相似三角形的判定及证明技巧讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形(三)

知识点(一):相似三角形的证明技巧

1.相似三角形的基本图形

2.相似三角形判定定理(3条)

3.相似三角形的具体解题方法

1.“三点定形法”:即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

例1、已知:如图△ABC中,CE⊥AB,BF⊥AC.求证:AE•AB=AC•AF.(判断“横定”还是“竖定”?)

例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB 吗?说明理由。

分析方法:

1)先将积式______________

2)______________(“横定”还是“竖定”?)

练习1.已知:如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交BC延长线于F。求证:CD2=DE·DF。 A

D

E

F B

C

2.过渡法(或叫代换法)

有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.

(1)等量过渡法(等线段代换法)

遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一

条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问

题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。

例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的延长线于E.求证:DE2=BE·CE.

(2)等比过渡法(等比代换法)

当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑

利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证

的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。

例2:如图4,在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB的延长线于点F.

求证:AB DF AC AF

(3)等积过渡法(等积代换法)

思考问题的基本途径是:用三点定形法确定两个三角形,然后通过三角形相似推出线段成比例;若三点定形法不能确定两个相似三角形,则考虑用等量(线段)代换,或用等比代换,然后再用三点定形法确定相似三角形,若以上三种方法行不通时,则考虑用等积代换法。

例3:如图5,在△ABC中,∠ACB=90°,CD是斜边AB上的高,G是DC延长线上一点,过B 作BE⊥AG,垂足为E,交CD于点F.求证:CD2=DF·DG.

小结:证明等积式思路口诀:“遇等积,化比例:横找竖找定相似;

不相似,不用急:等线等比来代替。”

4.确定证明的切入点。几何证明题的证明方法主要有三个方面。第一,从“已知”入手,通过推理论证,得出“求证”;第二,从“求证”入手,通过分析,不断寻求“证据”的支撑,一直追溯回到“已知”;第三,从“已知”及“求证”两方面入手,通过分析找到中间“桥梁”,使之成为清晰的思维过程。

5.相似三角形中的辅助线

在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种:

一、作平行线

例1. 如图,∆A B C的AB边和AC边上各取一点D和E,且使AD=AE,DE延长线与BC延长线

相交于F,求证:BF

CF

BD

CE

=

B

D

A C

F

E

例2. 如图,△ABC中,AB

例3、如图,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________.

二、作延长线

例1.如图,已知平行四边ABCD 中,E 是AB 的中点,AF=3

1

AD ,连E 、F 交AC 于G .求AG :

AC 的值.

D C

F

A E B

综合练习

1.已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明

AC DC AD ⋅=2.

2.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于

P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒.

(1)若4a =厘米,1t =秒,则PM =______厘米;

(2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;

(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求t (用表示)

相关文档
最新文档