大众汽车标准 VW

合集下载

符合vw508 00标准的0w-20型号机油

符合vw508 00标准的0w-20型号机油

符合vw508 00标准的0w-20型号机油一、引言随着汽车行业的不断发展,车辆使用的机油种类也越来越多样化。

而针对不同车型的机油标准也是千变万化。

针对Volkswagen(大众汽车)系列车辆,顺应了环保和节能潮流的0w-20型号机油成为了一种优选。

本文将从vw508 00标准、0w-20型号机油的特点、使用优势和适用范围等方面进行详细介绍。

二、vw508 00标准介绍1. vw508 00标准的制定背景Volkswagen(大众汽车)作为德国著名的汽车品牌,其机油标准一直备受关注。

vw508 00标准是Volkswagen品牌专门针对近几年生产的车型,特别针对采用了2.0T直喷发动机的汽车所设定的机油标准。

这是Volkswagen为了满足新一代发动机要求而制定的标准,具有较高的技术含量和性能要求。

2. vw508 00标准的技术要求根据vw508 00标准,0w-20型号机油需要在以下方面满足严格的技术要求:- 具备超低粘度的特性,确保在不同温度下的流动性良好,降低起动时的磨损- 具有优秀的清净分散性能,有效保持发动机清洁- 具备较高的耐久性和抗剥离性,保护发动机部件免受磨损和腐蚀- 对三元催化器有较好的兼容性,不会损害排放控制系统三、0w-20型号机油特点1. 超低粘度0w-20型号机油在车辆启动时,由于其超低的粘度,可以迅速润滑发动机各个零部件,减少起动时的磨损。

即使在极低温度下,机油也能够迅速流动到各个部位,为发动机提供充分保护。

2. 清洁分散性能0w-20型号机油具备优秀的清洁分散性能,可以有效清除发动机内部的沉积物和杂质,防止积碳和硫化物的生成,保持发动机零部件的清洁、畅通。

3. 耐久性和抗剥离性该型号机油具有较高的抗磨损性能,有效减少发动机部件之间的摩擦,延长零部件的使用寿命。

机油也能够保持在零部件表面形成一层均匀的保护膜,减少发动机在高负荷下的磨损。

四、0w-20型号机油的使用优势1. 节能环保0w-20型号机油在冷启动状态下的优异性能,能够有效减少起动时的磨损和能量损失,提高发动机的工作效率。

大众汽车标准VW螺纹力矩

大众汽车标准VW螺纹力矩

MAmin MAmax
8
10.5 14.5 10.0
17
10
15.52014.5来自23.518.5 22.5
17.0
26.5
19.5
26
24.0
41
20
29
36
35.5
57
34
41.5 41.5
65
40
31
41.5 47.5
81
50
45.5
57
70
110
54
66
81
130
60
48
64
85
145
90
71
88
125
200
83
100
145
230
100
69
91
140
240
150
100
125
205
335
115
145
235
380
120
95
125
215
380
180
135
170
310
510
160
195
360
585
140
125
165
315
555
210
175
220
450
745
205
250
525
855
预紧力KN和拧紧扭矩Nm 的计算值按表中的分级来进行圆整。
标准中心
连接技术 螺栓装配的超弹性拧紧方法
1999 年 3 月 VW
011 26-2
01 66 6 共4页第1页
更改 与98.01 版本相比更改如下:

vw 标准

vw 标准

vw 标准
VW是指Volkswagen,即大众汽车。

VW标准是一个由大众汽车集团制定的标准,旨在确保其汽车零部件的质量和可靠性。

该标准涵盖了从原材料到生产过程、从产品检测到售后服务等各个环节,以确保大众汽车的质量和安全性。

VW标准要求其汽车零部件必须符合一系列严格的质量和性能标准,包括材料质量、工艺流程、尺寸精度、性能测试等方面。

这些标准旨在确保零部件的性能和可靠性,从而提高整车的质量和安全性。

除了VW标准外,还有其他汽车制造商也制定了自己的零部件标准,以确保其汽车的质量和安全性。

这些标准通常涉及到零部件的材料、工艺、性能等方面,但具体标准可能会因制造商和车型而有所不同。

大众汽车标准_VW_10540-3

大众汽车标准_VW_10540-3

72
GA7~GZ9
72
HA7~HZ9
72
504
MW5~MW9 23 MX4~MZ9
汽车零件
制造厂代码 用于国外工厂及其承制厂
VW 105 40-3
共 3 页第3页
国外工厂 自已生产 供应商
X SKODA(斯柯达) 汽车股分公司
X 美国大众
Y
自己生产 供应商
Z 墨西哥VW(大众) 自己生产 供应商
代码 XX1
自己生产 供应商
卡门荷大众
自己生产
供应商 4
长春FAW(奥迪)
长春FAW(大众)
5 上海大众(SVW) 自己生产 供应商
布鲁克西尔大众 自己生产
供应商
6 台湾
自己生产
供应商
空位
代码 2BR
3ME
2VZ
5FA 5FV 5SV
6BE
6CC
范围1) 1AA ~ 2ZZ2) 3AA ~ 3ZZ 4AA ~ 4DZ 4JA ~ 4ZZ
2) 剔除2ZV
3) 剔除VA8和VA9
4) 剔除ZA2和ZB2
5) 剔除ZAB,ZAE,ZAL,ZAO,ZBR,ZDO,ZFO,ZFP,
ZFS,ZGU,ZJJ,ZPC,ZST,ZWW,ZWN,ZZW
国外工厂
空位
秘鲁 8
空位
自己生产 供应商
尼日利亚大众
自己生产 供应商
阿根延大众 9
自己生产 供应商
空位
抄写 李莉
日期 01.09.07
汽车零件
制造厂代码 用于国外工厂及其承制厂
VW 105 40-3
共 3 页第2页
南非大众
自己生产 6ZA

vw噪声测试标准

vw噪声测试标准

VW噪声测试标准是指大众汽车集团对于车内噪声水平的标准。

这个标准包括了车辆在各种行驶条件下的噪声要求,例如怠速、60km/h、90km/h匀速行驶以及加速和减速等条件。

具体来说,大众VW噪声测试标准包括但不限于以下几点:
1. 车辆在怠速状态下,车内噪声不能超过45dB。

2. 在60km/h和90km/h匀速行驶状态下,车辆的外界噪声不能超过75dB。

3. 在行驶过程中,如果打开门窗,车内外噪声标准会有所下降,但不能明显降低。

请注意,如果测试结果超出这些标准,车辆可能不符合大众汽车集团的质量要求。

此外,还有其他相关标准如排放、安全性和配置等也需要考虑。

这些标准和要求共同构成了大众汽车的评价体系。

至于实际测试的具体方法和要求,您需要参考大众汽车的相关测试规范和标准。

同时,不同型号的车辆可能存在差异,具体测试方法也可能有所不同。

如果您对特定车型的噪声测试标准有疑问,建议您咨询相关经销商或参考相关技术手册。

vw 502 00 标准

vw 502 00 标准

vw 502 00 标准
VW 502 00标准是大众汽车制定的发动机油规格标准之一。


一标准适用于大众汽车集团旗下的大多数汽油发动机和柴油发动机。

具体来说,VW 502 00标准要求发动机油在高温、高压和长时间运
行的情况下能够保持稳定的润滑性能,同时具有良好的清净分散性能,有效防止发动机零部件的磨损和积碳沉积。

此外,符合VW 502 00标准的发动机油还需要具有较长的换油周期,能够在不同的气候
条件下保持稳定的性能。

从产品选择的角度来看,选择符合VW 502 00标准的发动机油
可以保证发动机在各种工况下都能得到良好的保护,延长发动机的
使用寿命,减少维护成本。

此外,使用符合标准的发动机油还有助
于提高发动机的燃油经济性和性能表现。

从行业标准的角度来看,VW 502 00标准代表了大众汽车对发
动机油性能的严格要求,符合这一标准的发动机油不仅可以满足大
众汽车的工程要求,也代表了行业内对发动机油质量的认可和推荐。

总的来说,VW 502 00标准是针对大众汽车发动机设计的一项
严格的质量标准,选择符合该标准的发动机油有利于保护发动机、提高燃油经济性并延长发动机的使用寿命。

大众汽车的德文VolksWagenwerk

大众汽车的德文VolksWagenwerk

大众汽车的德文VolksWagenwerk,意为大众使用的汽车,标志中的VW为全称中头一个字母。

标志象是由三个用中指和食大众汽车公司创立于1937年,是德国最大的汽车生产集团,汽车产量居世界第五位。

大众集团包括有在德国本土的大众汽车公司和奥迪公司以及设在美国、墨西哥、巴西、阿根廷、南非等7个子公司。

由于大众车型满足不了美国人对大空间的需要,导致销路不畅,因此到后来撤销了在美的子公司,连设备一并卖给中国第一汽车制造厂继续生产高尔夫捷达。

使大众公司扬名的产品是“甲壳虫”轿车(由波尔舍设计),该车在80年代初就已生产了2000万辆。

启动了大众公司的第一班高速列车,紧随其后的POLO、高尔夫、奥迪、帕萨特、桑塔纳等也畅销全世界。

公司总部曾迁往柏林,现在仍设在沃尔夫斯堡。

目前有雇员26.5万人,整个汽车集团产销能力在600万辆左右。

2008年7月24日,欧盟正式决定,批准德国保时捷汽车控股股份公司收购德国大众汽车集团。

如果收购成功,合并公司将成为欧洲第一、世界前三的汽车企业。

大众汽车历史1937年,"Gesellschaft zur Vorbereitung des Deutschen Volkswagens mbH"公司成立1937-19451937年3月28日,"Gesellschaft zur Vorbereitung des Deutschen Volkswagens mbH"公司宣告成立,随后于1938年9月16日更名为"Volkswagenwerk GmbH"。

1938年早些时候,在今天的沃尔夫斯堡,大众汽车公司开始建厂,用以生产由Ferdinand Porsche设计的新款车型。

二次世界大战期间,大众的生产能力被用于军备生产。

当时约有20,000名强制劳工和战俘,随后又有集中营犯人在这里被迫劳动。

1998年9月,为补偿当时的所作所为,大众汽车公司以二战期间在大众被迫劳动的强制劳工的名义,成立了一项人道主义基金。

大众汽车标准_VW 01106-1_EN_2004-07-01

大众汽车标准_VW 01106-1_EN_2004-07-01

Gas-Shielded Arc WeldingThe English translation is believed to be accurate. In case of discrepancies the German version shall govern.Sheet Steel Joints Design, Type, Quality AssuranceVW 011 06-1Konzernnorm Descriptors: welding, gas-shielded arc welding, steel, MIG welding, MAG welding, TIG welding, sheet steel, sheet steel joint, sheet metal ContentsPage1 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 5.5 6 7Scope .................................................................................................................................. 2 Abbreviations and definitions .............................................................................................. 2 Abbreviations ...................................................................................................................... 2 Definitions ........................................................................................................................... 3 Gas-shielded arc welding procedure................................................................................... 4 Tungsten inert-gas welding (TIG)........................................................................................ 4 Gas-shielded metal arc welding (MIG/MAG)....................................................................... 4 General requirements ......................................................................................................... 5 Materials.............................................................................................................................. 5 Design ................................................................................................................................. 8 Weld dimensions............................................................................................................... 10 Requirements for welds and quality assurance of welds .................................................. 12 Weld quality....................................................................................................................... 12 Penetration depths ............................................................................................................ 12 Weld types ........................................................................................................................ 13 Special weld types ............................................................................................................ 18 Evaluation of imperfections ............................................................................................... 23 Drawing entries ................................................................................................................. 23 Referenced standards....................................................................................................... 24Changes The following changes have been made as compared to VW 011 06-1, 2003-05: Referenced standards updated Standard edited Section 5.1 shortened Section 5.4 extended by special weld types (multiple front weld; corner joint) Section 5.4.1: requirements revised Previous issues 1997-01; 2003-05Preface The following basic regulations are based on experience gained with partially and fully mechanized equipment and implemented tests and also on accepted engineering standards such as DIN standards and DVS specifications.Form FE 41 - 01.03Page 1 of 25Fachverantwortung/Responsibility K-QS-32 Herr Dr. Witt Tel.: 7 36 23 Normung/Standards (EZTD, 1733) Fischer Tel.: +49-5361-9-2 79 95 Sobanski© VOLKSWAGEN AGConfidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group. Parties to a contract can only obtain this standard via the responsible procurement department.Check standard for current issue prior to usage.Klass.-Nr./Class. No. 04 81 7July 2004Page 2 VW 011 06-1: 2004-07 1 ScopeThis standard applies to the design, layout and quality assurance of arc-welded sheet steel joints which are predominantly subject to dynamic loads. It comprises the following procedures according to DIN EN ISO 4063: Reference no. 131 135 141 for: of: Method Metal inert-gas welding Metal active-gas welding Tungsten inert-gas welding Code MIG MAG TIGbutt and fillet welds, lap welds, plug welds and special weld types bright uncoated and coated sheet steel as well as of both high-alloyed steels and premium steels; for examples see Section 4.1; Workpiece thickness 0.5 mm to 6 mm test characteristics of quality level B (high requirement) according to DIN EN ISO 5817, see also DVS specification 0705.with:All fusion-welded joints to which this scope is not applicable require the clarification of the responsible engineering departments. Special measures made necessary because of the component, e.g. change to the quality level for specific imperfections, are permissible and shall be entered in the drawing. 2 2.1 a f1,2 fL fSt Fi h l L s s1,2 sN t1 t2 HAZ Σt ∅ Abbreviations and definitions Abbreviations Calculated throat thickness Penetrations on sheets 1 and 2 Penetration length Penetration at the face surface Joining plane Gap size Throat length Length Throat thickness Throat thickness with respect to sheets 1 and 2 smallest common throat thickness Thickness of sheet 1 Thickness of sheet 2 Heat-affected zone Sum total of sheet thicknesses Diameter mm mm mm mm or % (of face surface) mm mm mm mm mm mm mm mm mm mmPage 3 VW 011 06-1: 2004-072.2DefinitionsFüThe following definitions are valid for the application of this standard: 2.2.1 Weld jointJoint created by fusion welding. It comprises the weld, fusion line, heat-affected zone and unaffected base material (Figure 1).1 2Legend: 1 = weld 2 = heat-affected zone 3 = fusion line, fusion zone344 = unaffected base material Figure 1 – Fusion weld jointNOTE Weld and fusion line may be identical. 2.2.1.1 Weld The area where the workpiece(s) is/are joined at the weld joint. The weld comprises the base material and/or the filler metal. 2.2.1.2 Fusion line Borderline between the base metal and/or filler material melted during welding and the metal that remains solid. 2.2.1.3 Weld metal Material that solidified after welding, comprising either the base material or filler metal and base material. Some elements in the weld metal can come from casings and/or accessory materials (DIN ISO 857-1). 2.2.1.4 Heat-affected zone HAZ Area of the base material that remained solid, but, due to the energy applied during welding, experienced microstructural changes related to temperature.Page 4 VW 011 06-1: 2004-072.2.1.5 Unaffected base material Area of the base material that experienced no evident microstructural changes as a result of the energy applied during welding. 2.2.2 Same types of materialMaterials which do not differ significantly in terms of their chemical composition and their suitability for welding (DIN 8528-1). 2.2.3 Different types of materialMaterials which differ significantly in terms of their chemical composition and their suitability for welding. 3 Gas-shielded arc welding procedureGas-shielded arc welding is a form of fusion welding. An electrical arc is used as the heat source. It burns between the electrode and the workpiece. In this process, the arc and the weld pool are protected from the atmosphere by a shield of protective gas. The classification into the following procedures depends on the electrode type: 3.1 Tungsten inert-gas welding (TIG)In this procedure, an arc is ignited between a non-consumable tungsten electrode and the workpiece. Argon, helium, mixtures of both and sometimes added active gases, are used to form the protective atmosphere. The filler metal is (as in the case of gas welding) fed from the side. 3.2 Gas-shielded metal arc welding (MIG/MAG)In this procedure, an arc is ignited between the melting end of the wire electrode (filler metal) and the workpiece. The welding current flows via sliding contacts in the electric current guide of the gun to the wire electrode. When inert gases (low-activity gases, e.g. noble gases such as argon, helium or mixtures of both) are used as protective atmosphere, this is called metal inert-gas welding (MIG). When active gases are used (e.g. CO2, or mixtures containing CO2, or, in some cases, mixtures of CO2 and oxygen), this is called metal active-gas welding (MAG). This procedure is used to weld unalloyed and low-alloy steels.Page 5 VW 011 06-1: 2004-074General requirementsWelds that are subject to mandatory documentation shall be evaluated according to the relevant type-specific and/or component-specific test specifications (PV). Deviations with respect to the specified weld geometries and weld layouts shall be detailed in the drawing and verified by testing. They shall be described in test specifications (PV). Further requirements with respect to gas-shielded arc welding are contained in the following documents: VW 011 06-2 VW 011 06-3 VW 011 42 Shielded Arc Welding - Rework on Sheet Metal Connections Gas-Shielded Arc Welding – Part 3: Al Welded Joints Welded Seam Repairs on Aluminum Structures – Product Evaluation and Notes on ProcedureWhen creating arc-welded sheet steel joints, the greatest possible design strength in accordance with the design goal must be realized while also ensuring sufficient reliability and a favorable cost/quality ratio. For this purpose, every weld joint must be suitable for welding, i.e. the dimensions of the welding equipment and the accessibility of the weld according to DVS 0929 must be taken into consideration for design. Weldability for service of a sheet steel joint is given if the component, on the basis of its design (Section 4.2) and with the material used (Section 4.1), remains functional (Section 4.3) under the intended operating stresses (Figure 2).Material Welding suitabilityWeldability of the partWelding capability ManufacturingWeldability for service DesignFigure 2 – Representation of weldability according to DIN 8528-1 4.1 MaterialsThe following list is not complete. The following products and materials have good welding properties: a) Cold-rolled flat products made from soft steels for cold forming: DIN 1623-1 (02.83)1) DIN EN 10130 Material no. St 12 DC01 1.0330 St 13 DC03 1.0347 St 14 DC04 1.0338 1) DIN 1623-1 was replaced in October 1991 by DIN EN 10130.Page 6 VW 011 06-1: 2004-07b) c) d)Cold-rolled strips DC01 to DC04 with the surface finishes BK, RP, RPG according to DIN EN 10139. Hot-rolled strips with ≤ 0.20% C content, e.g. according to TL 1111. Hot-rolled products of structural carbon steels DIN 17100 (01.80)2) DIN EN 10025 Material no. St 37-2 -1.0037 St 37-2 R St37-2 S 235 JR 1.0114 St 37-3 S 235 JO 1.0116 St 52-3 S 355 J2G3 1.0570 Conditionally weldable: St 50-2 E295 1.0050 2) DIN 17100 was replaced in March 1994 by DIN EN 10025.The following products and materials are also weldable:e) f)g)Cold-rolled strip and sheet with higher yield point for cold working made from micro-alloyed steels (SEW 093 of March 1987) Isotropic micro-alloyed cold-rolled strip (according to VW 500 17) is a further development of the traditional micro-alloyed cold-rolled strip ZStE260 to ZStE420 (formerly SEW 093). NOTE VW 500 17 defines the material requirements of isotropic micro-alloyed steels, placing particular emphasis on the mechanical properties. Cold-rolled flat products with high yield point for cold working made from micro-alloyed steels: DIN EN 10268 Material no. H240LA 1.0480 H280LA 1.0489 H320LA 1.0548 H360LA 1.0550 H400LA 1.0556 DIN EN 10292 Material No. H260LAD+Z, +ZF 1.0929 H300LAD+Z, +ZF 1.0932 H340LAD+Z, +ZF 1.0933 H380LAD+Z, +ZF 1.0934 H420LAD+Z, +ZF 1.0935 Hot-rolled flat products made from steels with a high yield point for cold working: DIN EN 10149-2 Material no. S315MC 1.0972 S355MC 1.0976 S420MC 1.0980 S460MC 1.0982 S500MC 1.0984 S550MC 1.0986 S600MC 1.8969 S650MC 1.8976 S700MC 1.8974h)Page 7 VW 011 06-1: 2004-07i)Cold-rolled strip and sheet with higher yield point for cold working made from phosphorus-alloy steels SEW 094 Material no. ZStE220P 1.0397 ZStE260P 1.0417 ZStE300P 1.0448 DIN EN 10 292 Material no. H220PD+Z, +ZF 1.0358 H260PD+Z, +ZF 1.0431 H300PD+Z, +ZF 1.0443 Strip and sheet from stainless steels (DIN EN 10088-2): e.g. austenitic steels X5CrNi18-10 1.4301 or ferritic steels X2CrTi12 1.4512j)Page 8 VW 011 06-1: 2004-074.2DesignFüThe following specifications and the notes on design from the DVS 0929 Specification are used as the basis for the production-friendly design of arc-welded sheet-steel joints. 4.2.1 Joint typesThe weld joint is the area in which the parts are joined by welding. The respective type of joint is determined by the arrangement of the parts with respect to each other (extension, reinforcement, branching), see Table 1. Table 1 – Joint types (DIN EN 12345) Position of parts Description The parts lie in the same plane and touch against each other end to end The parts lie on top of one another in parallel, e.g. in explosive cladding The parts lie in parallel on top of one another and overlap. The parts meet at right angles (Tshaped) and lie on top of one another Two parts lying in the same plane meet on a third part that lies between them at right angles (forming a double T shape) One part meets the other at an angle. The edges of two parts meet at an angle of more than 30° (corner)No. 1 2 3Type of joint Butt joint Edge joint Lap joint4T-joint5Double T-joint6Bevel joint7Corner joint8Front jointThe edges of two parts meet at an angle of 0° to 30°9Multiple jointThree or more parts meet at any angle Two parts, e.g. wires, lie on top of one another in a cross shape10Cross jointPage 9 VW 011 06-1: 2004-074.2.2Weld typesThe weld type is determined by the following: Type of weld joint Type and scope of preparation, e.g. gap optimization (see DIN EN ISO 5817 and DIN EN ISO 9692-1) Material Welding method. 4.2.2.1 Fillet weld The parts lie in two planes with respect to one another, form a fillet joint and are joined by welding. It is possible to differentiate between a fillet weld (Figures 3 and 5) and a double fillet weld (Figure 4) with and without edge preparationFigure 3 - Fillet weld on T-jointFigure 4 – Double fillet weld on T-jointFigure 5 - Fillet weld on bevel joint without edge preparation4.2.2.2 Square butt weld on butt joint, flanged weld The parts lie in one plane, form a gap and are joined by welding, see Figures 6 and 7.Figure 6 - Square butt weld 4.2.2.3 Lap weldFigure 7 – Flanged weldThe parts lie in parallel on top of one another. The face surface of the top sheet and the bottom sheet form a fillet. Both parts are joined by welding. This is termed lap weld (see Figure 8). Variant 1 Variant 2Figure 8 – Lap weldPage 10 VW 011 06-1: 2004-074.2.2.4 Front weld See Figure 9.Figure 9 – Front weld 4.2.2.5 Plug weld See Figure 10.Figure 10 – Plug weld 4.3 4.3.1 Weld dimensions Throat thicknessThe calculated throat thickness a is required for the calculation of the forces acting on a weld joint. For example, the following applies to the design of a fillet weld: a ≤ 0.7 tmin. In production, the actually measured throat thickness s must always be greater than or the same as the calculated throat thickness a. If the throat thickness s (Figure 11) cannot be determined directly, the smallest common throat thickness sN (Figure 12) can be used for an alternative criterion. The smallest common throat thickness sN is the shortest distance between the contact surfaces of component edge and weld metal and the surface of the weld (see also Figures 13 and 14).sN saaFigure 11 - Fillet weldFigure 12 - Fillet weld with deep penetrationPage 11 VW 011 06-1: 2004-07sNsNFigure 13 – Concave weldFigure 14 – Convex weldThe shortest (common) distance between both components of the weld joint shall be measured in order to determine the shortest common throat thickness sN. Excess weld metal must not be considered for convex welds (see Figure 14). 4.3.2 Weld lengthThe calculated weld length l is the weld length defined for the specific design by the designer. Both the starting and end areas (end crater) are used to determine the weld length. In order to improve the dynamic load capacity, the weld length can exceed the component length (Figure 15).l1 = Calculated weld length e.g. component length l2 = Weld seam length Figure 15 – Magnified weld length Proof of sufficient strength is provided by the component-specific strength tests.Page 12 VW 011 06-1: 2004-075Requirements for welds and quality assurance of weldsIn general, the welding quality requirements according to DIN EN 729-1 shall be taken into consideration together with the comprehensive quality requirements set out in DIN EN 729-2. The design of a weld shall be described clearly by indicating the weld’s length, thickness and quality. These requirements are part of the drawing specifications (also see Section 6). Unless other specifications are noted in the drawing, the requirements of Sections 5.1 to 5.5 shall apply. 5.1 Weld qualityIf there is no component-specific test specification, quality level B, high, specified in DIN EN ISO 5817, shall apply. The imperfections specified there are represented for square butt welds and fillet welds on a T-joint. The limit values for imperfections apply to other weld types, too (e.g., flanged weld, fillet weld on lap joint). Unequal weld leg lengths as an imperfection according to DIN EN ISO 5817 must not be evaluated for the fillet weld in joints of sheet metal in the body-in-white and in exhaust systems. 5.2 Penetration depthsThe weld joint is sufficient once a continuous crystalline joint with a measurable penetration depth of f ≥ 0.2 mm is created between the sheets involved. For certain weld types – e.g. fillet weld on lap joint or flanged weld – the penetrations f cannot always be determined if 100% of the face surfaces is included in the weld. Permissible penetration depths f < 0.2 mm shall be indicated in the drawing or specified in a component-specific test specification. The weld quality and/or strength must be verified by means of a dynamic strength test and a microscopic examination. NOTE: Due to the smaller “welding window” the test intervals for f < 0.2 mm (e.g. using microsections) shall be conducted at shorter time intervals or on smaller batch sizes. The processes shall be coordinated with all the departments involved (Design, Quality Assurance, Production).Page 13 VW 011 06-1: 2004-075.3 5.3.1Weld types Square butt weld on butt jointt1sFigure 16 - Square butt weld on butt joint s = throat thickness fSt = penetration The face surfaces (fSt ) shall be 100% melted. Design as flanged weld: s ≥ tmin. (see Figure 16) fSt ≥ 100 %SNt1Figure 17 – Flanged weld sN = smallest common throat thickness The face surfaces (fSt ) shall be 100% melted. sN ≥ tmin. (see Figure 17)t2t2Page 14 VW 011 06-1: 2004-075.3.2Front weldSNf1 SN fL2sNf2t1t2 t1a) b) Figure 18 – Front weld sN fL2. f1,2 tmin. t1 0.2 mmt2t1c)t2sN = smallest common throat thickness fL2 = penetration length f1,2 = penetration 5.3.3 Fillet weld on lap joints1 sN N af2t1hs2Figure 19 - Lap weld s1,2 sN a f2 h = throat thickness = smallest common throat thickness = calculated throat thickness = side wall penetration on the component t2: = gap size s1,2 0.7 tmin. sN f2 s1,2 and sN 0.7 tmin. a ≤ 0.7 tmin. (design recommendation) 0.2mm (see Figure 19)NOTE: If the throat thicknesses s1,2 cannot be determined directly, the smallest common throat thickness sN may be chosen as an alternative criterion.t2Page 15 VW 011 06-1: 2004-075.3.4Fillet weld with deep penetrationt1 f1 s1 sNt2aTheoretical root pointFigure 20 - Fillet weld with deep penetration s1,2 sN a f1,2 = throat thickness (with deep penetration) = smallest common throat thickness = calculated throat thickness = side wall penetration on component t1,2 s1,2 0.7 tmin. sN s1,2 and sN 0,7 tmin. a ≤ 0.7 tmin. f1,2 0.2 mm (see Figure 20)NOTE: If the throat thicknesses s1,2 cannot be determined on the microsection directly, the smallest common throat thickness sN may be chosen as an alternative criterion. 5.3.5 Fillet weld on bevel jointt1sN≤ 30°Figure 21 - Fillet weld on bevel joint sN = throat thickness f2 = penetration sN f2 tmin. 0.2 mm (see Figure 21)The face surface of the upper sheet must be 100 % melted.f2t2f2 s2Page 16 VW 011 06-1: 2004-075.3.6Multiple jointf1f2lt1t3Figure 22 – Three-sheet-T-joint f1,2,3 = penetration fSt1,2 = face surface penetration of t1,2 fSt3 = face surface penetration of t3 5.3.7 Corner joint f1,2,3 > 0.2 mm fSt1,2 ≥ insertion depth l fSt3 = 100% meltedsNt1t2Figure 23 – Corner joint The face surfaces of both sheets must be 100 % melted. Smallest common throat thickness sN ≥ tmin.t2Page 17 VW 011 06-1: 2004-075.3.8Plug weldFor plug weld see Figure 24. The values in Table 2 serve as reference values for the ratio of the sheet thickness to the hole diameter. Table 2 – Hole diameter and sheet thickness Sheet thickness used t (mm) up to 1.0 > 1.00 to 1.25 > 1.25 to 1.50 > 1.50 to 2.00 > 2.0 to 3.00 > 3.00 to 3.50 Hole diameter ∅ or L (mm) ≥6 ≥7 ≥8 ≥9 ≥ 10 ≥ 14 Optionally, long holes for narrow flanges W x L (mm) 6 x 10 6 x 12 8 x 12 -When there are gaps between the sheets, the length of the penetration fL must be equivalent to the length L or to the diameter of the hole, or exceed it. ∅ or L x Bt1 t2 fLf2fSt1,2 = face surface penetration of t1,2 fL = penetration length, width and/or diameter f2 = penetration depthfSt1,2 = 100 % melted fL ≥ ∅ or L or W f2 ≥ 0.2 mm Figure 24 – Plug weldThe face surfaces of the hole must be 100 % melted.Page 18 VW 011 06-1: 2004-075.4Special weld typesAdequate evaluation criteria shall be used to evaluate any special weld types that are not listed here. 5.4.1 Fillet weld on multiple lap jointS1t1 t2 t3 f3S2Figure 25 - Three-sheet lap weld The cross-sections of the upper sheets t1 and t2 must be 100 % melted and the throat thickness a of t1 and t2 must be met. If no specifications are made in the drawing, the following applies as reference value: a = 0.7 tmin2,3 The penetration depth f3 in sheet t3 shall be minimum 0.2 mm.Page 19 VW 011 06-1: 2004-075.4.2Multiple front weld sN2 sN1 sN3 F1 F2 Fi = joining plane i F3 *1) If it is clear that one sheet arrangement in a multiple-sheet arrangement is to be considered as a single sheet, then this sheet shall not be included in the overall evaluation when determining the throat thickness sN. t1 t2 t3 t4*1)Figure 26 – Four-sheet front weld In the case of multiple-sheet joints, the smallest common throat thickness sN of the relevant joining planes is used to determine the throat thickness s, as is the case for a multiple lap joint. Here the following applies: In the relevant joining plane (in Figure 26 - four-fold front weld with the joining planes F1, F2 and F3) the throat thickness sN must be ≥ Σ of the sheet thicknesses on the right and = Σ of the sheet thicknesses on the left of the joining plane. The following applies to Figure 26 as an example: sN1 ≥ t 1 sN2 ≥ ? t(3+4) sN3 ≥ ? t4 fSt = face surfaces t1 t4 < (t2 + t3 + t4 ) < (t1 + t2 + t3 ) t3 + t4 < (t1 + t2 ) fSt 1,2,3,4 = 100% meltedPage 20 VW 011 06-1: 2004-07sN4sN3sN 2 s N1t1 t t34t2Figure 27 – Multiple front weld For multiple front welds in exhaust systems (e.g., sheet layers on the exhaust pipe, Figure 27) the factor 0.7 applies in the determination of the smallest common throat thickness sN: sN1 ≥ 0.7 t1 sN2 ≥ 0.7 (t1 + t2) sN3 ≥ 0.7 (t1 + t2 + t3) sN4 ≥ 0.7 tpipe or or sN2 ≥ 0.7 (t3 + t4) sN3 ≥ 0.7 t4Page 21 VW 011 06-1: 2004-075.4.3Fillet welds on components with round cross sectionsf1 sNtaFigure 28 - Fillet weldt f1 = = t2 f2Figure 29 - Fillet weld with deep penetrationsFigure 30 – Concave fillet weld For Figures 28 and 30 determine the throat thickness s approximately: On workpieces with different geometrical shapes, the shortest distance of the median line between the two workpieces shall be selected as the dimension s. s = throat thickness s ≥ 0.7 tminFor fillet welds on components with a round cross section it is recommended to determine the smallest common throat thickness sN as shown in Figure 29. sN = smallest common throat thickness sN ≥ a. NOTE: In the event of imperfections, e.g. undercuts, DIN EN ISO 5817 shall apply.f2Page 22 VW 011 06-1: 2004-075.4.4Square butt weld on flanged jointf1 f2 t1 sN t2Figure 31 - Fillet weld on specially shaped workpieces sN = smallest common throat thickness f1,2 = penetration depth sN ≥ tmin. (see Figure 31) f1,2 ≥ 0.2 mmPage 23 VW 011 06-1: 2004-075.5 5.5.1Evaluation of imperfections Weld spatterWeld spatter must be avoided as far as possible. Any globules or welding residues that remain stuck to the parts and which could lead to an impairment of function are not permitted. Spatter-free areas shall be defined in the drawing or in a test specification. 5.5.2 General imperfectionsImperfections such as cracks, pores, lack of fusion, gap sizes shall be evaluated, unless otherwise indicated in the drawing, according to DIN EN ISO 5817, quality level B “high”. Unequal weld leg lengths shall not be evaluated for fillet welds on lap joint. For exhaust systems the gap size must not exceed 1.0 mm. 6 Drawing entriesThe graphical representation (for example see Figure 32), dimensioning and symbols for the welding procedures named in Section 1 shall be carried out according to DIN EN 22553.s8a6n x l (e)131/ VW01106-1/h Legend: s8 = actual throat penetration) 8 mm thickness (with deepva6 = design throat thickness (without deep penetration) 6 mm n = number of welds l = minimum weld length; tolerance +5 mm, unless otherwise indicated e = distance between the welds v = initial dimensionExplanation: Weld produced by means of metal inert-gas welding (code number 131 according to DIN EN ISO 4063); evaluation according to VW 011 06-1; horizontal position h according to DIN EN ISO 6947. Figure 32 - Example of application for interrupted fillet weld with initial dimension; symbolic representationPage 24 VW 011 06-1: 2004-077Referenced standards1 Steel Flat Products; Cold Rolled Sheet and Strip; Technical Delivery Conditions; Mild Unalloyed Steels for Cold Forming Weldability; Metallic Materials, Definitions Steels for General Structural Purposes; Quality Standard Quality Requirements for Welding - Fusion Welding of Metallic Materials – Part 1: Guidelines for Selection and Use Quality Requirements for Welding - Fusion Welding of Metallic Materials – Part 2: Comprehensive Quality Requirements Hot Rolled Products of Non-Alloy Structural Steels; Technical Delivery Conditions Stainless Steels - Part 2: Technical Delivery Conditions for Sheet/Plate and Strip of Corrosion-Resisting Steels for General and Construction Purposes Cold Rolled Low Carbon Steel Flat Products for Cold Forming – Technical Delivery Conditions Cold Rolled Uncoated Mild Steel Narrow Steel Strip for Cold Forming Technical Delivery Conditions Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming – Part 1: General Delivery Conditions Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming – Part 2: Delivery Conditions for Thermomechanically Rolled Steels Cold-Rolled Flat Products Made of High Yield Strength Micro-Alloyed Steels for Cold Forming - General Delivery Conditions Continuously Hot-Dip Coated Strip and Sheet of Steels with Higher Yield Strength for Cold Forming – Technical Delivery Conditions Welding - Multilingual Terms for Welded Joints with Illustrations Welded, Brazed and Soldered Joints - Symbolic Representation on Drawings Welding – Fusion-Welded Joints in Steel, Nickel, Titanium and Their Alloys (Beam Welding Excluded) – Quality Levels for Imperfections Welding and Allied Processes - Nomenclature of Processes and Reference Numbers Welds - Working Positions - Definitions of Angles of Slope and Rotation Welding and Allied Processes – Recommendations for Joint Preparation Part 1: Manual Metal-Arc Welding, Gas-shielded Metal-Arc Welding, Gas Welding, TIG Welding and Beam Welding of Steels Welding and Allied Processes – Vocabulary - Part 1: Metal Welding Processes Recommendations for Selection of Acceptance Levels according to DIN EN 25 817; Butt Welds and Fillet Welds on Steel Notes on Design for MIG/MAG Welding using Industrial Robots Cold-Rolled Strip and Sheet of Micro-Alloyed Steels with Higher Yield Point for Cold Forming – Technical Supply SpecificationsThe last publication date of withdrawn standards is provided in parentheses. DIN 1623-1 (02.83) DIN 8528-1 DIN 17100 (01.80) DIN EN 729-1 DIN EN 729-2 DIN EN 10025 DIN EN 10088-2 DIN EN 10130 DIN EN 10139 DIN EN 10149-1 DIN EN 10149-2 DIN EN 10268 DIN EN 10292 DIN EN 12345 DIN EN 22553 DIN EN ISO 5817 DIN EN ISO 4063 DIN EN ISO 6947 DIN EN ISO 9692-1 DIN ISO 857-1 DVS 0705 DVS 0929 SEW 093 (03.87)1In this section terminological inconsistencies may occur as the original titles are used.。

大众汽车标准_VW_01105-1_电阻点焊

大众汽车标准_VW_01105-1_电阻点焊

共36页第 1 页关键词:焊接,点焊,电阻点焊,焊接点,板材,钢,钢板前言本标准中概述包括术进步的过程中,将在相应章节中专门说明。

计算例证在本标准的副篇各种不同的简要说明适用12变更 相对于VW 011 05-1:2003-05有如下更改处:-第4.3.1节公差一章增加较小的点焊直径和松动的焊接点内容。

先前版本 1977-05;1993-12;2003-051应用范围 下列基本原则是以少批量到大批量机械化点焊程度和研究结果的经验为基础,以及公开发表的标准和技术规则,例如DVS-规则2902-1,-2,-3。

本标准适用有关静态和动态要求的电阻点焊的钢板结构的形状、计算和实施,在其他的文件中称之为“点焊连接”。

本标准应用范围包括接口点焊连接上的(电阻)点焊(特性因数21按照DIN EN ISO 4063),其在无涂层的板材上的板材厚度比例,板材厚度从0.5~4 mm,以及有关单点和多点焊接的过程保证的质量特征。

在特殊情况下,遇到较大的板材厚度和比例情况请与专业部门进行协调。

按照DIN EN 10 139使用的板材其厚度最多只能够是3.0 mm 。

引进镀锌板材,例如按照DIN EN 10 142或DIN EN 10 292, 和高和高硬度钢的部件要求具备直径较大的电极罩和电极套筒(16 mm 及 20 mm)。

该电极的部件上,当点焊法兰盘发生弯曲时焊核脱离连接片部位。

随着焊核与连接片之间出现的增大的距离现象构件的坚固性和构件强度随之降低。

另外有关(电阻)点焊连接的要求包括:VW 011 05-2(铝材料)VW 011 05-4(多板材连接;两层和多层接口的点焊连接)有关点焊连接的质量评审是检验标准PV 6702和PV 6717中给出的方法。

 2 定义 2.1点焊 进行(电阻)点焊连接时,在所连接部分之间的焊接区域,通过电阻加热的方法借助于同时作用的焊条对零件的压力,加热直至其熔化。

尺寸、形状和被熔化的基材的位置取决于在焊接区域和环境中所产生的时间和空间的相互作用和散发的热量。

大众汽车标准_VW 01141-2 参考译文

大众汽车标准_VW 01141-2 参考译文

Vertragspartner erhalten die Norm nur über die zuständige Beschaffungsabteilung.Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the responsible procurement department.1999.03 ~ VOLKSWAGEN AG4、评定标准表一:不规则特性,外部测试(可视测试)Page 3VW 010 89: 2003-022.3 Graphical representationThe spacer areas are always shown on the single part drawing, not on the assembly drawing.The spacers may partially protrude from the flange area (e.g. as the result of subsequent trimming of the flange).The position of the spacers is always oriented to the material vector (see Figure 2).Supplementary to the graphical representation of laser welded joints (according to VW 011 41-1 or DIN EN 22 553), the position of the spacers is represented as in figure 1. A dash-dot line identifies the spacer area. Legend: Shape A = Information on spacer direction and sheets involved Figure1 – Graphicalrepresentation (on a flange,for example)The shape letter describesthe embossing direction of thespacers relative to thedirection of the materialvector.! Shape A Spacer isembossed inthe direction ofthe materialvector, 2-sheetjoint, contact onone side; entryin the data seton layer 190! Shape B Spacer is embossed in the opposite direction to the material vector, 2-sheet joint, contact on one side; entry in the data set on layer 191! Shape C Spacer is embossed on alternate sides in the middle sheet (exception: see section 2.2, first paragraph), 3-sheet joint, contact on both sides; entry in the data set on layer 192.Shape A Shape B Shape C!Figure 2 - Spacer shapes (draft not to scale)The distance between the spacers on the indicated flange area shall be geometrically even; the distances to the edge of the contact area (first/last spacer) shall be adhered to.Page 4VW 010 89: 2003-022.4 Specifications in the 3D CAD model (data set)The representation in the 3D model initially corresponds to the representation in the drawing. The spacer areas are represented using a dash-dot line, but not as protrusions.The area limits shall be created on discrete layers in the 3D model (for the CAD system CATIA on layer 190 for shape A, layer 191 for shape B and layer 192 for shape C, see VW 010 59-3, appendix1).2.5 Definition of the spacer positionThe exact spacer position is defined in the SET1).The tool manufacturer (represented by the planning department for single parts) enters the exact position of the spacers into the data set. Each spacer is represented by a 10 mm line on layer 193 in the spacer direction.The data set is provided to the ASSY planning department for review. Any additions such as the insertion of spacers in the ASSY are made on layer 194 (body construction scope).In the case of supply parts, the spacers are defined between the supplier and design department based on specifications from Manufacturing Planning.2.6 Effects on the body-in-white assemblyThe addition of spacers can cause the vehicle dimensions to change by the total of the spacer height values. The resulting deviations in the nominal dimensions of the vehicle shall be compensated in the assembly by agreement.2.7 OtherDegassing must always be ensured for laser welded joints. This can be done using other measures, not described in this standard, agreed with the body construction engineering department without changing the spacer specifications in the drawing.3 Referenced standardsPV 6719VW 010 55VW 010 59-3, app. 1 VW 011 41-1 DIN EN 22 553 39D 962 Laser Welding on Coated Steels; Plain Butt Weld at the Lap Joint; Multiple Sheet WeldingReference Point System (RPS); DrawingsRequirements for CAD/CAM Data, Process-Specific Layer Assignment Laser Welding of Sheet Steel; Design, Execution, Quality Assurance Welding and Brazing Seams; Symbolic Representation in Drawings Operating Equipment Standard: Stamp for Spacers for Laser Welding1) SET: Simultaneous Engineering Team (see PEP manual)。

大众汽车标准_VW 011 55 EN

大众汽车标准_VW 011 55 EN
Approval of First Supply and Changes Konzernnorm Descriptors: Vehicle parts, supply parts, first supply
VW 011 55
Changes The following changes have been made as compared to the October 1999 issue: ─ Section 2: 4th paragraph changed; 5th paragraph added ─ Section 3 revised Previous issues First issue: 1988-01 Last change: 1999-12 1 Scope
Vertraulich. Alle Rechte vorbehalten. Weitergabe oder Vervielfältigung ohne vorherige schriftl. Zustimmung einer Normenabteilung des Volkswagen Konzerns nicht gestattet. Vertragspartner erhalten die Norm nur über die zuständige Beschaffungsabteilung. Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group. Parties to a contract can only obtain this standard via the responsible procurement department.

大众汽车标准_VW 01105-1 接触点焊

大众汽车标准_VW 01105-1 接触点焊

3.2.5.4 焊缝长度 I
焊缝长度 I 是在一条焊缝上第 1 个焊点与最后一个焊点中心之间的距离(图 7 至图 10)
3.2.5.5 边缘间距 v
边缘间距 v 是焊点中心到接触面最近边界线的距离(图 7 至图 17)
图 11. 边缘距离 1
图 12. 边缘距离 2
接触点焊 设计,计算,安全作业 有涂层和无涂层的钢板
接触点焊 设计,计算,安全作业 有涂层和无涂层的钢板
VW 011 05-1
共 27 页 第 8 页
图 4. 焊点距离变小时分流的避免方法 图 5 是为了说明分流流经的各种可能性
图例说明: a) 经电极装置达到钢板上的分流 b) 距离近时通过定位销的分流 图中未表示出来的,可以通过下列各部分流来说明: c) 夹具 d) 变压器接地 e) 装置
能否垂直于法兰盘,这对于确定焊点距离来说,有决定性影响的是导电体的最小距离 A = 2.0 mm,是最大半径 Ri 以及焊条杆直径 ds 和焊条帽直径 dk.
焊点位置的误差(焊点距离误差)见图纸或 DIN ISO 2768-1 标准.
关于点焊连接结构的设计数据的其他说明,见 DVS 2902-3.
3.2.2 焊接顺序
这时候,在焊区光滑平面上测出熔融金属的直径,并从接合平面上把它作为熔核直径 dL 记录下来.
2.2 热影响区 (WEZ)
热影响区就是这样一个区域,它在点焊时虽因热能作用而发生结构上的变化,但母体 金属却牢固地保持不变.
接触点焊 设计,计算,安全作业 有涂层和无涂层的钢板
VW 011 05-1
共 27 页 第 3 页
连续的点系列是由焊机确定的,不允许有 25 mm 的贴得太近的点距离,点距离较近时, 可以在空隙处进行焊接(把细小或零散的序列焊点一个接着一个地连接起来.见图 9).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n t i s s u e p r i o r t o u s a g e .N o r m v o r A n w e n d u n g a u f A k t u a l i t ät p r üf e n / C h e c k s t a n d a r d f o r c u r r e T h e E n g l i s h t r a n s l a t i o n i s b e l i e v e d t o b e a c c u r a t e .I n c a s e o f d i s c r e p a n c i e s t h e G e r m a n v e r s i o n s h a l l g o v e r n .Confidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the responsible procurement department.VOLKSWAGEN AGQ U E L L E : N O L I SPage 2VW 105 00: 2003-111 ScopeThis standard includes notes on the use of the company designation and the corporate wordmark "Volkswagen AG" and provides an overview of the identifications used for vehicle parts.2 Company designation, wordmarkdesignation2.1 CompanyCompany designations, such as "Volkswagen Aktiengesellschaft", are registered and legally protected company codes.In general, they identify factories, services, objects, information, memos etc. as belonging to a certain company.2.2 Wordmark of the Volkswagen Group - "Volkswagen AG"The wordmark "Volkswagen AG" is the exclusive Group brand. This brand is a registered trademark of Volkswagen AG and legally protected as such. It serves for identifying the origin of products and services produced by Volkswagen AG. It aims to symbolize both the unobtrusive self-image and the international importance of Volkswagen AG.3 Overview of vehicle parts identifications13.1 Logos - VW 105 14Logos acc. to this standard shall serve to identify original parts and to exclude unjustified claims in the case of product liability.3.2 Country of origin - VW 105 50Identification with the country of origin shall be based on existing laws and customs regulations.3.3 Manufacturer’s code - VW 105 40-1, VW 105 40-7Identification with the manufacturer’s code shall serve to identify the vehicle part manufacturer in the event of damage or product liability as well as the retraceability of parts.3.4 Part number (drawing number) - VW 010 98The identification of vehicle parts with the part number establishes the connection to the drawings and makes them easy to find in the spare parts areas and repair workshops.3.5 Date marking - VW 105 60Date marking is required to fulfill official requirements, to sort goods acc. to their indates and, in the event of damage, to ensure that the parts can be retraced.1 Notes for application, examples of entries, dimensions, etc. are provided in the standards named in Section 3.Page 3VW 105 00: 2003-113.6 Material designation - VDA 260All plastic vehicle components (including textiles) shall be identified acc. to VDA 260.Identification shall be applied at appropriate location so that the appearance of the product is not affected negatively.Assemblies such as seats, door trim panels, dashboards, etc. which are permanently attached to one another and whose material designation is not visible after installation, shall be provided with the specifications of the single parts.Metallic vehicle components shall be marked acc. to VDA 260, if pure-type recycling is economically viable or required for environmental reasons.3.7 Identification required by law or governmental agenciesThese identifications, for instance type approval marks on electric bulbs, strength specifications on high-strength joining elements, approval marks on safety glass, identification of hazardous substances, must be applied in a clearly visible manner at a suitable location on the respective parts.3.8 Identification of vehicle parts that require archiving - VW 010 64In addition to the identifications described in Sections 3.1 to 3.7, vehicle parts or assemblies whose data is recorded and archived over a long period of time for each vehicle to ensure retraceability, shall be identified with a bar code or 2-D code acc. to VW 010 64.4 RequirementsAll vehicle parts from outside and in-house manufacturing, which are standard production parts, spare parts, and accessories of the Volkswagen Group and its brands, must be identified acc. to this standard.The identification must be permanent, easily legible, and applied such that the part can be identified as an original part even when it is in its installed condition.The identification shall be defined on drawings, as described in VW 010 58, by means of the text macro NO-E2 acc. to VW 010 14 and in the performance specifications.For original parts of the vehicle brands of the Volkswagen Group, which are only sold as assemblies, a single identification shall suffice. If parts from assemblies are also sold individually, these shall likewise be identified.Identification may only be omitted,- if the identification is technically impossible, e.g. in the case of small parts,- if the identification would impact negatively on the driving or operational safety of the vehicle.If due to space restrictions only a partial identification is possible, the following order of priority is to be observed (identifications that are not to be applied shall crossed out on the drawings):1. Logos acc. to VW 105 142. Country of origin acc. to VW 105 503. Manufacturer’s code acc. to VW 105 40-1 (VW 105 40-7)4. Part number5. Date marking acc. to VW 105 606. Material code acc. to VDA 260Alternative parts identification can be specified by the responsible design department in consultation with 4-VO-4 (Original Parts Product Definition), Quality Assurance, and the Standards Department EZTD Technical Documentation.Page 4VW 105 00: 2003-114.1 DesignationEntries in drawings and performance specifications:Parts identification acc. to VW 105 00.5 Identification of communications mediaThe brand logos for identifying communications media serve to clarify the corporate strategy. They serve as graphic identification symbols for the Group brands and are used in advertising, forms, company stationary, packaging, and similar.They comply with the fundamental separation within the framework of the multi-brand strategy. Brand logos shall not be combined. If the sender is actually several brands, these are combined under the umbrella of the Volkswagen Group (see Section 2.2, Wordmark of the Volkswagen Group).Notes on use, as well as the relevant valid status of the brand logos, are contained in CI-Net (the Corporate Identify Internet site) of the Group brands.6 Vehicle product namesProduct names such as Golf, Sharan, Audi TT, Fabia, Ibiza, etc. are sales designations stipulated by the Marketing department and are registered wordmarks of Volkswagen AG. Spelling of these wordmarks shall be uniform.standards27 ReferencedVW 010 14 Technical Drawings; Drawing Frames and Text MacrosVW 01058 Technical Drawings; Type of LetteringVW 010 64 Coding on Vehicle PartsVW 010 98 Part Number SystemVW 105 14 Logos; Identification for Vehicle PartsVW 105 40-1 Manufacturer’s code; For vehicle partsVW 105 40-7 Identification of Valve SpringsVW 105 50 Country of Origin Identification; Vehicle PartsVW 105 60 Date Marking; Vehicle PartsVDA 260 Automotive Components, Identification of Materials (available only in German)2 In this section terminological inconsistencies may occur as the original titles are used.。

相关文档
最新文档