人教版九年级数学圆和正多边形专题
人教版九年级数学上册正多边形和圆
24.3 正多边形和圆
二、正多边形的有关计算
例 有一个亭子,它的地基是半径为 4 m 的正六边形,求地基的周长和 面积 ( 结果保留小数点后一位 ).
F 抽象成
A
E
O
D
B PC
24.3 正多边形和圆
解:过点 O 作 OP⊥BC 于 P.
∵OB = OC,∠BOC = 60°,
∴BC = OB = 4 m,地基周长 l = 6×4 = 24 (m).
在
Rt△OPB
中,OB
=
4
m,PB
=
BC 2
4 2
2(m),
利用勾股定理,可得边心距 r 42 22 2 3(m).
亭子地基的面积
S 1 l r 1 24 2 3 41.6(m2 ).
2
2
F
E
A
O
D
4m
r
B PC
24.3 正多边形和圆
正n边形的一个内角的度数是多少? 中心角呢?正多边形的中心角与外角 的大小有什么关系?
些弧,就可以作出这个圆的
∴五边形ABCDE是⊙O的内接正五边形 内接正多边形,这个圆就是
⊙O是正五边形ABCDE的外接圆
这个正多形的外接圆.
24.3 正多边形和圆
归纳
A
G D
正多边形的外接圆和内切圆的公共圆心,
E
B 叫做正多边形的中心.
R
O
外接圆的半径叫做正多边形的半径.
H
r
F
C
内切圆的半径叫做正多边形的边心距.
24.3 正多边形和圆
3. 如图,已知点 O 是正六边形 ABCDEF 的对称中心,G、H 分别是
AF、BC 上的点,且 AG = BH. (1) 求∠FAB 的度数;
《正多边形和圆》PPT课件 人教版九年级数学
探究新知
AC是∠DAB及∠DCB的角平
E A
B 分线,BD是∠ABC及∠ADC
的角平分线,
O
G
H ∴OE=OH=OF=OG.
DF
∴正方形ABCD还有一个以点O
C
为圆心的内切圆.
探究新知 想一想
1.所有的正多边形是不是也都有一个外接圆和一个内切圆?
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
⑤顺次连接A、E、F、C、G、H各点;
∴六边形AEFCGH为☉O的内接正六边形,如图所示.
巩固练习
画一个半径为2cm的正五边形,再作出这个正 五边形的各条对角线,画出一个五角星.
链接中考
尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下 列尺规作图考他的大臣: ①将半径为r的⊙O六等分,依次得到A、B、C、D、E、F六 个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两 弧的一个交点;③连结OG. 问:OG的长是多少? 大臣给出的正确答案应是( D )
∠ADE的度数是 ( C )
A.60°
B.45°
A
C. 36°
D. 30° B O · E
C
D
探究新知
方法归纳 :圆内接正多边形的辅助线
F
E
A
O·
D
rR
BMC
O
半径R
中心角一半 边心距r
M C
边长一半
1.连半径,得中心角;
2.作边心距,构造直角三角形.
巩固练习
已知直角三角形两条直角边的和等于8,两条直角
E
③△OBC是等边三角形;
A
O
D
④圆内接正六边形的面积是
BP C
人教版九年级数学课件-正多边形和圆
4、邊數是偶數的正多邊形還是中心 對稱圖形,它的中心就是對稱中心。
畫正多邊形的方法
1.用量角器等分圓 2.尺規作圖等分圓
(1)正四、正八邊形的尺規作圖 (2)正六、正三 、正十二邊形的尺規作圖
探究
按照一定比例,畫一個停車 讓行的交通標誌的外緣
停
練習: (1)用量角器作五角星;
A
如圖:
B
已知點A、B、C、D、
E是⊙O 的5等分點,
畫出⊙O的內接和外
C
切正五邊形
E O
D
小結:
1、怎樣的多邊形是正多邊形?
各邊相等,各角 也相等的多邊形
叫做正多邊形。
你能舉例說明嗎?
2、怎樣判定一個多邊形是正多邊形?
根據正多邊形與圓關係的 第一個定理
達標檢測:
1、判斷題。
①各邊都相等的多邊形是正多邊形。 ( × )
②一個圓有且只有一個內接正多邊形。 ( × )
24.3 正多邊形和圓
正多邊形和圓
E
A
D
B
C
三條邊相等,三個角也相等 (60度)。
正多邊形:
四條邊都相等,四個角也相 等(90度)。
各邊相等,各角也相等的多邊形叫做正多邊形。
正n邊形:如果一個正多邊形有n條邊,
那麼這個正多邊形叫做正n邊形。
想一想:
菱形是正多邊形嗎?矩形是正多邊形嗎?為什麼?
2、證明題。 求證:順次連結正六邊形
A
F
各邊中點所得的多
B
E
邊形是正六邊形。
C
D
5E
4
D
正多邊形的中心:一個正多邊形的外接圓的圓心.
正多邊形的半徑:
E
D
人教版九年级上册数学《正多边形和圆形》圆说课研讨复习教学课件巩固
第2课时
课件
学习目标
1.进一步理解并掌握正多边形半径和边长、边心距、中心角之间的关系
2.掌握圆内接正多边形的两种画法: (1)用量角器等分圆周法作正多边形; (2)用尺规作图法作特殊的正多边形
01 新课导入
新课导入
实际生活中,经常遇到画正多边形的问题,比如画一个六角螺 帽的平面图、画一个五角星等,这些问题都与等分圆周有关, 要制造下图中的零件,也需要等分圆周.
回顾旧识
中心:一个正多边形 的外接圆的圆心叫做 这个正多边形的中心
半径:正多边形的外 接圆的半径叫做正多 边形的半径.
中心角:正多边形每一 边所对的圆心角叫做正 多边形的中心角
边心距:正多边形的中心到正多边 形的一边的距离叫做正多边形的边 心距.
回顾旧识
正多边形和圆有怎样的关系?
正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以 作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
探究二:等分圆周,正多边形的有关概念
重点、难点知识★▲
(2)尺规作图:用圆规在⊙O上截取长度等于半径(2cm)的弦,连 结AB、BC、CA即可,如图3。
图3
(3)计算与尺规作图结合法:由圆内接正三角形的边长与圆的半径
的关系可得,正三角形的边长为 2 3 cm,R=2cm,用圆规在⊙O上截 取长度为 2 3cm的弦AB、AC,连结AB、BC、CA即可。
知识回顾 问题探究 课堂小结
探究二:等分圆周,正多边形的有关概念
重点、难点知识★▲
2. 用尺规等分圆: (1)作正四边形、正八边形。
只要做出已知⊙O的互相垂直的直径即得圆内接正方形,再过 圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相 交,即得圆内接正八边形,照此方法依次可作正十六边形、正三十 二边形、正六十四边形……
人教版九年级数学上册《正多边形和圆(第2课时)》示范教学课件
例1 如图,画⊙O 的内接正三角形.
解:先画⊙O 的内接正六边形,再在 正六边形的基础上,选择不相邻的三个顶 点,顺次连接,即可作正三角形.如图, △DBF是⊙O 的内接正三角形.
E
D
F
O
C
A
B
例2 如图,画⊙O 的内接正八边形.
解:先画圆的内接正四边形,再在正 四边形的基础上用直尺和圆规分别作与正 四边形相邻两边垂直的直径,即可作正八 边形.如图,八边形 AHBFCGDE 是⊙O 的内接正八边形.
E
D
F
O
C
A
B
探究 如图,作⊙O 的内接正方形.
解:用直尺和圆规作两条相互垂直的直径,就可以把圆四等分,
从而作出⊙O 的内接正方形,如图所示. D
AO
C
B
归纳
用等分圆周画正多边形的方法:
1.只用量角器:在半径为 R 的圆中,用量角器把 360°圆心
角 n 等分,即可把半径为 R 的圆周 n 等分,顺次连接各分点即可得
H
A
B
O
E
F
D
C
G
按照此方法可以作出正十六边形、正三十二边形、正六十四边 形……也可以作出正十二边形、正二十四边形……
许多图案设计都和圆有关,下图就是一些利用等分圆周设计出 的图案.
其中一个图案的设计过程如下:
利用某些正多边形可以镶嵌整个平面的性质,还可以设计出一 些美丽的图案,如图.
练习 试一试:利用圆或正多边形设计一些图案.
分,然后顺次连接各分点即可.
如何等分圆周? 因为同圆中相等的圆心角所对的弧相等,所以作相等的圆心角 就可以等分圆周.
解:方法 1 (1)作一个⊙O ;
人教版九年级数学上册《正多边形和圆》第2课时教学课件
∴ = ,
∴
1
∠ = ∠ = 60°,
2
∴ △ 是等边三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
30°
30°
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用量角器度量,使∠ = ∠ = 30°.
但画图的误差积累到最后一个等分点,误差较大.
3
尺规作图,虽然精确,但不是任意等分圆周都能用这种
方法,而且作图时存在误差.
4
本节课提到的其他一些方法只适用于某些特殊的正多边形.
练习
1
如何在半径为 的⊙ 中作出内接正九边形呢?
40°
练习
2
如何借助圆画出一个五角星呢?
72°
72°
练习
情境引入
实际生活中,经常遇到画正多边形的问题,比如画一个
六角螺帽的平面图,画一个五角星等,这些问题都与等分圆
周有关. 要制造如下图中的零件,也需要等分圆周.
引入新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
3
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用圆规在⊙ 上顺次截取两条长度等于 3 的弦,连
(名师整理)人教版数学中考《正多边形和圆》专题复习精品教案
中考数学人教版专题复习:正多边形和圆一、教学内容:正多边形和圆1. 正多边形的有关概念.2. 正多边形和圆的关系.3. 正多边形的有关计算.二、知识要点:1. 正多边形的定义各边相等、各角也相等的多边形叫做正多边形. 如正三角形(即等边三角形)、正四边形(即正方形)、正五边形、正六边形、正n 边形等.2. 正多边形与圆的关系(1)从圆的角度看:等分圆周可获得正多边形,把圆分成n (n ≥3)等份. ①依次连结各分点所得的多边形是这个圆的内接正n 边形.②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形.(2)从正多边形的角度看:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3. 正多边形的有关概念(1)正多边形的中心:正多边形的外接圆(或内切圆)的圆心. (2)正多边形的半径:正多边形外接圆的半径.(3)正多边形的边心距:中心到正多边形的一边的距离(即正多边形的内切圆的半径).(4)正多边形的中心角:正多边形每一边所对的圆心角. 正多边形的每一个中心角的度数是360°n.O R B 1A 1B 2A 2B 3A 3C r4. 正n 边形的对称性当n 为奇数时,正n 边形只是轴对称图形;当n 为偶数时,正n 边形既是轴对称图形,也是中心对称图形. 5. 一些特殊正多边形的计算公式边数n 内角A n 中心角αn 半径R 边长a n 边心距r n 周长P n 面积S n3 60° 120° R 3R 12R 33R343R 2 4 90° 90° R 2R 22R 42R 2R 2 6120°60°RR32R 6R323R 2三、重点难点:重点是正多边形的概念和计算,难点是正确理解正多边形和圆的关系.【典型例题】例1. 如图所示,既是轴对称图形,又是中心对称图形的有__________.线段正三角形正方形正五边形正六边形(1) (2) (3) (4) (5)解:(1)(3)(5)评析:因正方形、正六边形的边数为偶数,所以线段、正方形、正六边形既是轴对称图形,又是中心对称图形.例2. (1)如果一个正多边形的中心角为24°,那么它的边数是__________. (2)正多边形的一个外角等于45°,那么这个正多边形的内角和等于__________,中心角是__________.分析:利用正多边形的内角和及中心角的计算公式求解. (1)依题意得360°n=24°,∴n =15. (2)n ×45°=360°,∴n =8. 由内角和公式得(8-2)·180°=1080°,∴中心角为360°8=45°.解:(1)15,(2)1080°,45°.例3. 如图所示,小明同学在手工制作中,把一个边长为12cm 的等边三角形纸片贴在一个圆形纸片上. 若三角形的三个顶点恰好都在这个圆上,求该圆的半径.A BCOD分析:由题意知这个三角形是圆的内接正三角形.解:如图所示,连结OB ,过O 作OD ⊥BC 于D ,则正△ABC 的中心角=360°3=120°,∠BOD =12×120°=60°,∠OBD =90°-∠BOD =30°,∴OD =12BO.又BD =12BC =12×12=6(cm ),∴OB 2-OD 2=62,即OB 2-(12OB )2=62,∴OB =43cm .评析:把实际问题转化为正三角形的外接圆的问题是解题的关键.例4. 已知圆内接正方形的面积为8,求同圆内接正六边形的面积. 分析:解决问题的关键是“同圆”,通过圆的半径可以把正方形的条件转化为正六边形的条件,从而解决问题.解:由正方形的面积为8,可知正方形的边长为22,设该圆半径为R ,正六边形的边长和边心距分别为a 6和r 6. 则2R =4,a 6=R ,r 6=32·a 6.∴S 6=6×12a 6·r 6=6×12×2×32×2=6 3.例5. 用折纸的方法,可直接剪出一个正五边形(如图所示)方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等分,并沿五等份的线折叠,再沿CD 剪开,使展开后的图形为正五边形,则∠OCD 等于( ) A. 108° B. 90° C. 72° D. 60°AB ABOOCD分析:本题考查学生的动手能力和灵活运用所学知识的能力,这里的O 点是所剪正五边形的中心,由题可知∠COD =36°,所以剪得的三角形正好是五边形一边和两条半径所构成的三角形的一半,所以∠OCD =90°. 解:B例6. 如图(1)、(2)、(3)、…、(n ),M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM =CN ,连接OM 、ON.(1)求图(1)中∠MON 的度数; (2)图(2)中∠MON 的度数是__________,图(3)中∠MON 的度数是__________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案). 分析:(1)连接OB 、OC ,注意△OBM ≌△OCN ,可得∠MON =∠BOC =120°. (2)同理,由△OBM ≌△OCN ,可得∠MON =∠BOC =90°. (3)由(1)(2)知,∠MON =∠BOC ,即∠MON =∠BOC =90°.A BCO M N A B C DOM N BC D E O MN ABC OM N …(1)(2)(3)(n )A解:(1)方法一:连接OB 、OC ,∵正△ABC 内接于⊙O , ∴∠OBM =∠OCN =30°,∠BOC =120°, 又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN , ∴∠BOM =∠CON ,∴∠MON =∠BOC =120°. 方法二:连接OA 、OB ,∵正△ABC 内接于⊙O. AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°. 又∵BM =CN ,∴AM =BN ,又∵OA =OB ,∴△AOM ≌△BON ,∴∠AOM =∠BON ,∴∠MON =∠AOB =120°.(2)图(2)中,∠MON =360°4=90°,图(3)中,∠MON =360°5=72°.(3)图(n )中,∠MON =360°n.评析:(1)△OBM 与△OCN 是旋转全等三角形. 图(1)中△OCN 绕点O 顺时针旋转120°,与△OBM 重合;图(2)旋转90°,图(3)旋转72° (2)注意由特殊到一般的思想,归纳出∠MON =360°n.【方法总结】1. 正n 边形的中心角为360°n,与正n 边形的一个外角相等,与正n 边形的一个内角互补. 求中心角常用以上方法.2. 正多边形的外接圆半径R 与边长a 、边心距r 之间的关系式为R 2=r 2+(12a )2,这是把正n 边形分成了2n 个全等的直角三角形,把正n 边形的有关计算转化为直角三角形中的问题.【预习导学案】 (弧长和扇形面积)一、预习前知1. 圆的周长公式是__________. 其中π是圆的周长与它的直径的比值,叫做__________,它是一个常数,π=3.1415926…,根据问题精确度的要求来取π的近似值.2. 圆的面积公式是__________.3. 如图所示,阴影部分由圆心角的两条半径和圆心角所对的弧围成的图形叫做__________,这是__________的一部分.4. 圆柱可以看作是__________而得到的图形,旋转轴叫做__________,圆柱侧面上平行于轴的线段叫做__________,两个底面之间的距离是__________,圆柱的侧面展开图是__________.5. 圆柱的侧面积S 侧=__________,全面积S 表=__________.二、预习导学1. 半径为R 的圆中,n °的圆心角所对的弧长l =__________.2. 半径为R ,圆心角为n °的扇形面积的计算公式是__________,半径为R ,弧长为l 的扇形面积计算公式是__________.3. 圆锥可以看作是__________而得到的图形,连结圆锥的顶点和底面圆上任意一点的线段叫做__________,连结圆锥的顶点和底面圆心的线段叫做__________,圆锥的侧面展开图是__________.4. 圆锥的侧面积S 侧=__________,全面积S 表=__________. 反思:(1)如何求不规则图形的面积.(2)圆锥的侧面展开后所得扇形的半径、弧长与圆锥的哪些量对应?【模拟试题】(答题时间:50分钟) 一、选择题1. 若一个正多边形的一个外角是40°,则这个正多边形的边数是( ) A. 10 B. 9 C. 8 D. 62. 下列命题中正确的是( ) A. 正多边形都是中心对称图形B. 正多边形一个内角的大小与边数成正比C. 正多边形一个外角的大小随边数的增加而减小D. 边数大于3的正多边形对角线都相等3. 一个正多边形的中心角是36°,则其一定是( ) A. 正五边形 B. 正八边形 C. 正九边形 D. 正十边形4. 正多边形的一边所对的中心角与该正多边形一个内角的关系是( ) A. 两角互余 B. 两角互补 C. 两角互余或互补 D. 不能确定5. 圆内接正三角形的边心距与半径的比是( ) A. 2∶1 B. 1∶2 C. 3∶4 D. 3∶26. 下列命题中:①三边都相等的三角形是正三角形;②四边都相等的四边形是正四边形;③四角都相等的四边形是正四边形;④各边都相等的圆的内接多边形是正多边形. 其中正确的有( )A. 1个B. 2个C. 3个D. 4个*7. 已知四边形ABCD 内接于⊙O ,给出下列三个条件:①︵AB =︵BC =︵CD =︵DA ;②AB =BC =CD =DA ;③∠A =∠B =∠C =∠D. 则在这些条件中,能够判定四边形ABCD 是正四边形的条件共有( )A. 0个B. 1个C. 2个D. 3个**8. A 点是半圆上一个三等分点,B 点是︵AN 的中点,P 是直径MN 上一动点,⊙O 的半径为1,则AP +BP 的最小值为( )OABMNPA. 1B.22C. 2D. 3-1二、填空题1. 用一张圆形的纸片剪一个边长为4cm 的正六边形,则这个圆形纸片的半径最小为__________cm .2. 如果一个正多边形的内角和是900°,则这个多边形是正__________边形.3. 正十边形至少绕中心旋转__________度,它与原正十边形重合.4. 若正三角形、正方形、正六边形的周长都相等,它们的面积分别为S 3、S 4、S 6,则S 3、S 4、S 6由大到小的排列顺序是__________. ]5. 正六边形DEFGHI 的顶点都在边长为6cm 的正三角形ABC 的边上,则这个正六边形的边长是__________cm .*6. 如图是某广场地面的一部分,地面的中央是一块正六边形地砖,周围用正三角形和正方形的大理石密铺,从里向外共铺了12层(不包括正六边形地砖),每一层的外边界都围成一个多边形. 若正中央正六边形地砖的边长为0.5米,则第12层的外边界所围成的多边形的周长是__________.三、解答题1. 解答下列各题:(1)分别求出正十边形、正十二边形的中心角.(2)已知一个正多边形的一个中心角为18°,求它的内角的度数. (3)正六边形的两条平行边间的距离为12cm ,求它的外接圆的半径. 2. 如图所示,求中心为原点O ,顶点A 、D 在x 轴上,半径为4cm 的正六边形ABCDEF 的各个顶点坐标.xy OA B C D E F3. 用一块半径R =60cm 的圆形木料,做“八仙桌”(正方形)桌面或“八角桌”(正八边形)桌面,哪个面积大?大多少?(结果保留三个有效数字)**4. 请阅读,完成证明和填空. 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:A A A BBB CCCD DO OOM M M NN N E图1图2图3…(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM =AN ,连接BN 、CM ,发现BN =CM ,且∠NOC =60°. 请证明:∠NOC =60°.(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、DM ,那么AN =__________,且∠DON =__________度.(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、EM ,那么AN =__________,且∠EON =__________度.(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论. 请大胆猜测,用一句话概括你的发现:______________________________.【试题答案】 一、选择题1. B2. C3. D4. B5. B6. B7. C8. C (提示:如图所示,作点B 关于直线MN 的对称点B ’,连结OB ’,PB ’,BB ’.OABMN PB'二、填空题1. 42. 七3. 364. S 6>S 4>S 35. 26. 39米三、解答题1. (1)正十边形的中心角为360°10=36°,正十二边形的中心角是360°12=30°. (2)中心角为18°的正多边形的边数为36018=20,正二十边形的内角为(20-2)·180°20=162°. (3)由题意得r 6=6(cm ),由于正六边形的边长与半径相等,∴R 2=(12R )2+r 62,∴34R 2=36,R =43(cm ).2. A (-4,0)、B (-2,-23)、C (2,-23)、D (4,0)、E (2,23)、F (-2,23)3. “八仙桌”的面积为7200平方厘米,“八角桌”的面积为72002平方厘米,所以“八角桌”比“八仙桌”的面积大2980平方厘米.4. (1)证明:∵△ABC 是正三角形,∴∠A =∠ABC =60°,AB =BC ,在△ABN和△BCM 中,⎩⎪⎨⎪⎧AB =BC∠A =∠ABCAN =BM,∴△ABN ≌△BCM . ∴∠ABN =∠BCM. 又∵∠ABN +∠OBC =60°,∴∠BCM +∠OBC =60°,∴∠NOC =60°. (2)在正方形中,AN=DM ,∠DON =90°. (3)在正五边形中,AN =EM ,∠EON =108°. (4)以上所求的角恰好等于正n 边形的内角(n -2)·180°n.。
人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案
人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案1.若正多边形的一个外角为72︒,则这个正多边形的中心角的度数是( )A.18︒B.36︒C.72︒D.108︒2.如图,正六边形ABCDEF内接于圆O,点M在AF上( )A.60︒B.45︒ C.30︒ D.15︒3.若⊙O的内接正n边形的边长与⊙O的半径相等,则n的值为( )A.4B.5C.6D.74.如图,正五边形ABCDE内接于O,点P为DE上一点(点P与点D,点E不重合),连接PC,PD,⊥DG PC垂足为G,则∠PDG等于( )A.72°B.54°C.36°D.64°5.如图,正六边形ABCDEF内接于,正六边形的周长是12,则的半径是( )A.3B.2C.22D.236.如图是半径为4的O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )O OA.23B.3C.2D.37.如图,正六边形ABCDEF 内接于O ,O 的半径为6,则这个正六边形的边心距OM 和弧BC 的长分别为( )A.32 πB.332 πC.332 2π3D.33 π8.如图,正三角形ABC 和正六边形ADBECF 都内接于,O 连接,OC 则∠+∠=ACO ABE ( )A.90︒B.100︒C.110︒D.120︒9.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点D 重合),则∠=CPD ________°.10.如图,正六边形ABCDEF内接于O,若O的周长等于6π,则正六边形的边长为______.11.早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为_________________.12.如图,圆内接正六边形ABCDEF的半径为2,则该正六边形的面积是_________________.13.有一个亭子,它的地基是半径为8m的正六边形,求地基的面积.(结果保留根号)14.如图,O的周长等于8πcm,正六边形ABCDEF内接于O.(1)求圆心O 到AF 的距离.(2)求正六边形ABCDEF 的面积.参考答案及解析1.答案:C 解析:正多边形的一个外角为72︒∴正多边形的边数为360725︒÷︒=∴这个正多边形的中心角的度数是360572︒÷=︒故选:C.2.答案:C解析:连接OC ,OD多边形ABCDEF 是正六边形60∴∠=︒COD1302∴∠=∠=︒CMD COD故选:C.3.答案:C解析:内接正n 边形的边长与⊙O 的半径相等∴正n 边形的中心角为60︒360606︒÷︒=∴n 的值为6故选:C.4.答案:B解析:正五边形ABCDE 内接于O∠CPD 与所对的弧相同1362∴∠=∠=︒CPD COD故选:B.5.答案:B解析:如图,连结OA ,OBABCDEF 为正六边形1360606∴∠=︒⨯︒=AOB∴AOB △是等边三角形正六边形的周长是1211226∴=⨯=AB2∴===AO BO AB故选B.6.答案:A解析:如图,做⊥OM AB 于点M360725COD ︒∴∠==︒COD ∠180903654PDG ∠=︒-︒-︒=∴︒正六边形ABCDEF 外接半径为4的O4∴==OA OB 360606︒∠==︒AOB 1302∴∠=∠=∠=︒AOM BOM AOB122∴===AM BM OA2223∴=-=OM OA AM ∴圆心O 到边AB 的距离为23故选:A.7.答案:D解析:连接OB 、OC六边形ABCDEF 为正六边形360606︒∴∠==︒BOC 。
九年级数学上册章节重点复习考点讲义(人教版)正多边形和圆综合题(解析版)
专题12 正多边形和圆(综合题)知识互联网易错点拨知识点01:正多边形的概念各边相等,各角也相等的多边形是正多边形.细节剖析:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).知识点02:正多边形的重要元素1.正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2.正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3.正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是.细节剖析:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.知识点03:正多边形的性质1.正多边形都只有一个外接圆,圆有无数个内接正多边形.2.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.3.正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n 边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.4.边数相同的正多边形相似。
它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.5.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆细节剖析:(1)各边相等的圆的内接多边形是圆的内接正多边形;(2)各角相等的圆的外切多边形是圆的外切正多边形.知识点04:正多边形的画法1.用量角器等分圆由于在同圆中相等的圆心角所对的弧也相等,因此作相等的圆心角(即等分顶点在圆心的周角)可以等分圆;根据同圆中相等弧所对的弦相等,依次连接各分点就可画出相应的正n边形.2.用尺规等分圆对于一些特殊的正n边形,可以用圆规和直尺作图.①正四、八边形.在⊙O中,用尺规作两条互相垂直的直径就可把圆分成4等份,从而作出正四边形. 再逐次平分各边所对的弧(即作∠AOB的平分线交于E) 就可作出正八边形、正十六边形等,边数逐次倍增的正多边形.②正六、三、十二边形的作法.通过简单计算可知,正六边形的边长与其半径相等,所以,在⊙O中,任画一条直径AB,分别以A、B为圆心,以⊙O的半径为半径画弧与⊙O相交于C、D和E、F,则A、C、E、B、F、D是⊙O的6等分点.显然,A、E、F(或C、B、D)是⊙O 的3等分点.同样,在图(3)中平分每条边所对的弧,就可把⊙O 12等分…….细节剖析:画正n边形的方法:(1)将一个圆n等份,(2)顺次连结各等分点.易错题专训一.选择题1.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG 为()A.3B.C.D.3【易错思路引导】连接OC,OD,由正六边形ABCDEF可求出∠COD=60°,进而可求出∠COG=30°,根据30°角的锐角三角函数值即可求出边心距OG的长.【规范解答】解:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OG⊥CD,∴∠COG=30°,∵⊙O的周长等于6π,∴OC=3,∴OG=3cos30°=,故选:C.【考察注意点】本题考查了正多边形和圆、正六边形的性质、等腰三角形的判定与性质;熟练掌握正六边形的性质是解决问题的关键.2.(2022•游仙区校级二模)如图,在正六边形ABCDEF中,M,N分别为边CD,BC的中点,AN与BM相交于点P,则∠APM的度数是()A.110°B.120°C.118°D.122°【易错思路引导】根据正六边形的性质可得AB=BC=CD,BN=CM,利用全等三角形的判定与性质可得∠BNP=∠CMB,然后利用三角形的内角和定理可得答案.【规范解答】解:∵六边形ABCDEF是正六边形,∴∠ABC=∠BCD==120°,AB=BC=CD,∵M,N分别为边CD,BC的中点,∴BN=CM,∴△ABN≌△BCM(SAS),∴∠BNP=∠CMB,∵∠CBM=∠PBN,∴∠BPN=∠BCD=120°,∴∠APM=120°,故选:B.【考察注意点】本题考查了正六边形的性质、全等三角形的性质和判定等知识,通过证三角形全等得到∠BNP=∠CMB是解决此题的关键.3.(2022•太原一模)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是()A.7个B.8个C.9个D.10个【易错思路引导】先求出多边形的每一个内角为108°,可得到∠O=36°,即可求解.【规范解答】解:∵多边形是正五边形,∴正五边形的每一个内角为:=108°,∴∠O=180°﹣(180°﹣108°)×2=36°,∴正五边形的个数是360°÷36°=10.故选:D.【考察注意点】本题主要考查圆的基本性质,多边形内角和问题,熟练掌握相关知识点是解题关键.4.(2022•安国市一模)2019年版一元硬币的直径约为22.25mm,则用它能完全覆盖住的正方形的边长最大不能超过()A.11.125mm B.22.25mm C.mm D.mm【易错思路引导】根据正方形性质得到△AOD为等腰直角三角形,根据正方形和圆的关系得到AC的长度,根据等腰直角三角形的性质求出AD的长度.【规范解答】解:如图所示,∵AC=BD=22.25mm,∴AO=OD==mm.∵四边形ABCD为正方形,∴AC⊥BD,∴△AOD为等腰直角三角形,∴AD=AO=mm.故选:C.【考察注意点】本题考查了正多边形和圆,等腰直角三角形的性质,根据题意画出图形,掌握正多边形和圆的关系,得到△AOD为等腰直角三角形是解题的关键.5.(2022•固安县模拟)如图,两张完全相同的正六边形纸片(边长为2a)重合在一起,下面一张保持不动,将上面一张纸片六边形A'B'C'D'E'F'沿水平方向向左平移a个单位长度,则上面正六边形纸片面积与折线A'﹣B'﹣C扫过的面积(阴影部分面积)之比是()A.3:1 B.4:1 C.5:2 D.2:1【易错思路引导】求出正六边形和阴影部分的面积即可解决问题.【规范解答】解:正六边形的面积=6××(2a)2=6a2,阴影部分的面积=a•2a=2a2,∴空白部分与阴影部分面积之比是=6a2:2a2=3:1,故选:A.【考察注意点】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.二.填空题6.(2022•雨花台区校级模拟)如图,A、B、C、D、E、F是正n边形的六个连续顶点,AE与CF交于点G,若∠EGF=30°,则n=18 .【易错思路引导】连接CE,用n表示出正n边形的中心角,根据三角形的外角性质列出方程,解方程求出n.【规范解答】解:连接CE,正n边形的中心角的度数为:,则∠ECF=×,∠AEC=,∵∠EGF=30°,∴∠ECF+∠AEC=30°,∴×+=30°,解得:n=18,故答案为:18.【考察注意点】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式、三角形的外角性质是解题的关键.7.(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为54 厘米.【易错思路引导】根据对称性和周长公式进行解答即可.【规范解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.【考察注意点】本题考查等边三角形的性质,正多边形与圆,理解图形的对称性以及等边三角形的判定是解决问题的前提.8.(2022•陈仓区二模)如图,以正五边形ABCDE的对角线BE为边,作正方形BEFG,使点A 落在正方形BEFG内,则∠ABG的度数为54°.【易错思路引导】根据正五边形的性质可求出角A的度数,再根据等腰三角形以及三角形的内角和可求出∠ABE,再根据正方形的性质求出∠ABG即可.【规范解答】解:∵正五边形ABCDE,∴∠BAE==108°,AB=BC=CD=DE=AE,∴∠ABE=∠AEB=36°,又∵四边形BEFG是正方形,∴∠EBG=90°,∴∠ABG=90°﹣36°=54°,故答案为:54°.【考察注意点】本题考查正五边形,正方形以及等腰三角形,掌握正五边形、正方形、等腰三角形的性质是正确计算的前提.9.(2022•沙湾区模拟)已知图标(如图)是由圆的六个等分点连接而成,若圆的半径为1,则阴影部分的面积等于.【易错思路引导】根据题意得到图中阴影部分的面积=S△ABC+3S△ADE,代入数据即可得到结论.【规范解答】解:如图,过点A作AH⊥BC于点H,交DE于点F.∵如图是由圆的六等分点连接而成,∴△ABC与△ADE是等边三角形,∵圆的半径为1,∴AH=,BC=AB=,∴AE=,AF=,∴图中阴影部分的面积=S△ABC+3S△ADE=××+×××3=,故答案为:.【考察注意点】本题考查了正多边形与圆,等边三角形的性质,熟记正多边形与圆的性质是解题的关键.10.(2022•雁塔区校级模拟)在正六边形ABCDEF中,对角线AC,BD相交于点M,则的值为 2 .【易错思路引导】根据正六边形的性质可得∠BCD=∠ABC=120°,AB=BC=CD,从而利用等腰三角形的性质可得∠CBD=∠BCA=30°,进而求出∠ABM=90°,BM=CM,然后在Rt△ABM中,进行计算即可解答.【规范解答】解:∵六边形ABCDEF是正六边形,∴∠BCD=∠ABC=120°,AB=BC=CD,∴∠CBD=∠BDC=30°,∠BAC=∠BCA=30°,∴∠ABM=∠ABC﹣∠CBD=90°,∠CBD=∠BCA=30°,∴BM=CM,在Rt△ABM中,∠BAC=30°,∴AM=2BM,∴AM=2CM,∴=2,故答案为:2.【考察注意点】本题考查了等腰三角形的判定,正多边形和圆,多边形的内角与外角,含30度角的直角三角形,熟练掌握正六边形的性质是解题的关键.11.(2022•河北二模)如图,将几个全等的正八边形进行拼接,相邻的两个正八边形有一条公共边,围成一图后中间形成一个正方形.设正方形的边长为1,则该图形外轮的周长为20 ;若n个全等的正多边形中间围成的图形是正三角形,且相邻的两个正多边形有一条公共边,设正三角形的边长为1,则该图形外轮廓的周长是27 .【易错思路引导】根据拼图,由“外围”的边长进行计算即可.【规范解答】解:由拼图可知,每个正八边形有5条边在“外围”,因此周长为5×4=20,若n个全等的正多边形中间围成的图形是正三角形,且相邻的两个正多边形有一条公共边,可知这个正多边形为正十二边形,如图,则“外围”的周长为(12﹣3)×3=27,故答案为:20,27.【考察注意点】本题考查正多边形与圆,理解“外围”的意义是正确解答的前提,得出外围正多边形的边数是解决问题的关键.12.(2021秋•西湖区校级月考)如图,⊙O的内接正六边形,点M,N分别为AF,BC边的中点,直线MN与⊙O交于点PQ,若AB=1,则PQ=.【易错思路引导】如图,连接CF,OA,OB,OP,过点O作OJ⊥AB于点J,交PQ于点K.利用勾股定理求出PK,再利用垂径定理,可得结论.【规范解答】解:如图,连接CF,OA,OB,OP,过点O作OJ⊥AB于点J,交PQ于点K.∵六边形ABCDEF是正六边形,∴∠AOB=60°,CF∥AB,CF经过圆心O,∵CN=BN,AM=MF,∴MN∥AB∥CF,∴OK=JK,∵OA=OB=AB=1,∴OJ=,∴OK=,∵AB∥PQ,OJ⊥AB,∴OK⊥PQ,∴PK=QK===,∴PQ=2PK=.故答案为:.【考察注意点】本题考查正多边形与圆,解直角三角形,垂径定理,梯形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.13.(2020秋•海曙区期末)如图,正六边形ABCDEF中,G,H分别是边AF和DE上的点,GF =AB=2,∠GCH=60°,则线段EH长.【易错思路引导】作GP∥AB,交BC于点P,AN∥BC交GP于点N,可得四边形ABPN是平行四边形,根据六边形ABCDEF是正六边形,可得△ANG是等边三角形,然后证明△CPG∽△HDC,对应边成比例即可解决问题.【规范解答】解:如图,作GP∥AB,交BC于点P,AN∥BC交GP于点N,∴四边形ABPN是平行四边形,∴PN=AB=6,∵六边形ABCDEF是正六边形,∴∠BAF=∠B=∠BCD=∠D=120°,AF=AB=BC=CD=6,∴∠BAN=∠NAG=∠AGN=60°,∠CPG=∠D=120°,∴△ANG是等边三角形,∴NG=AN=AG=6﹣2=4,∴PG=NG+PN=4+6=10,∵∠PCG+∠DCH=∠BCD﹣∠GCH=120°﹣60°=60°,∠DHC+∠DCH=180°﹣∠D=180°﹣120°=60°,∴∠PCG=∠DHC,∵∠CPG=∠D,∴△CPG∽△HDC,∴=,∵PC=BC﹣BP=6﹣4=2,PG=10,CD=6,∴DH=,∴EH=ED﹣DH=6﹣=.故答案为:.【考察注意点】本题考查了正多边形和圆,解决本题的关键是综合运用正多边形和圆,平行四边形的判定与性质,等边三角形的判定与性质,相似三角形的判定与性质.14.(2017•浦东新区校级自主招生)如图,边长为5的圆内接正方形ABCD中,P为CD的中点,连接AP并延长交圆于点E,则DE的长为.【易错思路引导】连接CE,作出EF⊥CD,运用相似三角形的性质,得出EF,PF的长,再根据勾股定理即可得出结论.【规范解答】解:连接CE,作EF⊥PF.∵∠DAP=∠PCE,∠APD=∠CPE,∴△APD∽△CPE,∴=,∵P为边CD的中点∴PD=PC=,PA==,=,∴PE=,∵FE∥AD∴△APD∽△EPF,∴=,∴=,∴PF=,∴EF==1,∴DE===,故答案为:.【考察注意点】本题考查的是正多边形的圆及相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.三.解答题15.(2021秋•咸宁月考)如图,正五边形ABCDE,连接对角线AC,BD,设AC与BD相交于O.(1)求证:AO=CD;(2)判断四边形AODE的形状,并说明理由.【易错思路引导】(1))根据正五边形的性质可知AB=BC=CD=DE=AE,∠ABC=∠BAE=108°,AE∥BD,所以∠ABO=72°,∠BAO=(180°﹣108°)=36°,因此∠AOB =180°﹣72°﹣36°=72°=∠ABO,推出AB=AO,则CD=AO;(2)根据圆周角定理求出∠BDE、∠E的度数,进而证明DF∥AE;证明AF∥DE,AE=DE,即可解决问题.【规范解答】解:(1)∵五边形是正五边形,∴AB=BC=CD=DE=AE,∠ABC=∠BAE=108°,AE∥BD,∴∠ABO=72°,∠BAO=(180°﹣108°)=36°,∴∠AOB=180°﹣72°﹣36°=72°=∠ABO,∴AB=AO,∴CD=AO;(2)四边形AODE是菱形;理由如下:∵正五边形ABCDE内接于⊙O,∴∠BDE==72°,∠E=×360°=108°,∴∠BDE+∠E=180°,DO∥AE;同理可证:AO∥DE,而AE=DE,∴四边形AODE是菱形.【考察注意点】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是:深入分析、大胆猜测、合情推理、科学论证.16.(2021•云岩区模拟)如图,正方形ABCD内接于⊙O,P为上的一点,连接DP,CP.(1)求∠CPD的度数;(2)当点P为的中点时,CP是⊙O的内接正n边形的一边,求n的值.【易错思路引导】(1)连接OD,OC,根据正方形ABCD内接于⊙O,结合圆周角定理可得∠CPD;(2)结合正多边形的性质以及圆周角定理得出∠COP的度数,进而得出答案.【规范解答】解:(1)连接OD,OC,∵正方形ABCD内接于⊙O,∴∠DOC=90°.∴;(2)连接PO,OB,∵正方形ABCD内接于⊙O,∴∠COB=90°,∵点P为BC的中点,∴=,∴,∴n=360÷45=8.【考察注意点】此题主要考查了正多边形和圆以及圆周角定理、正方形的性质,正确掌握正方形的性质是解题关键.17.(2019秋•长乐区期中)如图,正方形ABCD内接于⊙O,过O点作边AD的垂线交于E 点,连接BE,求∠ABE的度数.【易错思路引导】求出圆内接正方形的中心角度数∠AOD,再根据垂径定理求出∠AOE,由圆周角定理得出答案.【规范解答】解:如图,连接OA、OD,∵四边形ABCD是圆内接正方形,∴∠AOD==90°,∵OE⊥AD,∴=,∴∠AOE=∠AOD=×90°=45°,∴∠ABE=∠AOE=×45°=22.5°.【考察注意点】本题考查正多边形和圆,圆周角定理以及垂径定理,求出圆内接正方形的中心角度数是解决问题的关键.18.(2021秋•日喀则市月考)如图,正方形ABCD是半径为R的⊙O内接四边形,R=6.求正方形ABCD的边长和边心距.【易错思路引导】过点O作OE⊥BC,垂足为E.解直角三角形求出BC,OE即可.【规范解答】解:过点O作OE⊥BC,垂足为E.∵四边形ABCD为⊙O的内接正方形,∴∠BOC==90°,∠OBC=45°,OB=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得OE=BE=,∴BC=2BE=.即半径为6的圆内接正方形ABCD的边长为,边心距为.【考察注意点】本题考查正多边形与圆,正方形的性质等知识,解题的关键是学会添加常用辅助线构造直角三角形解决问题.19.(2022•包河区校级二模)如图,正方形ABCD是⊙O的内接正方形,E在边AB上,F在DC的延长线上,且∠F=∠BEC,BF交⊙O于点G,连接DG,交BC于点H.(1)求证:四边形BECF是平行四边形;(2)求证:DH=CE.【易错思路引导】(1)证明CF∥BE,BF∥EC可得结论;(2)证明△DCH≌△CBE(ASA),可得结论.【规范解答】证明:(1)∵四边形ABCD是正方形,∴AB∥DF,∴∠DCE=∠CEB,∵∠F=∠BEC,∴∠F=∠DCE,∴BF∥CE,∴四边形BECF是平行四边形;(2)∵BF∥EC,∴∠CBF=∠BCE,∵∠CDH=∠CBG,∴∠CDH=∠BCE,∵四边形ABCD是正方形,∴CD=CB,∠DCH=∠CBE=90°,在△DCH和△CBE中,,∴△DCH≌△CBE(ASA),∴DH=CE.【考察注意点】本题考查正多边形与圆,正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连结AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连结这些分点,得到正n边形,求n的值.【易错思路引导】(1)根据正五边形内角和,可以计算出∠ABC的度数;(2)先判断,然后根据题意和图形说明理由即可;(3)根据题意和(2)中的结果,计算出∠NOD的度数,然后即可计算出n的值.【规范解答】解:(1)∵五边形ABCDE是正五边形,∴∠ABC==108°,即∠ABC=108°;(2)△AMN是正三角形,理由:连接ON,NF,如图,由题意可得:FN=ON=OF,∴△FON是等边三角形,∴∠NFA=60°,∴∠NMA=60°,同理可得:∠ANM=60°,∴∠MAN=60°,∴△MAN是正三角形;(3)连接OD,如图,∵∠AMN=60°,∴∠AON=120°,∵∠AOD==144°,∴∠NOD=∠AOD﹣∠AON=144°﹣120°=24°,∵360°÷24°=15,∴n的值是15.【考察注意点】本题考查正多边形和圆、等边三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答。
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。
2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。
在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。
人教版九年级数学上册24.3正多边形和圆(含答案)
24.3 正多边形和圆知识点1 .相等,也相等的多边形叫做正多边形 .2 .把一个圆分成几等份,连接各点所得到的多边形是 ,它的中央角等于3 .一个正多边形的外接圆的 叫做这个正多边形的中央,外接圆的叫做正多边形的半径,正多边形每一边所对的 叫做正多边形的中央角,中央到正 多边形的一边的 叫做正多边形的边心距. 4 .正n 边形的半径为 R,边心距为r,边长为a, (1)中央角的度数为:. (2)每个内角的度数为:. (3)每个外角的度数为: . (4)周长为: ,面积为: .5 .正n 边形都是轴对称图形,当边数为偶数时,它的对称轴有 条,并且还是中央对 称图形;当边数为奇数时,它只是.(填“轴对称图形〞或“中央对称图形〞) 一、选择题1 .以下说法正确的选项是 A.各边相等的多边形是正多边形 B.各角相等的多边形是正多边形 C.各边相等的圆内接多边形是正多边形 D.各角相等的圆内接多边形是正多边形 6,那么其外接圆半径与内切圆半径的大小分别为()2. (2021以津)正六边形的边心距与边长之比为3.(2021山东滨州 )假设正方形的边长为A. 6, 3亚B. 3行,3C. 6, 3D. 6• 3匹4 .如下图,正六边形ABCDEF内接于.O, 那么/ADB的度数是( ).A. 60°B. 45C. 30D. 22. 55 .半径相等的圆的内接正三角形,正方形,正六边形的边长的比为〔〕A.1: .2 : 3B. 3: 2:1C.3:2:1D.1:2:36 .圆内接正五边形ABCDE中,对角线AC和BD相交于点P,那么/APB的度数是〔〕.A. 36°B, 60° C. 72° D, 108°7 . 〔2021?自贡〕如图,点O是正六边形的对称中央,如果用一副三角板的角,借助点0〔使该角的顶点落在点O处〕,把这个正六边形的面积n等分,那么n的所有可能取值的个数是〔〕A.4B.5C.6D. 78 .如图,△ PQ幅..的内接正三角形,四边形ABC皿OO的内接正方形,BC// QR那么/A0Q的度数是〔〕A.60 °B.65 °C.72 °D.75、填空题9 .一个正n边形的边长为a,面积为S,那么它的边心距为.10 .正多边形的一个中央角为36度,那么这个正多边形的一个内角等于度.11 .假设正六边形的面积是24j3cm2,那么这个正六边形的边长是.12 .正六边形的边心距为B那么它的周长是.13 .点M、N分别是正八边形相邻的边AB、BC上的点,且AM=BN,点O是正八边形的中央,那么/ MON=.14 .边长为a的正三角形的边心距、半径〔外接圆的半径〕和高之比为15 .要用圆形铁片截出边长为4cm的正方形铁片,那么选用的圆形铁片的直径最小要_________ cm.16 .假设正多边形的边心距与边长的比为1:2,那么这个正多边形的边数是17 .一个正三角形和一个正六边形的周长相等,那么它们的面积比为18 .〔2021超州〕如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,那么正八边形的面积为_______ cm2.三、解做题19 .比拟正五边形与正六边形,可以发现它们的相同点与不同点正五边形正六边形例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等^它们的一个不同点:正五边形不是中央对称图形,正六边形是中央对称图形.请你再写出它们的两个相同点和不同点.相同点:〔1〕_________________________________________________________________ (2). 不同点:〔1〕_________________________________________________________________________(2) ___________________________________________________________________21 .如图,O O 的半径为 短,..的内接一个正多边形,边心距为 1,求它的中央角、边长、面积.22 ..O 和.O 上的一点 A.(1)作.O 的内接正方形 ABCDF 口内接正六边形 AEFCGH(2)在(1)题的作图中,如果点 E 在弧AD 上,求证:DE 是..内接正十二边形的一边.20.,如图,正六边形 距「6、面积S 6.ABCDEF 的边长为6cm,求这个正六边形的外接圆半径R 、边心第21题第22题23 .如图1、图2、图3、…、图n, M N分别是.0的内接正三角形ABC正方形ABCD正五边形ABCDE…、正n边形ABCDE•的边AR BC上的点,且BM=CN连结OM ON.圉1 图2 囹斗3图式(1)求图1中/ MON勺度数;(2)图2中/ MON勺度数是 ,图3中/ MON勺度数是(3)试探究/ MON的度数与正n边形边数n的关系(直接写出答案).知识点 1 .各边各角2 .正多边形正多边形每一边所对的圆心角3 .圆心半径圆心角 距离 5.n 轴对称图形 一、选择题 1.C 2.B 3.B 4.C 5.B 6.C 7.B解:根据圆内接正多边形的性质可知, 只要把此正六边形再化为正多边形即可,以30的倍数就可以解决问题. 360+30=12; 360+60=6; 360+90=4; 360+120=3; 360+180=2.因此n 的所有可能的值共五种情况, 应选B. 8.D 二、填空题9. 2S 10.144 11.4cm 12.12 13.45° 14.1:2:3 15.4 v2 16.na18.40 三、解做题19.相同点:〔1〕每个内角都相等〔或每个外角都相等或对角线都相等〕;〔2〕都是轴对称图形〔或都有外接圆和内切圆〕^不同点:〔1〕正五边形的每个内角是 108° ,正六边形的每个内角是120°〔2〕正五边形的对称轴是 5条,正六边形的对称轴是 6条.参考答案4.360(2)(『2)|18°n360 nar⑷皿⑸方即让周角除四 17.2:3解:连接OA,OB.过点O作OG AB于G.** AOB =60 , OA OB* AOB是等边三角形OA OB 6 即R=6O OA OB ,OG AB1 1AG -AB -63 2 2在Rt AOG 中,r6 OG JOA 2~AG 2相~3T3 点S6 1- 6 6 3 /3 54 . 3R 6 cm,「6 3 .. 3cm , S6 54 .3 cm 2.21.解:连结OB•・在•△AOC^, AC=J OA2 OC2^/T7=1AC=OC / AOCh OAC=45• .OA=OB OCL AB• .AB=2AC=2 /AOB=2 OAC=2< 45° =90°,这个内接正多边形是正方形「•面积为22=4••・中央角为90.,边长为2,面积为4.22. (1)作法:①作直径AC;②作直径BDL AC;③依次连结A、B、C D四点,四边形ABCD^为.0的内接正方形;于E、H、F、G;④分别以A、C为圆心,以OA长为半径作弧,交.0⑤顺次连结A、E、F、C G H各点.六边形AEFCG即为.0的内接正六边形(2)证实:连结OE DE.•. /AOD= 360- = 90° , /AOE= 360-= 60° ,・ ./DOB Z AOD- /AO2 90° -60 ° =30・•・DE为.0的内接正十二边形的一边 .23. (1)方法一:连结OB OC.・•・正4ABC内接于.O,・・./OBM =OCN= 30° , ZBOC=120 .X / BM=CN OB=OC・.△OB阵AOCN( SAS . ・./ BOM= /CON.・./ MON=BOC=120 .方法二:连结OA OB. ・•・正^ABC内接于.O, .•.AB=AC /OAM =OBN=30 , ZAOB=120 .又「BM= CN.•.AM=BN.X/OA=OB,・.△AO阵△BON SAS . ・./AOM = BON.・./MON =AOB=120 .(2)90 ° 72 °(3) / MON=360-.。
初中数学人教版九年级上册《正多边形和圆》课件
C
H
G
D
∴BE是⊙O的内接正十二边形的一边.
随堂练习
6.如图,已知正三角形ABC的边长为6,求它的中心角、
半径和边心距. A
解 设这个正三角形的中心为点O,
连接OB,OC,作OH⊥BC于点H,
O
则∠BOC=360°÷3=120°,
∴∠BOH=60°.
B 在Rt△BOH中,
BH=
1 2
BC=3,∠OBH=30°,
∴OH= 3,OB= 2 3 .
∴正三角形ABC的中心角为120°,半径为
H
C
3,边心距为 2 3.
课堂小结
正多边形的 有关概念 正多边形和圆
中心角 半径R
O 边心距r
正多边形和圆的 有关计算
添加辅助线的方法: 连半径,作边心距
24.3
谢谢
人教版 九年级数学上
24.3
正多边形 和圆
人教版 九年级数学上
知识要点
1.正多边形的有关概念 2.正多边形和圆成,试着发现它们的规律。
课程讲授
正多边形的有关概念
正多边形和圆的关系十分密切,只要把一个圆分成相等的 一些弧,就可以作出这个圆的内接正多边形,这个圆就是这 个正多边形的外接圆.
正多边形和圆的有关计算
F
解 如图所示 .连接OB,OC,
因为六边形ABCDEF是正六边形,
A
所以它的中心角等于360°÷6=60°,△OBC是等
边三角形,而正六边形的边长等于它的半径.
因此亭子地基的周长l=6×4=24(m)
B
过点O作OP⊥BC于P.
E
D O PC
在Rt△OPC中,OC=4m,PC=2m
2
九年级数学上册(中考题型专练)(人教版)正多边形和圆(3个考点6大类型)(原卷版)
九年级数学上册(中考题型专练)(人教版)正多边形和圆(3个考点6大类型)(原卷版)【题型1 正多边形与圆求角度】【题型2正多边形与圆求线段长度】【题型3正多边形与圆求半径】【题型4正多边形与圆求面积】【题型5正多边形与圆求周长】【题型6正多边形与直角坐标系综合】【题型1 正多边形与圆求角度】1.(2022秋•仙居县期末)如图,正五边形ABCDE中,点F是CD的中点,连接AC,AF,则∠CAF的度数为()A.15°B.18°C.22.5°D.30°2.(2023•湖里区校级模拟)如图,在正六边形ABCDEF中,∠ACF的度数为()A.30°B.35°C.20°D.25°3.(2023•泗水县三模)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A.40°B.50°C.60°D.70°4.(2023•三明模拟)正八边形的中心角的度数是()A.30°B.45°C.60°D.90°5.(2022秋•余姚市期末)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A.36°B.45°C.60°D.75°6.(2022秋•河西区校级期末)如图,四边形ABCD为⊙O的内接正方形,点P 为劣弧BC上的任意一点(不与B,C重合),则∠BPC的度数是()A.120°B.130°C.135°D.150°7.(2023•海淀区校级四模)如图,AB是⊙O内接正五边形的一条边,点P在优弧AB上,则∠APB的度数为°.8.(2023•修文县模拟)如图,正五边形ABCDE内接于⊙O,点P在AE上,则∠CPB的度数为.9.(2023•上杭县模拟)如图摆放着正五边形ABCDE和正△EFG,其中点A、B、F在同一直线上,EG∥BF,则∠DEG的度数是.10.(2023•鼓楼区校级三模)如图,将边长相等的正六边形ABCDEF和正五边形ABGHK的AB边重合叠放在一起,则∠GBC的度数是.【题型2正多边形与圆求线段长度】11.(2023春•罗定市校级期中)如图,正六边形ABCDEF内接于⊙O,若⊙O 的周长是12π,则正六边形的边长是()A.B.3C.6D.12.(2023•玉屏县模拟)如图,正六边形ABCDEF的顶点A,F分别在正方形BMGH的边BH,GH上.若正方形的边长为6,则正六边形的边长为()A.2B.4C.4.5D.5 13.(2022秋•易县期末)如图,⊙O是正方形ABCD的外接圆,若⊙O的半径为4,则正方形ABCD的边长为()A.4B.8C.D.14.(2022秋•柘城县期中)一个圆的半径为2,则该圆的内接正方形的边长为()A.B.2C.D.2 15.(2023•尤溪县校级模拟)已知正六边形的半径是2,则这个正六边形的边长是.16.(2023•南京三模)如图,在正六边形ABCDEF中,⊙O经过点E,且与AB,BC相切.若⊙O的半径为4,则正六边形的边长为.17.(2023•绥化模拟)如图,在正五边形ABCDE中,若边长AB=2,则AC的长为.18.(2023•南关区一模)如图,点O为正六边形ABCDEF对角线AC上一点,阴影部分的面积和为,则正六边形的边长是.【题型3正多边形与圆求半径】19.(2022•博白县校级一模)边长为2的正方形内接于⊙M,则⊙M的半径是()A.1B.2C.D.20.(2022秋•浙江月考)如图所示,正六边形ABCDEF内接于⊙O,若边心距,则⊙O的半径为()A.B.2C.1D.4 21.(2022秋•昌平区期末)如图,面积为18的正方形ABCD内接于⊙O,则⊙O 的半径为()A.B.C.3D.22.(2023春•宿豫区期末)一枚圆形古钱币的中间是一个边长为1cm的正方形孔,圆面积是正方形面积的9倍,则圆的半径为cm.23.(2023•湟中区校级开学)已知一个正六边形的边心距2cm,则该正六边形的半径为cm.24.(2022秋•城西区校级期末)已知正三角形ABC的边心距为cm,则正三角形的半径为cm.【题型4正多边形与圆求面积】25.(2023•南岗区校级模拟)已知正六边形的半径为.则此正六边形的面积为()A.B.C.3D.4 26.(2023•梧州二模)剪纸艺术是我国非物质文化遗产,如图是一幅包含了圆,正八边形等图形设计成的剪纸作品,已知圆的半径是2,此作品的阴影部分面积是()A.B.πC.2πD.4π27.(2023•阜城县校级模拟)如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是()A.3B.4C.D.2 28.(2023•迁安市二模)如图,以正六边形ABCDEF的对角线BD为边,向右作等边△BDG,若四边形BCDG(图中阴影部分)的面积为6,则五边形ABDEF 的面积为()A.15B.12C.8D.629.(2023•承德一模)如图,正六边形的两条对角线AE、BE把它分成Ⅰ、Ⅱ、Ⅲ三部分,则该三部分的面积比为()A.1:2:3B.2:2:4C.1:2:4D.2:3:5 30.(2022秋•裕华区校级期末)如图,点O是正六边形ABCDEF的中心,边心距OH=,则正六边形的面积为()A.6B.C.D.8 31.(2022•石家庄三模)如图,边长相等的正八边形和正方形部分重叠摆放在一起,已知正方形面积是2,那么非阴影部分面积是()A.6B.C.D.8 32.(2022秋•襄汾县月考)如图,⊙O为正方形ABCD的外接圆,若BC=2,则⊙O的面积为()A.2πB.3πC.4πD.8π33.(2023•榆阳区一模)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图,已知⊙O的半径为2,则⊙O的内接正六边形ABCDEF的面积为6.【题型5正多边形与圆求周长】34.(2021秋•卫辉市期末)如图,⊙O的外切正六边形ABCDEF的边心距的长度为,那么正六边形ABCDEF的周长为()A.2B.6C.12D.6 35.(2022•定州市二模)如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6B.6C.6D.9 36.(2023春•青羊区校级期末)一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是.37.(2023•雁塔区校级四模)如图,已知圆内接正六边形ABCDEF的边心距OG等于,则⊙O的周长等于.38.(2022秋•同心县期末)如图,正六边形ABCDEF内接于⊙O,连接OC、OD,若OC长为2cm,则正六形ABCDEF的周长为cm.39.(2022•新城区模拟)如图,AC、AD为正六边形ABCDEF的两条对角线,若该正六边形的边长为2,则△ACD的周长为.【题型6正多边形与直角坐标系综合】40.(2023•二七区校级开学)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重台,AB∥x轴,交y轴于点P.将△OAP绕点O逆时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,1)D.(1,)41.(2023•浉河区校级三模)如图,在平面直角坐标系中,正六边形ABCDEF 的边AB在x轴上,点F在y轴上,将正六边形ABCDEF沿x轴正方向每次以一个单位长度无滑动滚动,若AB=1,在第2023次滚动后,点F的坐标为()A.B.()C.D.42.(2022秋•泗洪县期中)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OA n B n∁n D n E n,当n =2022时,顶点C2022的坐标是()A.B.C.(1,﹣2)D.43.(2021秋•凤山县期末)如图,将正六边形ABCDEF放在平面直角坐标系中,中心与坐标原点重合,若AB=2,则点D的坐标是()A.(1,0)B.(2,0)C.D.(3,0)44.(2023•缙云县二模)如图,正六边形ABCDEF放置在平面直角坐标系内,若点A的坐标为(1,0),则点D的坐标为.。
24.3正多边形和圆 课件 人教版数学九年级上册
因此,亭子地基的周长l=6×4=24(m).
作OP⊥BC,垂足为P.
在Rt△OPC中,OC=4 m,
PC=
=2(m),利用勾股定理,
可得边心距r=
亭子地基的面积S=
感悟新知
1.连半径,得中心角; 2.作边心距,构造直角三角形.
感悟新知
思考1 正n边形的一个内角的度数是多少?中心角呢? 正多边形的中心角与外角的大小有什么关系? 互补
教学目标解析
本节课首先复习正多边形的有关概念,为本课学习作铺垫.引导学生画正多边形 的外接圆,通过动手操作,感知数形结合思想,为探讨正多边形与圆的关系服务,也为 接下来计算正多边形与圆提供基本图形,再通过问题的探讨,让学生认识到正多边形 与圆的关系密切,并为接下来可利用圆与正多边形的知识进行连线,实现计算的目的. 数学学习的过程是一个思维展现的过程,通过例题的计算,并让学生说出解题经验小 结,培养学生学会反思的学习习惯,从而形成举一反三,触类旁通的高效学习意识.
思考2 正n边形的半径R、边心距r和边长a有什么关系?
思考3 正n边形的面积怎么计算?
跟踪练习
1、完成下表中有关正多边形的计算:
正多边 形边数
3
4 6
内角
60° 90° 120°
中心角 半径R
120°
2
90°
60°
2
边长a 边心距r 周长
1
2
1
8
2
12
面积
16
跟踪练习
2、一元钱硬币的直径约为24 mm,则用它能完全覆盖
弧 弦相等(多边形的边相等) 相 等 圆周角相等(多边形的角相等)
感悟新知
半径 中心角 中心
边心距
九年级上册数学正多边形和圆
九年级上册数学正多边形和圆正多边形和圆(人教版九年级上册)一、正多边形的概念。
1. 定义。
- 各边相等,各角也相等的多边形叫做正多边形。
例如,等边三角形是正三角形,正方形是正四边形。
2. 正多边形与圆的关系。
- 把一个圆分成n(n≥slant3)等份:- 依次连接各分点所得的多边形是这个圆的内接正n边形。
- 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。
二、正多边形的有关计算。
1. 正多边形的中心、半径、边心距、中心角。
- 中心:正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心。
- 半径:外接圆的半径叫做正多边形的半径,通常用R表示。
- 边心距:内切圆的半径叫做正多边形的边心距,通常用r表示。
- 中心角:正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形的中心角α=frac{360^∘}{n}。
2. 正多边形的有关计算。
- 设正n边形的边长为a_n,半径为R,边心距为r。
- 在由半径R、边心距r和边长的一半frac{a_n}{2}所构成的直角三角形中,根据勾股定理有R^2=r^2+(frac{a_n}{2})^2。
- 正n边形的周长C = n× a_n,面积S=(1)/(2)C× r=(1)/(2)n× a_n× r。
三、正多边形的画法。
1. 用量角器等分圆。
- 先用量角器画一个等于frac{360^∘}{n}的圆心角,这个圆心角所对的弧就是圆的(1)/(n),然后在圆上依次截取这条弧的等弧,就可以得到圆的n等分点,从而画出正n边形。
2. 用尺规等分圆(特殊正多边形)- 正六边形:- 由于正六边形的中心角为60^∘,所以在圆中,以半径为弦长,在圆上依次截取六段相等的弧,就可以得到正六边形。
- 正四边形(正方形):- 先作圆的两条互相垂直的直径,再连接直径与圆的四个交点,就得到正方形。
人教版数学九年级上册24.正多边形和圆经典课件
6
A
OBC是等边三角形,从而正
六边形的边长等于它的半径. B
∴亭子的周长 L=6×4=24(m)
E
.. O
D
r R=4
PC
在RtOPC中,OC 4,PC BC 4 2 22
根据勾股定理,可得边 心距r 42 22 2 3
亭子的面积 S 1 Lr 1 24 2 22
3 41.6(m2)
正多边形对称性
1、正多边形都是轴对称图形,一个正n边 形共有n条对称轴,每条对称轴都通过n边 形的中心。
2、边数是偶数的正多边形还是中心 对称图形,它的中心就是对称中心。
两个正六边形的边 长分别是3和4,这 两个正六边形的面 积之比等于_______
圆内接正方形的 半径与边长的比 值是________
下列图形中:①正五边形;②等 腰三角形;③正八边形;④正 2n(n为自然数)边形;⑤任意 的平行四边形。是轴对称图形的
有①__②__③__④____,是中心对称图形 的有③__④__⑤____,既是中心对称图
形,又是轴对称图形的有
__③__④___。
已知正三角形ABC的边长为 4,则它的内切圆和外接圆 组成的圆环面积是多C 少?
D
O
A
B
A、B、C在⊙O上,且B在弧AC 上,AB、AC分别是正九边形和 正六边形的一边。请问:BC是 此圆内接正几边形的一边?
A
B
O
C
B.互补
C.互余或互补 D.不能确定
正多边形的性质
各边相等,各角相等
圆的内接正n边形的各个顶点把圆分成n等分 圆的外切正n边形的各边与圆的n个切点把圆分成n
等分
每个正多边形都有一个内切圆和外接圆,这两个圆 是同心圆,圆心就是正多边形的中心
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆和正多边形
教学目标:了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形。
教学重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系。
教学难点:理解四者:正多边形半径、中心角、•弦心距、边长之间的关系. 正多边形是轴对称图形,正n 边形有n 条对称轴;•正2n 边形是中心对称图形,其对称中心是正多边形对角线交点。
知识结构及知识点:
1、正多边形:各边相等,各角也相等的多边形是正多边形。
2、正多边形的外接圆:一个正多边形的各个顶点都在圆上,我们就说这个圆是这个正多边形的外接圆。
把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做这个正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。
正n 边形每一个内角的度数为:(n-2)*180°/n 正n 边形的一个中心角的度数为:360°/n 正多边形的中心角与外角的大小相等。
3、圆内接四边形的性质:圆内接四边形的对角和相等,都是180°。
4、圆内接正n 边形的性质(n ≥3,且为自然数):
(1) 当n 为奇数时,圆内接正n 边形是轴对称图形,有n 条对称轴;但不是中心对称图形。
(2) 当n 为偶数时,圆内接正n 边形即是轴对称图形又是中心对称图形,对称中心是正多边形的中心,即外接圆的圆心。
5、常见圆内接正多边形半径与边心距的关系:(设圆内接正多边形的半径为r ,边心距为d)
(1)圆内接正三角形:d=1
2
r
(2)圆内接正四边形:d=22
r
(3)圆内接正六边形:
6、常见圆内接正多边形半径r 与边长x 的关系:
(1)圆内接正三角形:(2)圆内接正四边形:x= 22
r
(3)圆内接正六边形:x=r
7、正多边形的画法:画正多边形一般与等分圆正多边形周有关,要做半径为R 的正n 边形,只
要把半径为R的圆n等分,然后顺次连接各点即可。
(1)用量角器等分圆周。
(2)用尺规等分圆(适用于特殊的正n边形)。
8、定理1:把圆分成n(n≥3)等份:
(1)依次连结各分点所得的多边形是这个圆的内接正n边形;
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边
形。
说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边。
.
(2)要注意定理中的“依次”、“相邻”等条件。
(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据
它作正多边形。
定理2:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
经典例题
例1、已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形
的周长和面积。
此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB
垂于M,在Rt△AOM•中便可求得AM,又应用垂径定理可求得AB的长.正
六边形的面积是由六块正三角形面积组成的。
重点例题:
已知⊙O和⊙O上的一点A(如图24-3-1).
(1)作⊙O的内接正方形ABCD和内接正六边形AEFCGH;
(2)在(1)题的作图中,如果点E在弧AD上,求证:DE是⊙O内接正十二边
形的一边.
图24-3-1
思路分析:求作⊙O 的内接正六边形和正方形,依据定理应将⊙O 的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE 是⊙O 内接正十二边形的一边,由定理知,只需证明DE 所对圆心角等于360°÷12=30°.
(1)作法: ①作直径AC; ②作直径BD ⊥AC;
③依次连结A 、B 、C 、D 四点, 四边形ABCD 即为⊙O 的内接正方形;
④分别以A 、C 为圆心,OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点. 六边形AEFCGH 即为⊙O 的内接正六边形. (2)证明:连结OE 、DE. ∵∠AOD =
4360︒=90°,∠AOE =6
360︒
=60°, ∴∠DOE =∠AOD -∠AOE =30°. ∴DE 为⊙O 的内接正十二边形的一边. 考点例题(中考):
如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?
图24-3-3
思路分析:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,设大圆的圆心为O ,则点O 是正△O 1O 2O 3的中心,求出这个正△O 1O 2O 3外接圆的半径,再加上⊙O 1的半径即为所求.
解:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,则正△O 1O 2O 3外接圆的半径为
334 cm ,所以大圆的半径为334+2=3
6
34 (cm). 课堂练习:
1.如图1所示,正六边形ABCDEF 内接于⊙O ,
则∠ADB 的度数是( ).
A .60°
B .45°
C .30°
D .22.5°
(1) (2) (3)
2.圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( ). A .36° B .60° C .72° D .108°
3.若半径为5cm 的一段弧长等于半径为2cm 的圆的周长,•则这段弧所对的圆心角为( ) A .18° B .36° C .72° D .144°
二、课后巩固
1.正六边形的两条平行边之间的距离为1,则它的边长为( ) A.63 B.43 C.332 D.3
3
思路解析:正六边形的两条平行边之间的距离为1,所以边心距为0.5,则边长
为
3
3. 答案:D
2.已知正多边形的边心距与边长的比为
2
1
,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形
思路解析:将问题转化为直角三角形,由直角边的比知应选B. 答案:B
3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm. 思路解析:转化为直角三角形求出正六边形的边长,然后用P 6=6a n 求出周长. 答案:18
4.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度. 答案:144.
5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.
图24-3-2
思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半径R 3与R 6的平方比即可.
解:设正三角形外接圆⊙O 1的半径为R 3,正六边形外接圆⊙O 2的半径为R 6,由题意得R 3=
3
3
AB ,R 6=AB ,∴R 3∶R 6=3∶3.∴⊙O 1的面积∶⊙O 2的面
积=1∶3.
6.某正多边形的每个内角比其外角大100°,求这个正多边形的边数. 思路分析:由正多边形的内角与外角公式可求. 解:设此正多边形的边数为n ,则各内角为n n ︒•-180)2(,外角为n
︒
360,依
题意得
n n ︒•-180)2(-n
︒
360=100°.解得n =9.
(三)、附加题训练
例5、在直径为AB 的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB ,顶点C 在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN ,其中D 、E 在AB 上,如图24-94的设计方案是使AC=8,BC=6. (1)求△ABC 的边AB 上的高h .
(2)设DN=x ,且h DN NF
h AB
-=
,当x 取何值时,水池DEFN 的面积最大? (3)实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.
h
F D
E
C B
A
N
G
分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,•应用圆的对称性就能圆满解决此题.。