实数
实数知识点

实数知识点实数是数学中重要的概念之一,它在数学和实际生活中都有着广泛的应用。
本文将从实数的概念、性质、分类以及实数在数学和实际生活中的应用等方面进行详细介绍。
一、实数的概念及性质实数是数学中最基本的数集之一,包括有理数和无理数。
它们可以用数轴来表示,数轴上的每个点都对应着一个实数。
实数具有以下性质:1. 实数的有序性:对于实数集中的任意两个数a、b,必定存在三种关系:a<b,a=b或a>b。
这个性质使得实数可以进行大小比较。
2. 实数的稠密性:对于任意两个实数a、b (a<b),必定存在一个实数c (a<c<b),即实数集中不存在空隙。
这个性质可以用来证明实数集的连续性。
3. 实数的无穷性:实数集是无界的,即没有最大和最小值。
无论给定多大或多小的数,总可以找到比它更大或更小的数。
4. 实数的完备性:实数集中满足某个性质的数列必定收敛于一个实数。
这个性质使得实数集可以用来描述物理量的测量结果。
二、实数的分类实数可以分为有理数和无理数两类。
1. 有理数:有理数是可以表示为两个整数的比值的数,包括整数、分数和有限小数。
有理数可以表示为无限循环小数,例如1/3=0.3333...。
2. 无理数:无理数是不能表示为两个整数的比值的数,无理数的小数表示无限不循环。
常见的无理数有开方数(如√2)和圆周率π。
无理数在数轴上是无限不重复的。
三、实数的应用实数在数学中有着广泛的应用,同时也贯穿于实际生活的各个领域。
1. 几何学:实数可以用来度量和描述几何图形的属性,例如线段的长度、角的度数等。
实数的大小和比较关系可以帮助我们确定图形的大小和位置。
2. 物理学:实数可以用来表示物理量的不同数值,例如速度、质量和能量等。
实数的运算规律可以帮助我们进行物理量的计算和分析。
3. 经济学:实数可以用来表示货币的数额、价格的变动等经济指标。
实数的运算可以用于货币的兑换和经济指标的计算。
4. 统计学:实数可以用来表示数据的测量结果,例如年龄、身高、体重等。
什么是实数

什么是实数实数,是有理数和无理数的总称。
数学上,实数定义为与数轴上点相对应的数。
实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
但仅仅以列举的方式不能描述实数的整体。
实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。
实数集通常用黑正体字母 R 表示。
R表示n维实数空间。
实数是不可数的。
实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系(real number system)或实数连续统。
任何一个完备的阿基米德有序域均可称为实数系。
在保序同构意义下它是惟一的,常用R表示。
由于R 是定义了算数运算的运算系统,故有实数系这个名称。
实数可以用来测量连续的量。
理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。
在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。
直到17世纪,实数才在欧洲被广泛接受。
18世纪,微积分学在实数的基础上发展起来。
1871年,德国数学家康托尔第一次提出了实数的严格定义。
根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。
以边长为1厘米的正方形为例,其对角线有多长?在规定的精度下(比如误差小于0.001厘米),总可以用有理数来表示足够精确的测量结果(比如1.414厘米)。
但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念,他们原以为:任何两条线段(的长度)的比,可以用自然数的比来表示。
实数知识点及例题

实数知识点及例题一、实数的概念实数是有理数和无理数的总称。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数);无理数是无限不循环小数。
例如,π(圆周率)、根号 2 等都是无理数。
而像 3、-5、025 等则是有理数。
二、实数的分类1、按定义分类:有理数:整数和分数。
无理数:无限不循环小数。
2、按性质分类:正实数:大于 0 的实数,包括正有理数和正无理数。
负实数:小于 0 的实数,包括负有理数和负无理数。
三、实数的基本性质1、实数的有序性:任意两个实数 a 和 b,必定有 a > b、a = b 或a <b 三种关系之一成立。
2、实数的稠密性:两个不相等的实数之间总有另一个实数存在。
3、实数的四则运算:实数的加、减、乘、除(除数不为 0)运算满足相应的运算律。
四、数轴数轴是规定了原点、正方向和单位长度的直线。
实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
例如,在数轴上表示 2 的点在原点右侧距离原点 2 个单位长度。
五、绝对值实数 a 的绝对值记作|a|,定义为:当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a。
绝对值的性质:1、|a| ≥ 0,即绝对值是非负的。
2、若|a| =|b|,则 a = ±b。
例如,|3| = 3,|-5| = 5。
六、相反数实数 a 的相反数是 a,它们的和为 0,即 a +(a) = 0。
例如,5 的相反数是-5,它们的和为 0。
若两个实数的乘积为 1,则这两个数互为倒数。
非零实数 a 的倒数是 1/a。
例如,2 的倒数是 1/2,-3 的倒数是-1/3。
八、实数的运算1、加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2、减法法则:减去一个数,等于加上这个数的相反数。
3、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
实数的名词解释

实数的名词解释实数是数学中的一个重要概念,它是指包括有理数和无理数在内的一类数。
在数轴上,实数代表了所有可能的点,它们既可以是有理数上的点,也可以是无理数上的点。
本文将对实数进行名词解释,从数学定义到实际应用进行探究。
一、实数的定义和性质实数的定义可以从两个角度来考虑。
从数学上看,实数是一种无限的数集,包括有理数和无理数。
有理数是可以用两个整数的比例表示的数,如正整数、负整数、分数。
无理数则是无法被有理数表示为比例的数,如无限不循环小数等。
从几何上看,实数是数轴上的点,每一个点都对应一个实数,反之亦然。
实数的性质是实数理论的基石之一。
首先,实数满足加法和乘法的封闭性,即两个实数相加或相乘的结果仍为实数。
其次,实数的加法和乘法满足交换律、结合律和分配律。
再者,实数集上有一种次序关系,可以通过大小比较来对实数进行排序,这被称为实数的次序性。
最后,实数上存在着完备性,即实数集中的任何非空有上界的子集都有一个上确界,也就是实数集中的“空隙”被填满。
二、实数的应用实数不仅仅是数学中的概念,它在现实生活中有着广泛的应用。
首先,实数在科学研究中扮演着重要的角色。
例如,在自然科学中,测量和观测往往涉及到无限小数的计算,而无限小数就是无理数的一种表现形式。
这使得实数成为物理学、化学、生物学等学科中不可或缺的工具。
同时,实数还广泛应用于金融领域,用来计算利息、汇率等经济指标。
此外,实数还在信息科学、工程技术等领域中有重要的应用,如信号处理、图像压缩等。
三、实数的伊辛堡-格登瓦定理伊辛堡-格登瓦定理是实数理论中的一项重要成果,它指出实数是不可数的。
这一定理的证明十分巧妙,依赖于对实数的分割和二进制表示。
简单来说,这个定理通过构造一个递归的过程,将实数集分割成若干段,每一段中都不存在实数,从而说明实数的数量无穷无尽。
这个结果反直觉,因为实数似乎是可以通过有理数的组合得到的,有理数是可数的。
但实数的无穷性和稠密性使得它与有理数有着本质的区别。
实数基本概念

实数基本概念实数基本概念及应用一、实数的定义与性质1.1 实数的定义实数是由有理数和无理数组成的数。
其中,有理数包括整数和分数,无理数则是无法表示为有限小数或无限循环小数的数。
1.2 实数的性质实数具有连续性、完备性、有序性等性质。
连续性指实数在数轴上是可以无限接近的,没有间隙;完备性指实数可以表示为任意精确程度的有限小数或无限循环小数;有序性指实数可以按照大小进行比较,可以排序。
二、实数的表示方法2.1 有限小数表示法有限小数表示法是指用小数点后几位数字来表示实数的方法。
例如,123.45表示为有限小数123.45。
2.2 无限小数表示法无限小数表示法包括无限循环小数和无限不循环小数。
无限循环小数是指小数点后的数字重复出现,例如1/3=0.3333……。
无限不循环小数是指小数点后的数字不重复出现,例如π=3.141592……。
三、实数的运算3.1 加法运算实数的加法运算按照加法交换律和结合律进行。
即a+b=b+a,(a+b)+c=a+(b+c)。
3.2 减法运算实数的减法运算按照加法交换律和结合律进行。
即a-b=a+(-b),a-b-c=a+(-b)+(-c)。
3.3 乘法运算实数的乘法运算按照乘法交换律和结合律进行。
即a×b=b×a,(a×b)×c=a×(b×c)。
3.4 除法运算实数的除法运算按照乘法交换律和结合律进行。
即a/b=c,则ac=bc,c/a=b,则ca=cb。
3.5 指数运算实数的指数运算可以使用幂运算进行。
即a^b=c,则log(a)c=b。
3.6 对数运算实数的对数运算可以使用指数运算进行。
即log(a)b=x,则a^x=b。
四、实数在生活中的应用4.1 测量中的应用实数在测量中有着广泛的应用。
例如,长度、面积、体积等都可以用实数来表示。
4.2 工程中的应用在工程中,实数被广泛应用于计算各种物理量。
例如,物体的质量、速度、加速度等都可以用实数来表示。
实数的基本概念与运算

实数的基本概念与运算实数是数学中的一个基本概念,它包括了整数、有理数和无理数。
实数的运算是数学中的重要内容,包括加法、减法、乘法和除法等。
本文将介绍实数的基本概念以及实数的运算法则。
一、实数的基本概念实数是用于表示现实世界中各种物质和现象的数,它包括了整数、有理数和无理数。
整数由正整数、负整数和零组成,例如-3、-2、-1、0、1、2、3等。
有理数是可以表示为两个整数之商的数,例如2/3、-4/5、1等。
无理数是不能表示为两个整数之商的数,例如π和√2等。
二、实数的加法与减法运算实数的加法是指将两个实数相加得到一个新的实数。
加法运算满足交换律、结合律和零元律。
例如,对于任意实数a、b和c,有以下等式成立:1. 交换律:a + b = b + a2. 结合律:(a + b) + c = a + (b + c)3. 零元律:a + 0 = a实数的减法是指将一个实数减去另一个实数得到一个新的实数。
减法运算可以看作是加法运算的逆运算。
例如,对于任意实数a、b和c,有以下等式成立:a -b = a + (-b)三、实数的乘法与除法运算实数的乘法是指将两个实数相乘得到一个新的实数。
乘法运算满足交换律、结合律和单位元律。
例如,对于任意实数a、b和c,有以下等式成立:1. 交换律:a × b = b × a2. 结合律:(a × b) × c = a × (b × c)3. 单位元律:a × 1 = a实数的除法是指将一个实数除以另一个非零实数得到一个新的实数。
除法运算可以看作是乘法运算的逆运算。
例如,对于任意实数a、b和c(其中b≠0),有以下等式成立:a ÷b = a × (1/b)四、实数的运算性质实数的运算满足分配律、零因子律和单位元律等性质。
1. 分配律:对于任意实数a、b和c,有以下等式成立:a × (b + c) = (a × b) + (a × c)a × (b - c) = (a × b) - (a × c)2. 零因子律:如果两个实数的乘积等于零,则其中至少一个实数为零。
关于实数的知识点总结

关于实数的知识点总结一、基本概念1.1 实数的定义实数是一切有理数和无理数的总称。
有理数指整数和分数的集合,无理数指不能表示为分数形式的数。
实数包括了整数、有理数和无理数三种类型的数。
1.2 实数的表示实数可以用十进制、分数、无限不循环小数等形式表示。
其中,十进制形式是常见的实数表示形式,可以直观地表示出实数的大小。
1.3 实数的性质实数具有加法、减法、乘法、除法等运算性质,满足交换律、结合律、分配律等基本性质。
此外,实数还满足最大值和最小值的性质,即任何有上界的非空有限实数集合必有上确界,并且同样地有下确界。
二、实数的子集2.1 有理数集有理数包括整数和分数,其中整数是不含小数部分的数,分数是两个整数的比,可以用分数形式表示。
2.2 无理数集无理数是不能表示为有理数的数,其十进制表示形式为无限不循环小数。
无理数包括了无限多的十进制无限不循环小数,如$\sqrt{2}$、$\pi$等。
2.3 实数集实数集是有理数和无理数的总称,它包括了一切可以表示为十进制数的数。
三、实数的运算3.1 加法和减法实数的加法和减法满足交换律和结合律,对任意两个实数a和b,有a+b=b+a,a-b≠b-a。
3.2 乘法和除法实数的乘法和除法满足交换律和结合律,对任意两个实数a和b,有a×b=b×a,a/b≠b/a。
3.3 幂运算实数的幂运算是指a的n次方,其中a是实数,n是自然数。
幂运算的性质包括a的m 次方与a的n次方的乘积等。
3.4 开方实数的开方是指对任意非负实数a,存在唯一的非负实数b,使得b的平方等于a。
开方的性质包括平方根存在性和唯一性等。
四、实数的序关系4.1 实数的大小比较实数之间可以进行大小比较,对于任意两个实数a和b,有a<b、a>b或a=b中的一种关系。
4.2 实数的绝对值实数a的绝对值是指a到原点的距离,用|a|表示。
如果a≥0,则|a|=a;如果a<0,则|a|=-a。
实数

第六章 实数6.1 平方根知识点1 算术平方根一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.拓展: ①. 一个正数的算术平方根是正数,规定0的算术平方根为0.因此,对于任何一个非负数a ,它的算术平方根一定为非负数。
②.求一个非负数的算术平方根与求一个非负数的平方恰好是互逆的过程,只不过只有正数和0才有算术平方根,负数没有算数平方根。
例1: (2014 ∙厦门中考)4的算术平方根是 ( )A 16B 2C -2D 2±知识点2 平方根(1)定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次根式。
这就是说,如果a x =2,那么x 叫做a 的平方根。
求一个数a 的平方根的运算,叫做开平方。
(2)性质:正数的平方根有两个,它们互为相反数;0的平方根只有一个,就是它本身;负数没有平方根。
拓展: 如区别 联系平方根 算术平方根平方根包含算术平方根,算术平方根是平方根的一种,平方根与算术平方根都是相对于非负数而言的,只有0的平方根和算数正数a 的平方根为a ±,有两个正数a 的算术平方根为a ,只有一个正数的平方根有两个,两者互为相反数 正数的算术平方根一定是正数例2、下列各数有没有平方根?如果有,求出它的平方根与算术平方根;如果没有,请说明理由。
(1)25 (2)0.0081 (3)()27- (4)36.0- .小试牛刀:已知()的值求x x ,0121122=-+。
【基础达标】1、25的平方根是2、9=3、2)2(-的算术平方根是4、251的算术平方根的相反数是 ,平方根的倒数是 5、求下列各数的算术平方根(1) 2243+; (2) .)8()2(-⨯-6,解下列方程 (1)251962=x ; (2)()81242=-x6.2立方根知识点1 立方根1. 定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数1、什么叫平方根及其三种情形如果有一个数r ,使得r 2=a ,那么我们就说r 是a 的一个平方根。
求平方根有三种情形 ⑴正实数的平方根有两个,它们互为相反数,其和为0,其中正平方根又叫算术平方根; ⑵0的平方根只有一个,就是0,也可以称算术平方根; ⑶负数没有平方根。
因而如果要求一个实数的平方根,这个实数一定要为非负数。
一个数的算术平方根是其本身的数0,-1。
2、什么叫立方根及其三种情形如果有一个数r ,使得r 3=a ,那么我们就说r 是a 的一个平方根。
求平方根有三种情形 ⑴正数的立方根正数; ⑵0的立方根是0; ⑶负数的立方根是负数。
因而每个实数都有立方根,且只有一个立方根。
一个数的立方根是其本身的数是0,±13、什么叫有理数、无理数、实数,无理数的三种情形整数和分数统称有理数,无限不循环小数叫无理数,有理数和无理数统称实数 无理数的三种情形:①π,②开方开不尽的数,③有规律但不循环的无限小数 所有分数都不是无理数。
4、直角边为1的等腰直角三角形的斜边为2,是个无理数,因而可以在数轴上这样表示221O5、绝对值一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0 的绝对值等于0,互为相反数的两个实数的绝对值相等。
用式子可以表示为()()()⎪⎩⎪⎨⎧-==0a a 0a 00a a a <>6、实数的大小比较。
会通过平方数比其大小(参见17面例6)。
0>b a -,则a >b ;a -b <0;则a <b ,a -b=0,则a=b7、有效数字从左边第一个不是零的数字起到精确到的数位止,所有的数字都叫这个数的有效数字 根据1996年统计,中国的淡水资源总量约为2793400立方千米,2793400立方千米保留两位有效数字约为2.8×106 8、平移与轴反射公式平移公式⎩⎨⎧='+='y y x 2(向右移2个单位) 轴反射公式⎩⎨⎧='-='yy x x (关于y 轴反射)关于原点反射,纵横坐标都取相反数。
9、怎样画平面直角坐标系画完横轴画纵轴,两轴相交九十度,箭头轴名不能少,原点刻度要标好。
10、象限与坐标11、本息计算公式为()[]n 11税率年利率本金本息-⨯+⨯=(n 为期数)12、圆柱体体积与圆锥体体积(会用计算器计算,并能根据要求求近似值)hr 2π圆柱=Vhr 312π圆锥=V13、实数和数轴上的点一一对应;平面上的点与有序实数对一一对应。
14、表示点的位置有两种方法 ①平面直角坐标系 ②方位+两点间距离 15、非负数性质,①若几个非负数的和为0,则每一个加数必为0。
②若两个非负数互为相反数,则必为0。
实数复习纲要4、实数的三个非负性:|a|≥0,a2≥0,≥0(a≥0)5、实数的运算:⑴加减法:类比合并同类项;⑵乘法:=(a≥0,b≥0);⑶除法:(a≥0,b>0)6、算术平方根与平方根的区别与联系.区别: ①定义不同;②个数不同;③表示方法不同;④取值范围不同.联系: ①具有包含关系;②存在条件相同;③0的算术平方根与平方根都是0.提示1. 正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;零的平方根和算术平方根都是零;负数没有平方根.2. 实数都有立方根,且一个数的立方根只有一个,它的符号与被开方数的符号相同.3. 所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.4. 无理数分成三类:①开方开不尽的数,如,等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…5. 有理数和无理数统称实数,实数和数轴上的点一一对应.6. 实数的运算:实数运算的基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算.正确地确定运算结果的符号和灵活运用各种运算律来进行运算是掌握好实数运算的关键.实数练习题一、填空题1.9的算术平方根是;平方根是2.4925的平方根是 ;81的算术平方根是 .3.3的算术平方根是 ;8116的平方根 ; -4立方根是 .4.若一个数的平方根等于271,则这个数的立方根是 .5.一个的算术平方根是8,则这个的立方根的相反数是 .6.若642=x ,则=x 3 .7.若无理数a 满足:1<a <4,请写出两个你熟悉的无理数: ,• . 8.如果+2那么“”内应填的实数是 . 9.的相反数是 ;绝对值是 . 10.化简(1)52-= ; (2)π-3= .11.大于的所有整数的和 . 12. 的点表示的数是 .13.请你用计算器计算3531-+(精确到0.01)按键:,显示答案为: ,所以3531-+≈ .14.比较大小: (2)76; (3)-613-;(4)1-3-;33)(a .15. 数轴上表示1A 、B ,点B 关于点A 的对称点为C ,则C 点所表示的数为 .16.已知坐标平面内一点A(-2,3),将点A 先向右平移,个单位,得到A ′,则A ′的坐标为 .17.已知x x -+-11有意义,则x 的平方根为 .a 和b 之间,a b <<,那么a 、b 的值分别是 . 19. 若1a b -+与互为相反数,则2006()a b + . 二、选择题20.下列命题中,正确的个数有( )①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.A.1个B.2个C.3个D.4个 21.16的算术平方根是( )A.2B.±2C.4D.±4 22.下列各式中,无意义的是( ) A .41 B .2)2(- C .41-D .2-23.下列说法错误..的是( ) A .无理数没有平方根; B .一个正数有两个平方根;C .0的平方根是0;D .互为相反数的两个数的立方根也互为相反数.24. 一个自然数的算术平方根是x,则下一个自然数的算术平方根是( )D.x+1 25. 数轴上的点A 所表示的数为x ,如图所示,则210x -的立方根是( ) A10 B.10 C .2 D .-226.-53、-2π四个数中,最大的数是( )A.532π27.下列等式不一定成立的是( )=a a =2 C.a a =33 D.a a =33)( 28.估算37(误差小于0.1)的大小是( )A. 6B. 6.3C. 6.8D.6.0~6.1 29. 如图,数轴上表示1A 、点B .若点B 关于点A 的对称点为点C ,则点C 所表示的数为( )A 1B .1-.2- D .2A 1-2-1030. 面积为10的正方形的边长为x ,那么x 的范围是( )A .13x <<B .34x <<C .510x <<D .10100x << 31. 下列各式估算正确的是( )A 30≈B 250≈C 5.2≈D 4.1≈32. =,m n )的个数是( ) A .多于3个 B .3个 C .2个 D .1个 三、解答题33.求16的算术平方根、平方根、立方根. 34、求下列各式的值:;35.计算:(1)5十π(精确到0.01) (2)33+232(保留三个有效数字)36. 将下列各数按从小到大的顺序重新排成一列:6.1,0,2,5,22-- π37. 比较无理数的大小:(1) (2)327π--和38.已知,m n 为实数,且0m -+=,求n m39.已知012=-+-y x ,且x y y x -=-,求y x +的值. 40.已知x 、y 为实数,且499+---=x x y .求y x +的值.41.求下列各式中的x(1)225x =(2)2(1)9x -=(3)364x =-(4)2(21)2160x +-=. 42.小明房间的面积为10.8米,房间地面恰由120块相同的正方形地砖铺成,每块地砖的边长是多少? [0.3米] 43.(1) 用一块面积为4002cm 的正方形纸片,沿着边的方向剪出一块面积为3002cm 的长方形纸片,你会怎样剪?(2) 若用上述正方形纸片,沿着边的方向剪出面积为300cm 2的长方形纸片,且其长宽之比为3:2,•你又怎样剪?(3) 根据你的剪法回答:只要利用面积大的纸片一定能剪出面积小的纸片吗? 44.在物理学中,用电器中的电阻R 与电流I,功率P•之间有如下的一个关系式:•P=I 2R,,现有一用电器,电阻为18欧,该用电器功率为2400瓦,求通过用电器的电流I.45.自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?46.某地开辟了一块长方形的荒地,新建一个以环保为主题的公园.已知这块荒地的长是宽的2倍,它的面积为400000米 2(1)公园它有1000米吗?(2)如果要求误差小于10米,它的宽大约是多少?(3)该公园中心有一个圆形花圃,它的面积是800米2,你能估计它的半径吗?(误差小于1米) 47.有五个实数:8,2,,21,332-π中,请计算其中有理数的和与无理数的积的差.48.已知正数a 和b ,有下列命题: (1)2=+b a ,1≤ab ; (2)3=+b a ,23≤ab ;(3)6=+b a ,3≤ab ;根据以上三个命题所提供的规律猜想:若9=+b a ,≤ab . 49.借助于计算器可以求得2234+,223344+,22333444+,2233334444+,…,仔细观察上面几道题的计算结果,试猜想=+ 个个2003220032333444 .50.是否存在正整数)(.b a b a <,使其满足1476=+b a ?若存在,请求出ba .的值;若不存在,说明理由.51.(1)比较大小:①1223--与, ②2334--与, ③3445--与;(2)由(1)中比较的结果,猜想n n -+1与1--n n 的大小关系;;52.如图是由16个边长为1可以得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段,且不与图中方格线平行. 53.如图,A 、B 两点的坐标分别为)2,1(,)2,4(,C 点的坐标为(3,3).(1) 求△ABC 的面积;(2) 将△ABC 向下平移3个单位长度,得到△A ’B ’C ’,求点A ’、 B ’、C ’(3)。