive immunochromatographic strip assay for detection of17-α-hydroxy progesterone(17-α-OH-P)in serum.The detection limit of the test strip was2.5ng mL?1by visual observation.The detection limit is the lowest quantity of a substance that can be distinguished from the absence of that substance(a blank value)within a stated confidence limit[18]. Therefore,this test could work better in screening congenital adrenal hyperplasia(CAH)patients with generally high17-α-OH-P values.

In2009,Guo et al.[19]designed two formats of gold-labeled antibody lateral-flow strips for simultaneous detection of carbofuran and triazophos in water samples within a short time(8–10min)without any equipment.The results indicated that the detection limits for carbofuran and triazophos were32 and4ng mL?1using the preferable strip,respectively.

For simultaneous detection of IL-6and TNF-α,Worsley et al.[20]prepared a lateral flow assay format utilizing fluo-rescent microspheres with8.5pg mL?1and55.5pg mL?1 limits of detection respectively in hydrogel samples and 7.15pg mL?1and10.7pg mL?1respectively in plasma.Abe et al.[21]recognized IL-6and TNF-αin the independent microchannels on a microchip by the sandwich ELISA with the detection limit of0.28pg mL?1and0.46pg mL?1,respec-tively.Above discussion shows that immunochromatographic strip provided better alternate of ELISA by reducing the problems related to ELISA and combined the advantages of microchip.This system is very quick and efficient that needs less sample volume and is applicable to POCT.

Present study is specifically designed to develop a colloidal gold immunochromatographic strip for simultaneous,rapid, and visual detection of IL-6and TNF-α.Furthermore,com-bining the advantages of microchip,achieved the visual and simultaneous detection of IL-6and TNF-αon the fabricated immunochromatographic microchip.

Experimental

Materials and chemicals

Human IL-6was ordered from Cell Signaling Technology,Inc (Boston,USA,https://www.360docs.net/doc/7f19242502.html,/).Human TNF-α, TNF-αmonoclonal antibodies(Anti-TNF-αmAbs),TNF-αpolyclonal antibodies(Anti-TNF-αpAbs),IL-6monoclonal antibodies(Anti-IL-6mAbs),IL-6polyclonal antibodies (Anti-IL-6pAbs),and Goat anti-mouse IgG were ordered from Abcam Inc.(Cambridge,USA,http://www.abcam. com/).Gold chloride(HAuCl4·3H2O)was purchased from Sigma-Aldrich(Shanghai,China,https://www.360docs.net/doc/7f19242502.html,)and was directly used without further purification. Bovine serum albumin(BSA),sodium azide,sodium citrate, and Tween-20were ordered from AMRESCO(OH,USA, https://www.360docs.net/doc/7f19242502.html,/).PEG20000was bought from Alfa Aesar(China)Chemical Co.,Ltd.(Shanghai,China, https://www.360docs.net/doc/7f19242502.html,).Skim milk from Becton, Dickinson and Company(BD,NJ,USA,http://www.bd. com/).Sucrose was ordered from Beijing Chemical Works (Beijing,China,https://www.360docs.net/doc/7f19242502.html,/com-17148/). Water was purified and deionized with a Milli-Q system (Millipore,America).Norland optical adhesive81(NOA 81)was bought from Norland Products Inc.(Cranbury,NJ, USA).All of the chemicals used in current studies were of analytical grade.

Conjugation of monoclonal antibodies with colloidal gold nanoparticles

Colloidal gold nanoparticles were prepared according to the standard procedures in literatures[22,23]with little modification(See Electronic Supplementary Material, ESM).In order to achieve the optimal conjugation effi-ciency of monoclonal antibodies with colloidal gold nanoparticles,the conjugation conditions including the concentration of monoclonal antibodies and the pH val-ue of colloidal gold solution were determined prior to conjugation(See EMS).

The conjugation of monoclonal antibodies with colloidal gold was conducted according to the method in the literature [24].Briefly,5mL of colloidal gold was mixed with40μg of monoclonal antibodies in50mL centrifugation tube with continuous magnetic stirring.This mixture was incubated for 4h at room temperature.Following incubation,the remaining binding sites of the colloidal gold were blocked by adding 10%(m/V)BSA(Tris–HCl,pH8.0)to the final concentration of0.5%(m/V)and continuous stirring for30min at room temperatures.The reaction was further stabilized with10% PEG20000(Tris–HCl,pH8.0),the final concentration of PEG20000was0.2%.The mixture was further incubated at room temperature for20min while stirring.After incu-bation,mixture was centrifuged at8,000rpm for30min to separate unbound monoclonal antibodies.Colorless super-natant was pumped out carefully with a syringe and was discarded.Subsequently,the precipitate of dark red gold-labeled antibody conjugate was resuspended in0.01M Tris–HCl(pH8.0)containing1%BSA and centrifuged at8,000rpm for30min.This procedure was repeated three times to ensure cleanup of the unlabeled monoclonal anti-bodies.Finally,the precipitate of the monoclonal antibodies -colloidal gold conjugate was resuspended in0.5mL of 20mM Tris–HCl buffer(pH8.0)containing1%BSA, 5%sucrose,0.05%PEG20,000,and0.1%Tween-20, and stored at4°C for further use.

M.Yan et al.

Preparation of immunochromatographic test strips

Three drops(0.5μL each)of polyclonal antibody solution (1mg mL?1)and anti-mouse IgG(1mg mL?1)were put on the nitrocellulose(NC)membrane as test and control dots,and dried at37°C for2h.An absorption pad,antibody-immobilized NC membrane,sample pad,and the conjugate pad were assembled as the test strip(50mm in length and 4mm in width),which was attached to polyvinyl chloride (P V C)s h e e t.A s c h e m a t i c d i a g r a m o f t h e immunochromatography test strip is shown in Fig.S1(See ESM).Firstly,the target proteins were captured by the gold nanoparticles immobilized with monoclonal antibody,and then these nanoparticles were captured by polyclonal antibody in the test dots.On the other hand,the monoclonal antibody immobilized gold nanoparticle without target proteins were captured by the anti-mouse IgG in the control dots.The positive test showed red color both in the test dots and control dots on the NC membrane.Weak positive showed light red color in the test dots and red color in the control dots.Negative test showed red color only in the control dots.The invalid test showed red only in the test dots or did not show red color both in the control dots and test dots.

Chip fabrication

The microscope slides were taken,cleaned by alcohol follow-ed by deionized water,and then dried with nitrogen(N2).The structure of chip channel in the photomask was designed using the software of Adobe Illustrator CS5.Following method was adopted for the preparation of chip.First of all,0.4mL of NOA81was placed on the microscope slides,and limited in a given area by a batardeau made by photomask frame,and then the photomask with channel structure was placed on the NOA81layer.The thickness of this NOA81layer was con-trolled by the height of photomask frame.The microscope slides with NOA81were exposed to UV light of Mask Aligner (JKG3,Shanghai,China,https://www.360docs.net/doc/7f19242502.html,/).The NOA81was cured by UV light except the chip channel.The NOA81in the channel can be washed off completely by the mixture of acetone and ethanol(V:V=8:2).In this way,the designed channel structure was fabricated on the microscope slides.In this way,the NOA81substrate with channel structure was bonded with microscope slides.Thirdly,the colloidal gold pad and NC membranes were placed gently in the chip channel by using tweezers.Then,a NOA81substrate with a fluid inlet and a fluid outlet was made on the glass wafers coated with a Cr layer(chrome plate)as described above.The NOA81substrate can be torn off from the chrome plate after UV curing.Finally,this NOA81substrate was bonded with the NOA81channel structure substrate prepared in the first step using the UV curing gun.Hence, an airtight microfluidic channel with a fluid inlet and a fluid outlet was formed,and the immunochromatographic chip was fabricated completely.

Results and discussion

Characterization of the colloidal gold

The TEM image of the colloidal gold nanoparticles revealed that the colloidal gold nanoparticles were of nice round shape and homogeneous in size.Average diameter of the colloidal gold particles was24.42±1.78nm(n=100)(Fig.1a).The maximum absorbance of the colloidal gold solution was at 521nm(Fig.1b).From the absorbance spectrum,it can also be found that the colloidal gold solution was at a stable state, and the prepared reproducibility was good.

Conjugation of monoclonal antibodies with colloidal gold nanoparticles

Colloidal gold nanoparticles are negatively charged having electrical layers around them.As a result,its stable state is due to the repulsive interactions among the colloidal gold nano-particles.The conjugation of protein(monoclonal antibodies herein)with colloidal gold nanoparticles predominantly de-pends on electrostatic interactions.When the pH value of the colloidal gold solution is slightly lower than the pI value of the protein,the protein is partially positively charged,which leads to the formation of the ionic bonds with the colloidal gold nanoparticles.When the colloidal gold particles are tremen-dously coated with the protein,NaCl is unable to induce the aggregation of colloidal gold nanoparticles.So,the optimal pH value and concentration of monoclonal antibodies concen-tration is crucial for the conjugation of monoclonal antibodies with colloidal gold.

Optimal concentration of monoclonal antibodies

for conjugation with colloidal gold

The concentration of monoclonal antibodies for conjugation with colloidal gold particles was optimized under the constant volume of colloidal gold particles and by increasing mono-clonal antibodies concentrations.The results are shown in Table S3and Fig.S2(See ESM).It was found that the color of colloidal gold was blue-black in the absence of monoclonal antibodies.By increasing the concentration of monoclonal antibodies from0.5to2μg,the color of mixture gradually changed from blue-black to blue-violet.When the monoclonal antibodies concentration was4μg,the color of mixture changed to purple red,however,when the concentration of monoclonal antibodies increased from6to12μg,the color of the mixture changed to red,and after that it remained almost

Gold nanoparticles-labeled immunochromatographic microchip

unchanged.So,6μg of monoclonal antibodies per 1mL of colloidal gold was selected as the minimal amount.The opti-mal concentration of monoclonal antibodies was 7.8μg mL ?1colloidal gold,i.e.,20%more than the minimal amount.Optimal pH value for conjugation of monoclonal antibodies with colloidal gold particles

The pH value for conjugation of monoclonal antibodies with colloidal gold was optimized under the constant volume of colloidal gold and the constant amount of monoclonal anti-bodies.The results are shown in Table S4and Fig.S3(see ESM)indicated that when pH value increased from 7.0to 8.0,the color of mixture turns gradually into brilliant red,and did not change further.However,the color of mixture changed from brilliant red to purplish red when pH value increased from 8.5to 9.5.As is clear,the optimal pH value for conju-gation of monoclonal antibodies with colloidal gold is the highest pH value for keeping the colloidal gold at a stable state.So,pH value of 8.0was selected as the optimal value for conjugation of monoclonal antibodies with colloidal gold particles.

Characterization of colloidal gold and monoclonal antibodies conjugate

The UV-visible absorption spectrum of colloidal gold parti-cles,colloidal gold -IL-6mAbs conjugate and colloidal gold particles -TNF-αmAbs conjugate was scanned by UV-visible spectrophotometer at a wavelength of 400to 600nm.As shown in Fig.S4(See ESM),the uncoated gold nanoparticles has a UV absorption wavelength at 521nm.When it was covered by the protein (antibody),the UV absorption wave-length will be changed.So,the results indicated that the

monoclonal antibodies were successfully conjugated with colloidal gold particles.

Determination of human IL-6with immunochromatographic strip

Standard solutions of IL-6with concentrations of 2,000,1,000,250,125,62.5and 0ng mL ?1were prepared by diluting IL-6with PB buffer.120μL of different concentra-t i o n s o f I L -6s a m p l e s w e r e u s e d i n t h e immunochromatographic strip detection assay.After 30min,various shades of red color on the test dots could be visually observed by naked eyes,the intensity of red color increased with the increase of IL-6concentration (Fig.2).When the concentration of IL-6was 62.5ng mL ?1,the red color on the test dots became almost invisible.The results indicated that the detection limit for IL-6is 62.5ng mL ?1.

Determination of TNF-αwith immunochromatographic strip Standard solutions of TNF-αat concentrations of 500,300,100,50,25,10,0ng mL ?1were prepared by diluting TNF-αwith PB buffer.120μL of different concentrations o f T N F -αs a m p l e s w e r e u s e d i n t h e immunochromatographic strip detection.As shown in Fig.3a ,the intensity of red color was elevated with the increase of concentration of TNF-α.It can be observed that with 50–100ng mL ?1concentration of TNF-αis,the test dots still showed clear red color.So,another group of TNF-αstandard solution at concentrations of 100,60,40,30,and 15ng mL ?1were prepared and detected by the strip.The results shown in Fig.3b demonstrated that when the concentrations of TNF-αis 30ng mL ?1,the red color on the test dots is almost invisible.Moreover,below

this

Fig.1TEM image of colloidal gold nanoparticles (a )and UV-visible spectrum of the colloidal gold solution (b ).Three lines in (b)represented that the colloidal gold nanoparticles were repeatedly prepared three times

M.Yan et al.

concentration,no red color was observed on the test dots.So,the detection limit of TNF-αfor the test strip was found to be 30ng mL ?1.The whole analysis process using immunochromatographic strip test for determination of TNF-αwas completed in 10min.

Similar results were also found for some macromolecular proteins detection using the same typical method.For exam-ple,the detection limits of 30,50,and 50ng mL ?1were obtained for troponin I [25],ricin [26],and human IgG (HIgG)[27],respectively with the naked

eyes.

Fig.2Determination of human IL-6with different concentrations using the prepared IL-6colloidal gold immunochromatographic

strip

Fig.3Determination of human TNF-αwith different

concentrations using the prepared TNF-αcolloidal gold

immunochromatographic strip

Gold nanoparticles-labeled immunochromatographic microchip

In addition,in order to study the stability of antibody-gold conjugates in a complex media such as serum and if the prepared strip can be appropriate for detecting TNF-αin serum,the TNF-αconcentrations of 160,80,and 0ng mL ?1were prepared by diluting TNF-αwith human serum,then the different concentrations of TNF-αwere detected using the prepared strips.As shown in Fig.S5(See ESM),the color

of testing dots was in accordance with the Fig.3.So the serum sample can be detected by the prepared strip and the serum has no influence on the stability of antibody-gold conjugates.Simultaneous detection of IL-6and TNF-αusing the immunochromatographic strip

For the simultaneous detection of IL-6and TNF-α,IL-6test dots,TNF-αtest dots and control dots were prepared on one NC membrane simultaneously.The antibody concentration of the dots is 1mg mL ?1.Rests of the steps are the same as mentioned above.The concentrations of IL-6and TNF-αsamples used in the prepared strip can be seen in Table S5(See ESM),and test results are shown in Fig.4.Strip No.1showed red color both at IL-6and TNF-αtest dots;strip No.2showed only red color at IL-6test dots,and strip No.3showed red color only at TNF-αtest https://www.360docs.net/doc/7f19242502.html,pared to strip No.1,strip No.2and strip No.3can be selected as a control test.From the control test,it was found that there is no false positive in the test strip.

Simultaneous detection of IL-6and TNF-αusing the prepared colloidal gold immunochromatographic microchip by visual observation

T h e 3D s t r u c t u r a l d i a g r a m o f t h e p r e p a r e d immunochromatographic chip is shown in Fig.5a .A tube (1mm O.D.×0.5mm I.D.)was inserted in the inlet and connected to the peristaltic pump.The sample flowed into the chip under the drive of peristaltic pump,and reached the conju-gate pad first.The colloidal gold-monoclonal antibody on

the

Fig.4Simultaneous detection of IL-6and TNF-αusing the prepared colloidal gold immunochromatographic

strip

Fig.5Simultaneous detection of IL-6and TNF-αusing the prepared colloidal gold immunochromatographic

microchip.a shows 3D structural diagram of the prepared

immunochromatographic chip.The sample containing 1,000ng mL ?1of IL-6and 500ng mL ?1of TNF-αwas detected in (b ).The sample only containing 500ng mL ?1of TNF-αwas detected in c

M.Yan et al.

conjugate pad will capture the target in the sample. Then the colloidal gold-monoclonal antibody-target complex flowed into the channel,and would be cap-tured by the polyclonal antibody on the NC membrane. The unbound colloidal gold nanoparticles will be cap-tured by the second antibody.So,when the sample contains the target,both the test dots and control dots will show red color.On contrary,when the sample does not contain target,only control dots will show the red color.

As for the colloidal gold immunochromatographic microchip for simultaneous detection of IL-6and TNF-α,the concentration of the polyclonal antibody and the second antibody concentration of IL-6and TNF-αwas1mg mL?1each on the NC membrane. The samples containing1,000ng mL?1of IL-6and 500ng mL?1of TNF-αwere injected in the chip as shown in Fig.5b using a peristaltic pump(TS-2A/ L0107-2A,China,https://www.360docs.net/doc/7f19242502.html,/)with the flow rate of15μL min?1.At the same time,the sample containing only500ng mL?1of TNF-αwas injected in the chip as shown in Fig.5c.

As shown in Fig.5b,two test dots and one control dot altogether showed red color due to injection of the sample containing IL-6and TNF-α,while only the TNF-αtest dot and control dot showed red color in Fig.5c as a result of injection of the sample only containing TNF-α.It can be concluded that simultaneous detection of IL-6and TNF-αw a s p e r f o r m e d b y u s i n g t h e p r e p a r e d immunochromatographic chip based on the colloidal gold particles.

Conclusions

Simultaneous and visual detection of IL-6and TNF-αwas successfully achieved by using the immunochromatographic strip.Moreover,combining the colloidal gold immunochromatographic strip with microchip,IL-6and TNF-αwere simultaneously and visually detected on micro-chip as well.The developed immunochromatographic strip and microchip offered considerable advantages,i.e.,high specificity,required no pretreatment,less sample amount,easy to operate,rapid determination,no cross-reaction,and long-term preservation.With further development,the immunochromatographic strip and microchip might be cho-sen as a potential analytical tool in real time detection. Acknowledgments This work was supported by the National Nature Science Foundation of China(21275019),the National Key Technology R&D Program of China(2009BAK59B01)and National Key Scientific Instrument and Equipment Development Projects of China (2012YQ040140).References

1.Zhang XG,Klein B,Bataille R(1989)Interleukin-6is a potent

myeloma-cell growth factor in patients with aggressive multiple myeloma.Blood74:11–13

2.Kishimoto T(1989)The biology of interleukin-6.Blood74:1–10

3.Snick JV(1990)Interleukin-6:an overview.Annu Rev Immunol8:

253–278

4.Ishihara K,Hirano T(2002)IL-6in autoimmune disease and chronic

inflammatory proliferative disease.Cytokine Growth Factor Rev13: 357–368

5.Kishimoto T(2010)IL-6:from its discovery to clinical applications.

Int Immunol22:347–352

6.Rincon M,Irvin CG(2012)Role of IL-6in asthma and other

inflammatory pulmonary diseases.Int J Biol Sci8:1281–1290

7.Naugler WE,Karin M(2008)The wolf in sheep’s clothing:the role

of interleukin-6in immunity,inflammation and cancer.Trends Mol Med14:109–119

8.Singh T,Newman AB(2011)Inflammatory markers in population

studies of aging.Ageing Res Rev10:319–329

9.Helle M,Boeije L,Groot E,Vos A,Aarden L(1991)

Sensitive ELISA for interleukin-6.Detection of IL-6in bio-logical fluids:synovial fluids and sera.J Immunol Methods 138:47–56

10.Nuntaprasert A,Mori Y,Tsukiyama-Kohara K,Kai C(2005)

Establishment of swine interleukin-6sandwich https://www.360docs.net/doc/7f19242502.html,p Immunol Microbiol28:121–130

11.Ida N,Sakurai S,Hosaka T,Hosoi K,Kunitomo T,Matsuura Y,

Kohase M(1990)An enzyme-linked immunosorbent assay for the measurement of human interleukin-6.J Immunol Methods133:279–284

12.Yücel A,Aybay C(2005)Development of ELISA systems for

measurement of human tumor necrosis factor-alpha(TNF-a).Turk J Med Sci35:385–393

13.Petyovka N,Lyach L,V oitenok NN(1995)Homologous ELISA for

detection of oligomeric human TNF:properties of the assay.J Immunol Methods186:161–170

14.Yang H,Li D,He R,Guo Q,Wang K,Zhang X,Huang P,Cui D

(2010)A novel quantum dots–based point of care test for syphilis.

Nanoscale Res Lett5:875–881

15.Hou SY,Chen HK,Cheng HC,Huang CY(2007)

Development of zeptomole and attomolar detection sensitivity of biotin-peptide using a dot-blot gold nanoparticle immuno-assay.Anal Chem79:980–985

16.Chou SF(2013)Development of a manual self-assembled colloidal

gold nanoparticle-immunochromatographic strip for rapid determi-nation of human interferon-γ.Analyst138:2620–2623

17.Tripathi V,Nara S,Singh K,Singh H,Shrivastav TG(2012)A

competitive immunochromatographic strip assay for17-α-hydroxy progesterone using colloidal gold nanoparticles.Clin Chim Acta413: 262–268

18.MacDougall D,Crummett WB(1980)Guidelines for data acquisition

and data quality evaluation in environmental chemistry.Anal Chem 52:2242–2249

19.G u o Y R,L i u S Y,G u i W J,Z h u G N(2009)G o l d

immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples.Anal Biochem389: 32–39

20.Worsley GJ,Attree SL,Noble JE,Horgan AM(2012)Rapid duplex

immunoassay for wound biomarkers at the point-of-care.Biosens Bioelectron34:215–220

21.Abe K,Hashimoto Y,Yatsushiro S,Yamamura S,Bando M,

Hiroshima Y,Kido J,Tanaka M,Shinohara Y,Ooie T,Baba Y, Kataoka M(2013)Simultaneous immunoassay analysis of plasma IL-6and TNF-a on a microchip.Plos One8:e53620

Gold nanoparticles-labeled immunochromatographic microchip

22.Frens G(1973)Controlled nucleation for the regulation of the particle

size in monodisperse gold suspensions.Nat Phys241:20–22

23.He Y,Zhang S,Zhang X,Baloda M,Gurung A,Xu H,Zhang X,Liu

G(2011)Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor.Biosens Bioelectron26:2018–2024

24.Dungchai W,Siangproh W,Chaicumpa W,Tongtawe P,Chailapakul O

(2008)Salmonella typhi determination using voltammetric amplification of nanoparticles:a highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label.Talanta77:727–73225.Choi DH,Lee SK,Oh YK,Bae BW,Lee SD,Kim S,Shin YB,Kim

MG(2010)A dual gold nanoparticle conjugate-based lateral flow assay(LFA)method for the analysis of troponin I.Biosens Bioelectron25:1999–2002

26.Shyu RH,Shyu HF,Liu HW,Tang SS(2002)Colloidal gold-based

immunochromatographic assay for detection of ricin.Toxicon40: 255–258

27.Parolo C,Mu?iz AE,Merko?i A(2013)Enhanced lateral flow

immunoassay using gold nanoparticles loaded with enzymes.

Biosens Bioelectron40:412–416

M.Yan et al.

免疫胶体金标记手册

浙江大学电子显微镜室浙江大学生物技术研究所胶体金免疫标记技术培训班 技术资料 胡东维洪健徐颖

浙江大学2001年10月

一、胶体金的制备 根据不同的制备方法,可以制备出直径1-500nm的胶体金粒子,但做为免疫标记探针,其直径应在3-30nm范围内。 在氯化金(HAuCl4)水溶液中加入还原剂使之还原并聚积形成胶体金粒子。使用不同种类、不同剂量的还原剂,可以控制所产生的粒子大小。即粒子大小取决于反应溶液中最初还原试剂和还原核的数量。还原剂浓度越高,核浓度也越高,氯化金的还原也就从更多的还原中心开始,因此产生的胶体金粒子数量越多,但体积也越小。粒子直径每增加一倍,数量减少为原来的1/8。 以柠檬酸钠和单宁酸做还原剂,能够制备大小相对一致、直径3~16nm的胶体金。因此一般胶体金探针均使用该方法进行。但该方法制备的胶体金粒子直径范围较窄,而且残留的多聚单宁酸残基往往干扰某些蛋白与金粒子的结合。此时在溶液中添加0.1~0.2%的H2O2能够去除这些残基。双标记或制备5-10 nm的胶体金时建议使用该方法。 利用柠檬酸为还原剂,可以制备12~150 nm直径的胶体金。但制备大体积的胶体金时,胶体金粒子的误差也同时增加。因此做单标记时,建议使用该方法制备12-16 nm直径的胶体金。 除了上述方法外,也可以用磷作为还原剂来制备5 nm的胶体金,它避免了单宁酸残基的问题,但所形成的金粒子体积变化较大。磷易燃且有毒,制备的残液需进一步处理,故该方法已经很少使用。 氯化金极易吸湿,故一般均以小剂量密封保存(0.5g或1g),因此在配制氯化金溶液时一次配完,暂时不用的可以用1.5 ml试管分装为1 ml保存(-20℃)。注意各种玻璃器皿一定要洗净并用双蒸水多次冲洗,有条件时可硅化处理(1%双氯硅烷/氯仿浸泡1小时,烘干)。配制各种试剂时均使用双蒸水,随后再用0.22 m微孔滤膜过滤后使用。三角瓶可反复多次使用,不用时应密封保存,以防污染。 制备好的胶体金保存寿命较长,可4℃保存6个月以上或室温下保存1-2个月。当出现明显悬浮物或沉淀后表示已不可再用。但无论无何,在保存较长时间后应进行镜检,如出现大量胶体金粒子凝集,说明已经过期。 1、单宁酸/柠檬酸钠法制备3~16 nm胶体金 (1)取一250 ml三角瓶,加入79 ml双蒸水和1 ml 1%氯化金,预热至60~70℃。 (2)取一50 ml烧杯,加入4 ml 1%柠檬酸钠,然后根据所制备金粒子体积大小加入不

免疫胶体金技术常见影响因素分析

免疫胶体金技术常见影响因素分析 自胶体金作为特殊标记物进行研究以来,建立的各种免疫胶体金技术以其特异性强、灵敏度高、操作简捷等特点,在医学、农牧业、环境及食品检测等领域被广泛应用。免疫胶体金技术的反应过程是一个由金颗粒、抗原与抗体动态结合的反应过程,在这个过程中每个环节的好坏都直接影响试验的成败。而试验过程中每个环节又受到很多因素的影响和制约,下面将影响免疫胶体金技术的因素作一分析,为成功制备胶体金检测产品提供参考。 1耗材的选择 1.1不同型号膜的筛选。硝酸纤维素膜的型号在试验中至关重要,作为反应载体影响到整个试验的成败。不同的生产厂家生产硝酸纤维素膜时使用的聚合物和表面活性剂的来源、类型和数量均大不相同,对生产出的膜的性能产生较大影响——膜的孔径和分布结构不同。膜孔径减小,膜的实际可用表面积递增,膜结合蛋白的量也递增;膜孔径越小,层析速度也越慢,金标复合物通过T线的时间就越长,反应也就越充分;因此膜孔径越小灵敏度越高,但是同时也减慢了跑板速度,增加了非特异性结合的机会,也就是假阳性越高。用于金标免疫快速试验的膜多为硝酸纤维素膜或硝酸纤维素/醋酸纤维素混合膜,不同的包被蛋白对膜有特定要求,试验者应根据蛋白质的性质选择适合孔径大小和分布结构的膜,找到合适的平衡点,使胶体金的标记物在膜上的流动速率为最佳。 1.2结合垫的选择。结合垫位于层析系统的中间,一般要求结合垫的网格均一且非特异性吸附低,能很好地负载胶体金标记物和待检测样品,而不被吸附;玻璃纤维素膜具备以上优点,同时具有一定的硬度,为试验中常用。 1.3样品垫及吸水纸的选择。样品垫和吸水纸位于胶体金免疫层析系统的两端,对于胶体金层析系统功能的实现起着举足轻重的作用。试验中应根据试纸条检测样品的性质选择合适的样品垫和吸水纸,保证样品在样品垫形成的通道中快速地流动而不被非特异性地吸附或者改变样品的性质。如检测样品为血清,则可选择网格较疏松的玻璃纤维素膜即可;如果检测样品为毒素,则可选择质量好的吸水纸和样品垫。吸水纸则要有很好的蓄水能力,保证样品中所用的液体都经过膜的反应区而被样品垫吸收和蓄积。

胶体金的相关知识

免疫层析试纸包被技术简介 试纸生产 过程中一般有三种 溶液的包被处理,即 质控溶液,检测溶 液,和结合物溶液 (胶体金)。质控和 检测溶液就是C/T 线上包被的溶液。 在免疫层 析试纸硝酸纤维素 膜表面进行 C/T线的包被,是试纸生产制作的关键环节之一。免疫诊断试剂中使用的硝酸纤维素膜有两类,一种是免疫渗滤产品用的,按孔径选择一般采用0.45um-1.2um的膜,与分子生物学中用的印迹转移膜一样。Whatman Schleicher & Schuell的膜属于纯采用100%的纯硝酸纤维素,蛋白结合能力较高。另一类即免疫层析用膜,一般按侧向流动速度来划分,常用的范围一般在120-180秒/4cm。目前市场上的硝酸 纤维素膜材以带塑料底衬 为主,也有部分的膜不带 底衬。不带底衬的膜需注 意膜面的正反面,其光滑 度有适当差别。 鉴于流动封闭技 术的普及,C/T线的包被 目前流行先将膜粘贴在塑 料支持底板上,然后直接 将塑料板放入仪器上进行 划线操作,干燥后进行其 他部分的贴板组装,这种 划膜工艺可简称为划板。 但部分产品的工艺要求先直接在膜上划好C/T线,然后用特定配方的溶液将膜进行浸泡封闭处理,干燥后再贴膜及其他部分材料,这种划膜工艺可简称为划膜。 在结合物溶液(胶体金)的包被上,较多的用户倾向于用气动喷头进行定量操作。在科研及研发项目中,往往喷一条线或几条线就够用了,因此在单维往复平台上一次喷一条线也可接受。鉴于胶体金膜切条宽度一般在 3--7mm,不方便一条条依次地在移动平台上固定和取放。因此在批量生产过程中,一般建议采用成片的胶体金垫,用三维平台往复来回地间隔喷线,一次即可喷出二三十条。此后将喷好的金干燥再裁切成条,这样的操作会效率高,适合规模生产。 在某些免疫层析试纸产品生产工艺中,层析膜材或样品垫膜材需要用特定溶液进行整平面包被,要求效果均匀,如层析膜和样品垫的特定封闭处理。

免疫胶体金标记手册

大学电子显微镜室大学生物技术研究所胶体金免疫标记技术培训班 技术资料 胡东维洪健徐颖

大学2001年10月

一、胶体金的制备 根据不同的制备方法,可以制备出直径1-500nm的胶体金粒子,但做为免疫标记探针,其直径应在3-30nm围。 在氯化金(HAuCl4)水溶液中加入还原剂使之还原并聚积形成胶体金粒子。使用不同种类、不同剂量的还原剂,可以控制所产生的粒子大小。即粒子大小取决于反应溶液中最初还原试剂和还原核的数量。还原剂浓度越高,核浓度也越高,氯化金的还原也就从更多的还原中心开始,因此产生的胶体金粒子数量越多,但体积也越小。粒子直径每增加一倍,数量减少为原来的1/8。 以柠檬酸钠和单宁酸做还原剂,能够制备大小相对一致、直径3~16nm的胶体金。因此一般胶体金探针均使用该方法进行。但该方法制备的胶体金粒子直径围较窄,而且残留的多聚单宁酸残基往往干扰某些蛋白与金粒子的结合。此时在溶液中添加0.1~0.2%的H2O2能够去除这些残基。双标记或制备5-10 nm的胶体金时建议使用该方法。 利用柠檬酸为还原剂,可以制备12~150 nm直径的胶体金。但制备大体积的胶体金时,胶体金粒子的误差也同时增加。因此做单标记时,建议使用该方法制备12-16 nm直径的胶体金。 除了上述方法外,也可以用磷作为还原剂来制备5 nm的胶体金,它避免了单宁酸残基的问题,但所形成的金粒子体积变化较大。磷易燃且有毒,制备的残液需进一步处理,故该方法已经很少使用。 氯化金极易吸湿,故一般均以小剂量密封保存(0.5g或1g),因此在配制氯化金溶液时一次配完,暂时不用的可以用1.5 ml试管分装为1 ml保存(-20℃)。注意各种玻璃器皿一定要洗净并用双蒸水多次冲洗,有条件时可硅化处理(1%双氯硅烷/氯仿浸泡1小时,烘干)。配制各种试剂时均使用双蒸水,随后再用0.22 m微孔滤膜过滤后使用。三角瓶可反复多次使用,不用时应密封保存,以防污染。 制备好的胶体金保存寿命较长,可4℃保存6个月以上或室温下保存1-2个月。当出现明显悬浮物或沉淀后表示已不可再用。但无论无何,在保存较长时间后应进行镜检,如出现大量胶体金粒子凝集,说明已经过期。 1、单宁酸/柠檬酸钠法制备3~16 nm胶体金 (1)取一250 ml三角瓶,加入79 ml双蒸水和1 ml 1%氯化金,预热至60~70℃。 (2)取一50 ml烧杯,加入4 ml 1%柠檬酸钠,然后根据所制备金粒子体积大小加入 不同用量的单宁酸及等量的25 mM K2CO3。预热至60~70℃。K2CO3的作用是保 持溶液的中性pH。因此如果单宁酸的量少于0.5 ml时,对pH的影响不大,K2CO3

免疫胶体金技术影响因素分析

免疫胶体金技术影响因素分析 自20世纪70年代,Faulk等(1971)用胶体金作为特殊标记物进行研究以来,建立的各种免疫胶体金技术以其特异性强、灵敏度高、操作简捷等特点,在医学、农牧业、环境及食品检测等领域被广泛应用。免疫胶体金技术的反应过程是一个由金颗粒、抗原与抗体动态结合的反应过程,在这个过程中每个环节的好坏都直接影响试验的成败。而试验过程中每个环节又受到很多因素的影响和制约,下面将影响免疫胶体金技术的因素作一分析,为成功制备胶体金检测产品提供参考。 1耗材的选择 1.1不同型号膜的筛选硝酸纤维素膜的型号在试验中至关重要,作为反应载体影响到整个试验的成败。不同的生产厂家生产硝酸纤维素膜时使用的聚合物和表面活性剂的来源、类型和数量均大不相同,对生产出的膜的性能产生较大影响—膜的孔径和分布结构不同。膜孔径减小,膜的实际可用表面积递增,膜结合蛋白的量也递增;膜孔径越小,层析速度也越慢,金标复合物通过T线的时间就越长,反应也就越充分;因此膜孔径越小灵敏度越高,但是同时也减慢了跑板速度,增加了非特异性结合的机会,也就是假阳性越高。用于金标免疫快速试验的膜多为硝酸纤维素膜或硝酸纤维素/醋酸

纤维素混合膜,不同的包被蛋白对膜有特定要求,试验者应根据蛋白质的性质选择适合孔径大小和分布结构的膜,找到合适的平衡点,使胶体金的标记物在膜上的流动速率为最佳。 1.2结合垫的选择结合垫位于层析系统的中间,一般要求结合垫的网格均一且非特异性吸附低,能很好地负载胶体金标记物和待检测样品,而不被吸附;玻璃纤维素膜具备以上优点,同时具有一定的硬度,为试验中常用。 1.3样品垫及吸水纸的选择样品垫和吸水纸位于胶体金免疫层析系统的两端,对于胶体金层析系统功能的实现起着举足轻重的作用。试验中应根据试纸条检测样品的性质选择合适的样品垫和吸水纸,保证样品在样品垫形成的通道中快速地流动而不被非特异性地吸附或者改变样品的性质。如检测样品为血清,则可选择网格较疏松的玻璃纤维素膜即可;如果检测样品为毒素,则可选择质量好的吸水纸和样品垫。吸水纸则要有很好的蓄水能力,保证样品中所用的液体都经过膜的反应区而被样品垫吸收和蓄积。 2关于胶体金的制备 制备颗粒均匀、分散度好的胶体金在金标免疫快速试验中非常关键,如果金颗粒直径的变异范围太大就会影响到试验的稳定性和重复性,如果金颗粒的形状不规则或粒径不均

胶体金标记工艺汇总

免疫金的特性 胶体金可以和蛋白质等各种大分子物质结合,在免疫组织化学技术中,习惯上将胶体金结合蛋白质的复合物称为金探针。用于免疫测定时胶体金多与免疫活性物质(抗原或抗体)结合,这类胶体金结合物常称为免疫金复合物,或简称免疫金(immunogold)。 胶体金与蛋白质结合的机制尚有十分清楚,一般认为是物理吸附性的。胶体金颗粒带有一层表面阴性电荷,与蛋白质表面的阳性电荷通过静电感应相附。因此环境pH和离子强度是影响吸附的主要因素,其他如胶体金颗粒的大小、蛋白质的分子量及蛋白质浓度等也会影响蛋白质的吸附。 来源:Gold 2 免疫金的制备 1.用0.2mol/LK2CO3或0.1mol/LHC1调节胶体金溶液的pH至选定值。原则上可选择待标记蛋白质等电点,也可略为偏碱。但通常最适反应pH往往需经多次试验才能确定。在调节胶体金的pH值时应注意,胶体金会阻塞pH计的电极,不可直接将电极插入胶体金溶液中,宜先用终浓度为0.15的聚乙二醇(PEG,20000)稳定胶体金后,再调胶体金的pH 值。 2.将1/10体积的合适浓度的蛋白质溶液加于胶体金溶液中,放置室温反应2~5min。由于盐类成分能影响胶体金对蛋白质的吸附,并可使胶体金聚沉,因此待标记蛋白质溶液若含有较高的离子浓度,应在标记前先对低离子强度的蒸馏水透析去盐。 3.加入浓度为0.2%的PEG或BSA以饱和游离的胶体金。 4.离心分离,去除上清液中未结合的蛋白质。离心条件视胶体金颗粒的粒径而异:对5nm 金颗粒可选用40000r/min离心1h;8nm金颗粒用25000r/min离心45min;14nm金颗粒用25000r/min离心30min,40nm金颗粒用15000r/min离心30min。 5.轻吸上清液。沉淀用含PEG或BSA的缓冲液悬浮,恢复原体积后再离心。如此洗涤2~4次。以彻底除去未结合的蛋白质。 6.免疫金复合物最终用稀释液配制成工作浓度保存。稀释液通常是加入稳定剂的缓冲液。

免疫胶体金技术影响因素分析_张付贤

免疫胶体金技术影响因素分析 张付贤1,2,王兴龙2 (1.吉林大学农学部畜牧兽医学院,长春 130062;2.军事医学科学院军事兽医研究所,长春 130062) 摘要:免疫胶体金技术以其快速、准确、简捷的特点,受到国内外科研工作者及基层工作人员的普遍关注。笔者从耗材的选择、胶体金的制备及标记、膜包被条件、缓冲液和产品保存及验证等方面分析免疫胶体金技术的影响因素,为制备胶体金检测产品提供理论依据和技术参考。 关键词:免疫胶体金技术;影响因素;选择;检测 中图分类号:Q-33 文献标识码:A 文章编号:1671-7236(2009)05-0199-04 自20世纪70年代,Faulk等(1971)用胶体金作为特殊标记物进行研究以来,建立的各种免疫胶体金技术以其特异性强、灵敏度高、操作简捷等特点,在医学、农牧业、环境及食品检测等领域被广泛应用。免疫胶体金技术的反应过程是一个由金颗粒、抗原与抗体动态结合的反应过程,在这个过程中每个环节的好坏都直接影响试验的成败。而试验过程中每个环节又受到很多因素的影响和制约,下面将影响免疫胶体金技术的因素作一分析,为成功制备胶体金检测产品提供参考。 1 耗材的选择 1.1 不同型号膜的筛选 硝酸纤维素膜的型号在试验中至关重要,作为反应载体影响到整个试验的成败。不同的生产厂家生产硝酸纤维素膜时使用的聚合物和表面活性剂的来源、类型和数量均大不相同,对生产出的膜的性能产生较大影响—膜的孔径和分布结构不同。膜孔径减小,膜的实际可用表面积递增,膜结合蛋白的量也递增;膜孔径越小,层析速度也越慢,金标复合物通过T线的时间就越长,反应也就越充分;因此膜孔径越小灵敏度越高,但是同时也减慢了跑板速度,增加了非特异性结合的机会,也就是假阳性越高(李云等,2002)。用于金标免疫快速试验的膜多为硝酸纤维素膜或硝酸纤维素/醋酸纤维素混合膜,不同的包被蛋白对膜有特定要求,试验者应根据蛋白质的性质选择适合孔径大小和分布结构的膜,找到合适的平衡点,使胶体金的标 收稿日期:2008-11-28 作者简介:张付贤(1982-),男,河南人,硕士,研究方向:兽医微生物与免疫学。 通信作者:王兴龙(1959-),男,吉林人,博导,从事分子免疫学研究。E-mail:w ang xl-2006@https://www.360docs.net/doc/7f19242502.html, 基金项目:吉林省科技厅计划项目(20050549)。记物在膜上的流动速率为最佳(邓省亮等,2007)。 1.2 结合垫的选择 结合垫位于层析系统的中间,一般要求结合垫的网格均一且非特异性吸附低,能很好地负载胶体金标记物和待检测样品,而不被吸附(张美玲,2006);玻璃纤维素膜具备以上优点,同时具有一定的硬度,为试验中常用。 1.3 样品垫及吸水纸的选择 样品垫和吸水纸位于胶体金免疫层析系统的两端,对于胶体金层析系统功能的实现起着举足轻重的作用。试验中应根据试纸条检测样品的性质选择合适的样品垫和吸水纸,保证样品在样品垫形成的通道中快速地流动而不被非特异性地吸附或者改变样品的性质。如检测样品为血清,则可选择网格较疏松的玻璃纤维素膜即可;如果检测样品为毒素,则可选择质量好的吸水纸和样品垫。吸水纸则要有很好的蓄水能力,保证样品中所用的液体都经过膜的反应区而被样品垫吸收和蓄积。 2 关于胶体金的制备 制备颗粒均匀、分散度好的胶体金在金标免疫快速试验中非常关键,如果金颗粒直径的变异范围太大就会影响到试验的稳定性和重复性,如果金颗粒的形状不规则或粒径不均一,使得胶体金标记物容易解离和沉淀而产生金标扩散不完全、反应区底色过深和假阳性现象;而且胶体金质量不好,胶体金结合物就不能快速而完整的从玻璃纤维上解离,从而影响试验结果(Bassab等,2001)。 胶体金的制备除了保证药品的质量外,制备过程中的细节关乎胶体金制备的成败。首先是操作环境和所用容器的清洁度(翟雷等,1996)。所有进入溶胶内的污物都会干扰胶体金颗粒的生成或使生成的胶体金出现聚堆现象,容器最好经酸洗和硅化处理。操作环境应保持清洁无尘粒,最好有专用工作

胶体金标记技术

胶体金标记技术 胶体金标记技术是以胶体金作为示踪标志物或显色剂,应用于抗原抗体反应的一种新型免疫标记技术。由于它不存在内源酶干扰及放射性同位素污染等问题,且利用不同颗粒大小的胶体金还可以作双重甚至多重标记,使定位更加精确。因此已成为继荧光素、酶、同位素及乳胶标记技术之后的一种新型标记技术。现已广泛应用于电镜、流式细胞仪、免疫印迹、蛋白染色、体外诊断试剂的制造等领域。 用胶体金作为特殊标记物的研究始于60年代初,1962年Feldberr等报道了用胶体金标记细胞进行电子显微镜的研究。1971年,Taylor又将胶体金引入电镜免疫标记技术中。近年来的研究表明,胶体金也可作为体外免疫加层试验的指示物。由于胶体金作为标记物具有很多优点,因此自其问世以来,在国内外的许多研究领域中得到了迅速的发展。 近年来,它更多的被应用于免疫学和细胞学相关分子水平的检测中。尤其随着人们物质生活的改善,有关人类健康的问题在现实生活中已显得非常突出。从90年代至今的多篇报道都是关于动物体或人体相关抗体和病原体检测的。 制备方法 在溶液中金颗粒呈圆形,边缘平整,界线十分清楚。金颗粒表面带有大量负电荷,由于静电的排斥力,使其在水中保持稳定状态,形成稳定的胶体,所以称其为胶体金。胶体金的制作方法有白磷还原法,抗坏血酸还原法,柠檬酸三钠还原法和鞣酸—柠檬酸三钠还原法。通过改变反应体系中氯金酸与还原剂的比例(即增加或减少还原剂的量)可得到所需不同直径的金颗粒。 但前两种方法制备得到的金颗粒直径大小不均一,所以目前常用后两种方法,以柠檬酸三钠还原法为例,有两种方法。 1.Frens标准方法: 1)取0.01%HAuCl4溶液50mL,加热煮沸,随即快速加入1%柠檬酸三钠溶液0.5mL。 2)约过25s沸腾的溶液变为淡蓝色,大约再过70s,蓝色突然转变为亮红色, 3)继续煮沸约5分钟后结束反应。 4)冷却后用0.1M K2CO3溶液调至所需PH值。 5)此后再延长反应时间或另加入额外的柠檬酸三钠都不影响实验结果。 该法制备得到的金颗粒直径约为41nm,如前所述要想得到更大或更小的金颗粒,该方法依然可行,唯一不同的是需要改变加入还原剂的量。另外,采用此标准方法所需反应时间最短。2.Slot标准方法: 1)取1mL1%HAuCl4溶液溶于100mL水中,2)再加入2mL1%二水柠檬酸钠溶液。 3)将该混合溶液加热煮沸约15~30min,直至溶液颜色变为亮红色, 4)冷却后,用0.1M K2CO3溶液调整PH值,该法制备的金颗粒直径约为15nm。 胶体金标记蛋白的原理是:在碱性条件下,胶体金颗粒表面带负电荷,可与蛋白质所带正电荷基团之间产生静电吸引而牢固结合,这种结合对所标记蛋白的生物学活性无明显影响。 胶体金免疫技术可大致分为液相胶体金标记技术和固相胶体金标记技术,其分类依据同酶免疫技术。最早的液相胶体金标记技术叫免疫金染色法(IGS),它仅以胶体金作为标记物和显色剂。最初的免疫金染色都采用单标记。即采用大小均一的金颗粒进行标记。后来发展到可利用不同颗粒大小的胶体金作双重标记甚至多重标记。但该方法均仅以胶体金显色,需要较高浓度的标记物,耗费抗体或抗原的量较多,而且需要较大直径的金颗粒(40-50nm),才能获得较高的灵敏度,而且当金颗粒过大时,标记物不稳定,长期贮存容易发生自动聚集。 为克服以上缺点,免疫金银染色法(IGSS)应运而生。该方法的原理是,先用胶体金标记物作免疫金染色,再加入含银的物理显影液,则银离子靠电荷吸引,大量吸附于金颗粒周围,使显色结果呈现金属银的蓝灰色,同时将显色信号进一步放大。应用时,由于本法最终显色是靠金属银的吸附沉积,因此不需要高浓度的胶体金标记物,将胶体金标记物稀释几十倍,仍可获得同免疫金染色一样的最佳效果。这样不仅可以节省大量的抗体或抗原标记物,而且可以节省大量的胶体金。本方法灵敏度的关键在于胶体金吸附银颗粒的数量。小直径的

胶体金标记技术

胶体金免疫分析技术 随着免疫分析日益广泛应用于以临床为主以及非临床领域的诊断工业,免疫分析正在向两个方向发展:一类为全自动化的免疫分析;另一类为以硝酸纤维膜为载体的快速免疫分析。前者需要价格昂贵的全自动仪器及与仪器严格配套的各种试剂盒,目前只能在医疗及检测中心应用,虽也能较快速给出结果,但仍需一定时间,不适合远离医疗及检测中心的地区,更不能用于“患者床旁检验”和普查的需要,在酶免疫分析的基础上,主要以硝酸纤维素膜为载体的快速诊断方法迅速和广泛地发展起来。这类方法目前在文献及市场上的命名还很不统一。它实际上属于快速斑点免疫结合分析,主要有以下两种方法:斑点免疫渗滤分析DIFA 和斑点免疫层析分析DICA。本篇主要介绍以金作为标志物的胶体金免疫分析技术。 金标记免疫分析技术也称免疫胶体金技术,是于1971年建立的一种信号显示技术。此技术最初用于免疫电镜检查,由胶体金颗粒标记抗原或抗体,与组织或细胞中相应的抗体或抗原相结合,在电子显微镜的检查时可起特异的示踪作用。此后,此技术与银染技术相结合建立的免疫金银染色法,使抗原抗体特异反应信号可在光学显微镜下观察。近10多年来,利用硝酸纤维素膜(NC)等为固相载体,以胶体金标记的抗原或抗体与特异配体的反应在膜上进行,建立了快速的金标记免疫渗滤技术和金标记免疫层析技术,并在传染病、心血管病、风湿病、自身免疫病的免疫学检测中广泛应用。 胶体金是指金微小粒子(0-100nm)分散在另一种物质中所形成的体系,通常指金以微小粒子分散在溶液中所形成的金溶胶,用此金溶胶标记蛋白质(抗原、抗体或SPA、SPG),胶体金颗粒具有高电子密度的特性,故在金标蛋白的抗原抗体结合处,显微镜下可见黑褐色颗粒;当这些标记物在相应的标记处大量聚集时,可在载体膜上呈现红色或粉红色斑点,从而用于抗原或抗体物质的半定量或定性。 与ELISA不同之处便是反应时间大大缩短,仅需要数分钟就完成了ELISA 需数小时才能显示的结果。因为在GIFA和GICA中,高浓度的抗体集中固定在纤维素的微孔中,待测抗原在渗滤或层析时,流经微孔与固定的高浓度抗体紧密接触,很快完成免疫结合反应。这就是以膜为基础的胶体金快速免疫结合分析中的免疫浓缩作用。在ELISA中,待测抗原要在液相中经过扩散作用,逐渐与吸附在固相表面的抗体结合。同时,标记抗体也需要同样的扩散结合过程形成抗体-抗原-标记抗体复合物,故需时间较长。故此技术做到了名副其实的POCT。 原理: 将氯金酸(HAuCl4)用还原法制成一定直径的金溶胶颗粒(胶体金),标记金黄色葡萄球菌A蛋白(SPA)或抗体,用于免疫印迹、免疫组织化学定位或快速免疫渗滤、免疫层析实验。金标记免疫渗滤技术的原理同一般的免疫斑点试验,也是用已知抗原或抗体包被NC膜,再用金标记抗体或抗原来进行快速快速测定,阳性时斑点呈胶体金的红色。改进之处为采用了渗滤装置,更加简便。金标记免疫层析则是利用NC膜条状纤维的毛细管作用,使样品在涌动中与金标记物及包被在NC膜上的抗原或抗体结合,出现呈色的阳性信号。

几种胶体金技术详解

胶体金免疫分析技术详解 随着免疫分析日益广泛应用于以临床为主以及非临床领域的诊断工业,免疫分析正在向两个方向发展:一类为全自动化的免疫分析;另一类为以硝酸纤维膜为载体的快速免疫分析。前者需要价格昂贵的全自动仪器及与仪器严格配套的各种试剂盒,目前只能在医疗及检测中心应用,虽也能较快速给出结果,但仍需一定时间,不适合远离医疗及检测中心的地区,更不能用于“患者床旁检验”和普查的需要,在酶免疫分析的基础上,主要以硝酸纤维素膜为载体的快速诊断方法迅速和广泛地发展起来。这类方法目前在文献及市场上的命名还很不统一。它实际上属于快速斑点免疫结合分析,主要有以下两种方法:斑点免疫渗滤分析DIFA和斑点免疫层析分析DICA。本篇主要介绍以金作为标志物的胶体金免疫分析技术。 金标记免疫分析技术也称免疫胶体金技术,是于1971年建立的一种信号显示技术。此技术最初用于免疫电镜检查,由胶体金颗粒标记抗原或抗体,与组织或细胞中相应的抗体或抗原相结合,在电子显微镜的检查时可起特异的示踪作用。此后,此技术与银染技术相结合建立的免疫金银染色法,使抗原抗体特异反应信号可在光学显微镜下观察。近10多年来,利用硝酸纤维素膜(NC)等为固相载体,以胶体金标记的抗原或抗体与特异配体的反应在膜上进行,建立了快速的金标记免疫渗滤技术和金标记免疫层析技术,并在传染病、心血管病、风湿病、自身免疫病的免疫学检测中广泛应用。 胶体金是指金微小粒子(0-100nm)分散在另一种物质中所形成的体系,通常指金以微小粒子分散在溶液中所形成的金溶胶,用此金溶胶标记蛋白质(抗原、抗体或SPA、SPG),胶体金颗粒具有高电子密度的特性,故在金标蛋白的抗原抗体结合处,显微镜下可见黑褐色颗粒;当这些标记物在相应的标记处大量聚集时,可在载体膜上呈现红色或粉红色斑点,从而用于抗原或抗体物质的半定量或定性。 与ELISA不同之处便是反应时间大大缩短,仅需要数分钟就完成了ELISA需数小时才能显示的结果。因为在GIFA和GICA中,高浓度的抗体集中固定在纤维素的微孔中,待测抗原在渗滤或层析时,流经微孔与固定的高浓度抗体紧密接触,很快完成免疫结合反应。这就是以膜为基础的胶体金快速免疫结合分析中的免疫浓缩作用。在ELISA中,待测抗原要在液相中经过扩散作用,逐渐与吸附在固相表面的抗体结合。同时,标记抗体也需要同样的扩散结合过程形成抗体-抗原-标记抗体复合物,故需时间较长。故此技术做到了名副其实的POCT。 原理: 将氯金酸(HAuCl4)用还原法制成一定直径的金溶胶颗粒(胶体金),标记金黄色葡萄球菌A

胶体金技术

免疫胶体金技术(Immune colloidal gold technique) 文章来源: 文章作者: 发布时间:2007-04-24 字体: [大 中 小] (一) 原理 免疫胶体金技术是以胶体金作为示踪标志物应用于抗原抗体的一种新型的免疫标记技术。胶体金是由氯金酸(HAuCl 4)在还原剂如白磷、抗坏血酸、枸橼酸钠、鞣酸等作用下,聚合成为特定大小的金颗粒,并由 于静电作用成为一种稳定的胶体状态,称为胶体金。胶体金在弱碱环境下带负电荷,可与蛋白质分子的正电荷基团形成牢固的结合,由于这种结合是静电结合,所以不影响蛋白质的生物特性。 胶体金除了与蛋白质结合以外,还可以与许多其它生物大分子结合,如SPA 、PHA 、ConA 等。根据胶体金的一些物理性状,如高电子密度、颗粒大小、形状及颜色反应,加上结合物的免疫和生物学特性,因而使胶体金广泛地应用于免疫学、组织学、病理学和细胞生物学等领域。 (二) 胶体金的制备 根据不同的还原剂可以制备大小不同的胶体金颗粒。常用来制备胶体金颗粒的方法如下。 1.枸橼酸三钠还原法 (1)10nm 胶体金粒的制备:取0.01%HAuCl 4水溶液100ml ,加入1%枸橼酸三钠水溶液3ml ,加热煮沸30 min ,冷却至4℃,溶液呈红色。 (2)15nm 胶体金颗粒的制备:取0.01%HAuCl 4水溶液100ml ,加入1%枸橼酸三钠水溶液2ml ,加热煮沸 15min ~30min ,直至颜色变红。冷却后加入0.1Mol/L K 2CO 30.5ml ,混匀即可。 (3)15nm 、18nm ~20nm 、30nm 或50nm 胶体金颗粒的制备:取0.01%HAuCl 4水溶液100ml ,加热煮沸。根 据需要迅速加入1%枸橼酸三钠水溶液4ml 、2.5ml 、1ml 或0.75ml ,继续煮沸约5min ,出现橙红色。这样制成的胶体金颗粒则分别为15nm 、18~20nm 、30nm 和50nm 。 2.鞣酸—枸橼酸钠还原法 A 液:1%HAuCl 4水溶液1ml 加入79ml 双馏水中混匀。 B 液:1%枸橼酸三钠4ml ,1%鞣酸0.7ml ,0.1Mol/L K 2CO 3液0.2ml ,混合,加入双馏水至20ml 。

免疫胶体金标记手册

浙江大学电子显微镜室浙江大学生物技术研究所 胶体金免疫标记技术培训班 技术资料 胡东维洪健徐颖 浙江大学 2001年10月

一、胶体金的制备 根据不同的制备方法,可以制备出直径1- 500nm的胶体金粒子,但做为免疫标记探 针,其直径应在3-30nm范围内。 在氯化金(HAuCI 4)水溶液中加入还原剂使之还原并聚积形成胶体金粒子。使用不同种类、不同剂量的还原剂,可以控制所产生的粒子大小。即粒子大小取决于反应溶液中最初还原试剂和还原核的数量。还原剂浓度越高,核浓度也越高,氯化金的还原也就从更多的还原中心开始,因此产生的胶体金粒子数量越多,但体积也越小。粒子直径每增加一倍, 数量减少为原来的1/8。 以柠檬酸钠和单宁酸做还原剂,能够制备大小相对一致、直径3?16nm的胶体金。因此一般胶体金探针均使用该方法进行。但该方法制备的胶体金粒子直径范围较窄,而且残留的多聚单宁酸残基往往干扰某些蛋白与金粒子的结合。此时在溶液中添加0.1?0.2%的 H2O2能够去除这些残基。双标记或制备5-10 nm的胶体金时建议使用该方法。 利用柠檬酸为还原剂,可以制备12?150 nm直径的胶体金。但制备大体积的胶体金 时,胶体金粒子的误差也同时增加。因此做单标记时,建议使用该方法制备12-16 nm直径 的胶体金。 除了上述方法外,也可以用磷作为还原剂来制备 5 nm的胶体金,它避免了单宁酸残 基的问题,但所形成的金粒子体积变化较大。磷易燃且有毒,制备的残液需进一步处理,故该方法已经很少使用。 氯化金极易吸湿,故一般均以小剂量密封保存(0.5g或1g),因此在配制氯化金溶液 时一次配完,暂时不用的可以用 1.5 ml试管分装为1 ml保存(-20 C)。注意各种玻璃器皿 一定要洗净并用双蒸水多次冲洗,有条件时可硅化处理(1%双氯硅烷/氯仿浸泡1小时, 烘干)。配制各种试剂时均使用双蒸水,随后再用0.22 m微孔滤膜过滤后使用。三角瓶可反复多次使用,不用时应密封保存,以防污染。 制备好的胶体金保存寿命较长,可4C保存6个月以上或室温下保存1-2个月。当出 现明显悬浮物或沉淀后表示已不可再用。但无论无何,在保存较长时间后应进行镜检,如出现大量胶体金粒子凝集,说明已经过期。 1、单宁酸/柠檬酸钠法制备3?16 nm胶体金 (1)取一250 ml三角瓶,加入79 ml双蒸水和1 ml 1 %氯化金,预热至60?70C。 (2)取一50 ml烧杯,加入4 ml 1 %柠檬酸钠,然后根据所制备金粒子体积大小加入不同用量的单宁酸及等量的25 mM K2CO3。预热至60?70C。K2CO3的作用是保持 溶液的中性pH。因此如果单宁酸的量少于0.5 ml时,对pH的影响不大,K2CO3 可以省略。 (3)将上两种溶液迅速混合并充分

胶体金免疫色谱试纸条及微芯片

ORIGINAL PAPER Microchip based and immunochromatographic strip assays for the visual detection of interleukin-6and of tumor necrosis factorαusing gold nanoparticles as labels Yan Man&Xuefei Lv&Javed Iqbal&Guang Peng& Da Song&Congxiao Zhang&Yulin Deng Received:8June2014/Accepted:8September2014 #Springer-Verlag Wien2014 Abstract The enzyme-linked immunesorbent assay(ELISA) is most frequently used for the determination of interleukin-6 (IL-6)and tumor necrosis factor-α(TNF-α).However,this technique is time-consuming and requires a substantial sample volume.We have developed(a)a new kind of colloidal gold-based immunochromatographic strip,and(b)a colloidal gold-based immunochromatographic microchip for simultaneous, rapid,and visual detection of IL-6and TNF-α.The lowest limit of detection is62.5ng mL?1for IL-6,and30ng mL?1for TNF-α.Both the strip method and the microchip method are highly specific,user-friendly,and can be read out without the need for instrumentation. Keywords Immunochromatographic strip.IL-6.TNF-α. Immunochromatographic microchip.Simultaneous detection Introduction Interleukin-6(IL-6)is a well know pleiotropic cytokine main-ly produced by the immune system cells,vascular endothelial cells and adipocytes.It has a wide range of biological activ-ities in T cells,B cells,hepatocytes,hematopoietic and neural cells[1,2].Its critical role in the immune response,the acute phase response,hematopoiesis,oncogenesis,and inflamma-tion is of utmost importance[3–7].Tumor necrosis factor-α(TNF-α)is another important inflammatory cytokine pro-duced by macrophages,lymphoid cells,neuronal tissue and many other tissues.Numerous studies have shown that the expression of IL-6and TNF-αwas associated with a number of age-related chronic diseases,i.e.,cardiovascular disease, diabetes,cancer,physical disabilities,and cognitive decline [8].So,it is necessary to establish a rapid,simple,sensitive, and specific detection method both for IL-6and TNF-α.The sensitivity is defined as the percentage of positive test re-sponses and specificity as percentage of negative tests. Presently,enzyme-linked immunosorbent assay(ELISA)is the conventional method used for the detection IL-6and TNF-α[9–13].However,this method is laborious,time-consuming and requires complicated cleanup steps,costly equipment and more sample quantity.All these limitations make ELISA unsuitable for the rapid diagnosis of plasma cytokines. The immunochromatographic strip technique has been de-veloped as a popular platform for rapid diagnosis since it was first introduced in the https://www.360docs.net/doc/7f19242502.html,pared to ELISA,the immunochromatographic strip technique has a tendency to detect wide range of samples without pretreatment,low sam-ple volume requirement,long-term preservation,inexpensive and no need of high technology machinery.The critical role of the immunochromatographic strip technique is in point-of-care testing(POCT)[14]which is a test designed to be used at or near the site where the patient is located.This does not require permanent dedicated space and are performed outside the physical facilities of the clinical laboratories.In the immunochromatographic strip,colloidal gold nanoparticles are the most commonly used signal reporters due to their stability,controllable particles size,and good compatibility with biological molecules,i.e.,antibodies,antigens,DNA,and RNA[15].Chou[16]developed a manual self-assembled colloidal gold nanoparticle-immunochromatographic strip Electronic supplementary material The online version of this article (doi:10.1007/s00604-014-1362-y)contains supplementary material, which is available to authorized users. Y.Man :X.Lv(*):J.Iqbal:G.Peng:D.Song:C.Zhang: Y.Deng(*) School of Life Science,Beijing Institute of Technology, Beijing100081,China e-mail:xuefeilv@https://www.360docs.net/doc/7f19242502.html, e-mail:deng@https://www.360docs.net/doc/7f19242502.html, Microchim Acta DOI10.1007/s00604-014-1362-y

免疫胶体金标记手册

免疫胶体金标记手册 浙江大学电子显微镜室浙江大学生物技术研究所胶体金免疫标记技术培训班 技术资料 胡东维洪健徐颖 浙江大学 2001年10月

一、胶体金的制备 根据不同的制备方法,可以制备出直径1-500nm的胶体金粒子,但做为免疫标记探针,其直径应在3-30nm范围内。 在氯化金(HAuCl4)水溶液中加入还原剂使之还原并聚积形成胶体金粒子。使用不同种类、不同剂量的还原剂,可以控制所产生的粒子大小。即粒子大小取决于反应溶液中最初还原试剂和还原核的数量。还原剂浓度越高,核浓度也越高,氯化金的还原也就从更多的还原中心开始,因此产生的胶体金粒子数量越多,但体积也越小。粒子直径每增加一倍,数量减少为原来的1/8。 以柠檬酸钠和单宁酸做还原剂,能够制备大小相对一致、直径3~16nm的胶体金。因此一般胶体金探针均使用该方法进行。但该方法制备的胶体金粒子直径范围较窄,而且残留的多聚单宁酸残基往往干扰某些蛋白与金粒子的结合。此时在溶液中添加0.1~0.2%的H2O2能够去除这些残基。双标记或制备5-10 nm的胶体金时建议使用该方法。 利用柠檬酸为还原剂,可以制备12~150 nm直径的胶体金。但制备大体积的胶体金时,胶体金粒子的误差也同时增加。因此做单标记时,建议使用该方法制备12-16 nm直径的胶体金。 除了上述方法外,也可以用磷作为还原剂来制备5 nm的胶体金,它避免了单宁酸残基的问题,但所形成的金粒子体积变化较大。磷易燃且有毒,制备的残液需进一步处理,故该方法已经很少使用。 氯化金极易吸湿,故一般均以小剂量密封保存(0.5g或1g),因此在配制氯化金溶液时一次配完,暂时不用的可以用1.5 ml试管分装为1 ml保存(-20℃)。注意各种玻璃器皿一定要洗净并用双蒸水多次冲洗,有条件时可硅化处理(1%双氯硅烷/氯仿浸泡1小时,烘干)。配制各种试剂时均使用双蒸水,随后再用0.22 m微孔滤膜过滤后使用。三角瓶可反复多次使用,不用时应密封保存,以防污染。 制备好的胶体金保存寿命较长,可4℃保存6个月以上或室温下保存1-2个月。当出现明显悬浮物或沉淀后表示已不可再用。但无论无何,在保存较长时间后应进行镜检,如出现大量胶体金粒子凝集,说明已经过期。 1、单宁酸/柠檬酸钠法制备3~16 nm胶体金 (1)取一250 ml三角瓶,加入79 ml双蒸水和1 ml 1%氯化金,预热至60~70℃。 (2)取一50 ml烧杯,加入4 ml 1%柠檬酸钠,然后根据所制备金粒子体积大小加 入不同用量的单宁酸及等量的25 mM K2CO3。预热至60~70℃。K2CO3的作用 是保持溶液的中性pH。因此如果单宁酸的量少于0.5 ml时,对pH的影响不大,K 2CO3可以省略。 (3)将上两种溶液迅速混合并充分混匀,加热至沸并保温10分钟。自然冷却。

相关文档
最新文档