三角形全等中的动点问题难点专题探究

合集下载

全等三角形中的动点问题

全等三角形中的动点问题

全等三角形中的动态问题解决动点问题的常见思路:1、注意分类讨论;2、仔细探究全等三角形对应边与对应角的变化;3、利用速度×时间表示处相应线段或边的长度,列出方程求解。

例1如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动多少秒时,△DEB与△BCA全等。

例2已知,如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P 从点B出发,以每秒2个单位的速度沿BC—CD—DA向终点A运动,设点P的运动时间为t秒,当t的值为何值时,△ABP与△DCE全等。

练习:1、如图,在△ABC中,∠ACB=90°,AC=7厘米,BC=3厘米,CD为AB边上的高,点E从点B出发沿直线BC以2厘米/秒的速度移动,过点E作BC的垂线交直线CD于点F。

(1)证明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB。

请说明理由。

2、如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m),B(n,0),且|m−n−3|+2n−6=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒。

(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用含t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由。

例3如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D,∠ACE=90°,且AC=5cm,CE=6cm,点P以2cm/s的速度沿A—C—E向终点E运动,同时点Q以3cm/s的速度从E开始在线段EC上往返运动,当点P到达终点时,P、Q同时停止运动。

专题12 难点探究专题:相似三角形中动点问题压轴题六种模型全攻略(原卷版)

专题12 难点探究专题:相似三角形中动点问题压轴题六种模型全攻略(原卷版)

专题12难点探究专题:相似三角形中动点问题压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一相似三角形动点中求时间多解问题(利用分类讨论思想)】 (1)【考点二相似三角形动点中求线段长多解问题(利用分类讨论思想)】 (2)【考点三相似三角形动点中求线段及线段和最值问题】 (4)【考点四相似三角形中的动点问题与函数图像问题】 (5)【考点五相似三角形中的动点问题与几何综合问题】 (7)【考点六相似三角形中的动点探究应用问题】 (9)【典型例题】【考点一相似三角形动点中求时间多解问题(利用分类讨论思想)】【变式训练】1.(2023秋·安徽安庆·九年级统考期末)如图,在钝角A出发运动到点B停止,动点E运动的速度为2cm/s.如果两点同时运动,那么当以点2.(2023·上海·九年级假期作业)如图,米/秒的速度同时开始运动,其中点直移动到点A为止.经过多长时间后,3.(2022·辽宁·灯塔市第一初级中学九年级期中)如图,在平面直角坐标系内,已知点0),动点P从点A开始在线段段BA上以每秒2个单位长度的速度向点(1)当t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为24 5【考点二相似三角形动点中求线段长多解问题(利用分类讨论思想)】【变式训练】2.(2023春·江苏无锡·八年级宜兴市实验中学校考阶段练习)如图,在矩形连接BD,点M,N分别是边BC,终落在BD上,当PBM为直角三角形时,线段3.(2023·江苏盐城·校考一模)如图,在动点,过点E作DE⊥为等腰三角形时,当BCF4.(2023·山东济宁·统考一模)如图,在矩形点P是直线BC上的一个动点.若【考点三相似三角形动点中求线段及线段和最值问题】【变式训练】1.(2023·江苏苏州AE翻折得AFE△连接PF,则PQ2.(2023·湖北襄阳·统考模拟预测)如图,矩形△M,连接EM、BM,将BEM为.3.(2023春·安徽·九年级专题练习)如图,在正方形,上的动点,且BEG是AB CD为.4.(2023·江苏南通·统考三模)点C 的坐标为()0,3上一点,且3AQ PQ =【考点四相似三角形中的动点问题与函数图像问题】例题:(2023春·河南安阳·九年级统考期末)如图,正方形ABCD 一边AB 在直线l 上,P 是直线l 上点A 左侧的一点,24AB PA ==,E 为边AD 上一动点,过点P ,E 的直线与正方形ABCD 的边交于点F ,连接BE BF ,,若设DE x =,BEF △的面积为S ,则能反映S 与x 之间函数关系的图象是()A .B ...2023·山西运城·统考二模)如图中,36B ∠=︒,动点P 速运动至点C 停止.点P 的运动速度为,设点P 的运动时间为t (函数图像如图2所示.当AP 时,BP 的长为()A .252+B .425-C .4+2.(2023·河南焦作·统考二模)如图,在Rt ABC △中,过点P 作直线l AB ⊥,交折线ACB 于点Q .设AP x =A ....2023·安徽合肥·校联考二模)如图,在正方形ABCD 中,1AB =,动点P 从A 点出发沿和BC 上匀速移动,连接DP 交BC 或BC 的延长线于Q ,记点移动的距离为x ,的函数图像大致是()A .B .C .D .4.(2023·黑龙江·模拟预测)如图,已知直线l 是线段AB 的中垂线,l 与AB 相交于点C ,D 是位于直线AB 下方的l 上的一动点(点D 不与点C 重合),连接AD BD ,,过点A 作AE BD ∥,过点B 作BE AE ⊥于点E ,若6AB =,设AD x =,AE y =,则y 关于x 的函数关系用图像可以大致表示为().A .B .C .D .【考点五相似三角形中的动点问题与几何综合问题】例题:(2023春·山东济宁·八年级统考期末)如图,在平面直角坐标系中,O 是坐标原点,矩形OABC 的两边分别在x 轴和y 轴上,点B 的坐标为()12,8,现有两动点P ,Q ,点P 以每秒3个单位的速度从点O 出发向终点A 运动,同时点Q 以每秒2个单位的速度从点A 出发向终点B 运动,连接PC ,PQ ,CQ .设运动时间为t 秒()0t >.(1)点P 的坐标为______,点Q 的坐标为______(用含t 的代数式表示);(2)请判断四边形APCQ 的面积是否会随时间t 的变化而变化,并说明理由;(3)若A ,P ,Q 为顶点的三角形与OCP △相似时,请求出t 的值.【变式训练】(1)BM =________;BN =__________.(2)若BMN 与ABC 相似,求t 的值;(3)连接AN CM ,,如图2,若AN CM ⊥BC=,点E是AD边上的一个动点,以CE为边在CE的右(2)如图2,四边形ABCD是矩形,2AB=,4CG CE=,连接DG,BE.判断线段DG与BE,有怎样的数量关系和位置关系,侧作矩形CEFG,且:1:2并说明理由;(3)如图3,在(2)的条件下,点E是从点A运动D点,则点G的运动路径长度为______;+的最小值为______.(4)如图3,在(2)的条件下,连接BG,则2BG BE【考点六相似三角形中的动点探究应用问题】【变式训练】【基础巩固】(1)参照小慧提供时思路,利用图(2)请证明上述结论;(2)A 、B 、C 、是同一直线l 上从左到右顺次的点,点P 是直线外一动点,【尝试应用】①若2AB =,1BC =,延长AB 至D ,使CD BC =【拓展提高】②拓展:若AB m =,BC n =,()m n ≠,P 点在长为___________(用含m 、n 的式子表示).。

全等三角形中动点问题,掌握答题思路,注意几点事项

全等三角形中动点问题,掌握答题思路,注意几点事项

全等三角形中动点问题,掌握答题思路,注意几点事项初中数学中,动点问题一直热门考点,而且动点问题也是学习的一个难点,在三角形、矩形、梯形等一些几何图形上,设计一个或几个动点,并且对这些点在运动变化的过程中,存在着等量关系,变量关系,以及对图形的特殊状态、图形间的特殊关系进行研究考查,具有较强的综合性。

常见的题型是:动态几何题是指随着几何图形中某一个(或几个)元素的运动,导致问题结论改变或不变的几何题。

今天我们一起来学习一下全等三角形中的动点问题。

解决动点问题常见的答题思路是:解这类题时要善于抓住以下三个特点:(1)变化前的结论及说理过程对变化后的结论起到重要作用;(2)在图形变化前后,明确哪些关系发生变化,哪些关系没有发生变化,变化前的等角、等线段在变化后是否还存在;(3)几种变化图形之间,说理思路存在内在联系,变化后的说理思路可模仿与借鉴变化前的说理过程,变化后的结论有时发生变化,有时不发生变化。

例题1:如图,已知△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点,点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A以a cm/s的速度运动,设运动的时间为t s。

问:(1)求CP的长,(2)若以C.P.Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求a的值。

【解析】:本题考查的是动点的为题,点P在线段BC上运动,根据距离=速度*时间,可得BP=3t cm,又已知BC=8cm所以CP=(8-3t)cm。

(2)、因为两个三角形全等,对应边没有明确,因此需要分类讨论,才能不丢解。

当BD=CP时,D为AB的中点,所以BD=5cm,所以5=8-3t,得t=1。

因为△BDP≌△CPQ,所以BP=CQ,得3t=at,得a=3。

当BP=CP时,3t=8-3t,得t=4/3,因为△BDP≌△CQP,所以BD=CQ,即5=4a/3,得a=15/4。

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题
人教版 八年级上
第十二章 全等三角形
专题四 全等三角形中的动点问题
专题四
全等三角形中的动点问题
类型1 以 U 型框为背景的动点问题
1. [2024雅安月考]如图,做一个“U”字形框架
PABQ ,其中 AB =42 cm, AP , BQ 足够长, PA ⊥
AB , QB ⊥ AB ,点 M 从点 B 出发,向点 A 运动,
10厘米, BC =8厘米, CD =12厘米,∠ B =∠ C ,点 E
为 AB 的中点.如果点 P 在线段 BC 上以3厘米/秒的速度由
B 点向 C 点运动,同时,点 Q 在线段 CD 上由 C 点向 D 点
运动.(1)ຫໍສະໝຸດ 点 Q 的运动速度与点 P 的运动速度相等,经过1秒
后,△ BPE 与△ CQP 是否全等?请说明理由.
∴ BE =5厘米,∴ BE = PC ,
=,
在△ BPE 和△ CQP 中,ቐ∠=∠,
=,
∴△ BPE ≌△ CQP (SAS).
1
2
3
4
专题四
全等三角形中的动点问题
(2)当点 Q 的运动速度为多少时,能够使△ BPE 与△ CQP
全等?
【解】∵△ BPE 与△ CQP 全等,
∵∠ A =∠ B =90°,
∴使△ ACM 与△ BMN 全等,可分两种情况:
情况一:当 BM = AC , BN = AM 时,
∵ BN = AM , AB =42 cm,
∴4 t +3 t =42,解得 t =6,
∴ AC = BM =3×6=18(cm);
1
2
3
4
专题四
全等三角形中的动点问题

全等三角形动点问题的解题技巧

全等三角形动点问题的解题技巧

全等三角形动点问题的解题技巧全等三角形动点问题的解题技巧1. 引言全等三角形动点问题是解决三角形相关问题的一种重要方法,它可以帮助我们深入理解全等三角形的定义和性质。

在本文中,我们将探讨全等三角形动点问题的解题技巧,并通过具体例子来说明。

2. 全等三角形的定义和性质在开始解决全等三角形动点问题之前,我们首先需要了解全等三角形的定义和性质。

全等三角形指的是具有相等边长和相等角度的两个三角形。

全等三角形有如下性质:2.1 两个全等三角形的对应边对应角均相等。

2.2 两个全等三角形的相应边长比相等。

3. 解题技巧在解决全等三角形动点问题时,我们可以采用以下技巧:3.1 选取适当的动点在全等三角形动点问题中,我们需要选择一个适当的动点来进行分析。

通常情况下,我们可以选取一个顶点或者一个角度作为动点,并通过改变该动点的位置来观察全等三角形的变化。

3.2 确定动点的运动轨迹一旦我们选定了一个动点,我们需要确定它的运动轨迹。

通过观察,我们可以发现,在全等三角形中,动点的运动轨迹通常是一条直线、一条弧线或一个圆。

3.3 利用全等三角形的性质在确定了动点的运动轨迹后,我们需要利用全等三角形的性质来解决问题。

根据全等三角形的定义和性质,我们可以得到一些等式或比例关系,从而推导出所需的结论。

4. 例子分析为了更好地理解全等三角形动点问题的解题技巧,我们以一个具体例子进行分析。

假设我们需要证明一个三角形ABC与另一个三角形A'B'C'全等。

我们可以选择顶点A作为动点,并通过改变点A的位置来观察全等三角形的性质。

4.1 确定动点A的运动轨迹观察发现,当我们固定点B和点C不动时,点A可以在与线段BC平行的直线上自由移动。

点A的运动轨迹是一条平行于BC的直线。

4.2 利用全等三角形的性质由于我们已经确定了点A的运动轨迹,我们可以利用全等三角形的性质来解决问题。

根据全等三角形的性质,我们可以得到如下结论:4.2.1 边AC与A'C'相等4.2.2 角BAC与角B'A'C'相等等等。

全等的三角形里的动点问题

全等的三角形里的动点问题

全等的三角形里的动点问题是一个比较复杂的问题,需要结合全等三角形的性质和动点的运动规律来解决。

首先,我们需要明确动点的运动规律,比如是匀速运动还是变速运动,以及运动的速度和方向。

其次,我们需要结合全等三角形的性质,比如边长相等、角度相等,来建立方程或不等式,从而求出动点的轨迹方程或范围。

最后,我们可以利用数学工具来解决方程或不等式,从而得到动点的轨迹或范围。

需要注意的是,全等的三角形里的动点问题往往涉及到多种情况,需要对各种情况进行分类讨论,从而得到完整的答案。

全等三角形动点问题分析教案

全等三角形动点问题分析教案

学思堂教育个性化辅导授课案教师: 学生: 时间: 2016 年 月 日 段授课内容:全等三角形中动点问题的处理教学目标:培养学生对运动变化、分类讨论思想等的数学综合运用能力教学重难点:寻找运动规律,分析问题(1)质点的运动形成全等三角形通过全等三角形的性质:对应边相等,(对应角相等,面积相等),来确定质点运动的速度或时间,注意分类讨论思想的运用。

(2)几何问题中三角板旋转形成的全等三角形三角板是学生最常用的学习工具,以三角板为道具,以学生常见、熟悉的几何图形为载体,并辅之以平移、旋转等变换手段的问题,能为学生提供动手实践操作设计的空间,较好地考查了学生观察、实验、比较、联想、类比、归纳的能力以及运动变化、分类讨论思想等的综合运用能力。

这类操作性的题目格调清新,立意新颖,充分体现了课标中提出的“培养学生动手动脑、实践探索的能力”的要求,既注重基础知识,同时又具有很强的综合性,因此受到了各地中考命题专家的青睐。

1.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?2.如图,已知长方形ABCD 中,AD =6cm ,AB =4cm ,点E 为AD 的中点.若点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BC 上由点B 向点C 运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△AEP 与△BPQ 是否全等,请说明理由,并判断此时线段A Q C D B PPE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等,运动时间为t秒,设△PEQ的面积为Scm2,请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AEP与△BPQ全等?3. 如图,在△ABC中,AC=BC=2,∠A=∠B=30°,点D在线段AB上运动(D不与A、B重合),连接CD,作∠CDE=30°,DE交BC于点E.(1)AB=;(2)当AD等于多少时,△ADC≌△BED,请说明理由;(3)在点D的运动过程中,△CDE的形状可以是等腰三角形吗?若可以,求出∠ADC的度数;若不可以,说明理由.4. 问题背景:如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离5.将一副三角板如图放置,D为BC的中点,将三角板MDN的直角顶点放在点D处,三角板的两边与AB,AC分别交于点E、F,当三角板MDN绕点D旋转时,且旋转过程中使点E不与A、B重合.(1)请你说明△DEF一定为等腰直角三角形;(2)证明点E、F到线段BC的距离之和为定值.6.问题情境:将一副直角三角尺(Rt△ABC和Rt△DEF)按图①所示的方式摆放,其中∠ACB=90°.CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明:连接CO,则⊙O是AB边上的中线.∵CA=CB,∴CO是∠ACB的平分线(依据1).∵OM⊥AC,ON⊥BC,∴OM=ON(依据2).反思交流:(1)上述证明过程的“依据1”和“依据2”分别是指:依据1:__________________________________________.依据2:__________________________________________.(2)你有与小宇不同的方法吗?请写出你的证明过程.(3)将图①中的Rt△DEF沿着射线BA的方向平移至如图②所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系和位置关系,并写出证明过程.7.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线AC、直线BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α(0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线ED交直线BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;8.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.课后巩固计划:学生对于本次课的评价:○特别满意○满意○一般○差学生签字:________教师评定:1、学生上次作业评价:○特别满意○满意○一般○差2、学生本次上课情况评价:○特别满意○满意○一般○差教师签字:________ 教师评语:教学主管审核批复:教学主管签字:________学思堂教育教务处。

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点+例题解析)初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

解决动点问题常见的答题思路是:1.注意分类讨论;2.仔细探究全等三角形对应边与对应角的变化;3.利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若运动速度为x/不存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,∠B=∠C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5cm,BC=12cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q 三点所构成的三角形全等.【习题精练】=,BC6=,线段PQ=AB,1.(2020·江苏东台月考)如图,有一个直角三角形ABC,∠C=90°,AC10点Q在过点A且垂直于AC的射线AX上来回运动,点P从C点出发,沿射线CA以2cm/s的速度运动,问>,才能使△ABC≌△QPA全等.P点运动___________秒时(t0)2.(2020·江苏泰州月考)如图,AB =12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图, ADC 中.∠C =90°,AC =10cm ,BC =5cm .AD ⊥AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC =,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q 为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4cm,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点A 、B 两点的坐标分别A (m ,0),B(0,n ),且|m -n -3|=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA 、OB 的长;(2)连接PB ,若△POB 的面积不大于3且不等于0,求t 的范围;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).=3S△BQC,则a=;(1)当t=2时,S△AQF(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图①图②12.如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE≌△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N 作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1备用图(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S = :3,试求点D ,E 的运动时间t 的值;(3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.参考答案及解析初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

全等三角形及动点问题分析

全等三角形及动点问题分析

FED CBA举一反三:【变式】已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(2).作以角平分线为对称轴的翻折变换构造全等三角形例2、如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.举一反三:【变式】如图,AD是ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.(3).利用截长(或补短)法作构造全等三角形例3、如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC.(1)如图1,若∠BAC=60°,点P恰巧在∠ABC的平分线上,PA=2,求PB的长;(2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明;(3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.举一反三:【变式】如图,AD是△ABC的角平分线,AB>AC,求证:AB-AC>BD-DC(4).在角的平分线上取一点向角的两边作垂线段例4、如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.例5、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD,求证:BD是∠ABC的平分线.类型二、全等三角形动态型问题例6、在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,垂足分别为E,F.(1)如图1当直线l不与底边AB相交时,求证:EF=AE+BF.(2)将直线l绕点C顺时针旋转,使l与底边AB相交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系,①AD>BD;②AD=BD;③AD<BD.举一反三:【变式】【问题情境】如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.【探究展示】(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.(2)如图2,若点E是BC的上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【拓展延伸】(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.知识梳理三角形全等中的动点问题分析思路:审题:要明白动点问题的关键是什么,一是点的运动路径,也就是点往哪里运动?有多少个点运动?点的运动速度是多少?运动到何时停止?运动情景分析:点运动的过程中会发生哪些变化?线段长的变化和线段长的表示.经过转折点后,图形会发生什么变化?线段长的表示是否发生变化,能否用代数式表示出来等;建立等量关系解答:动点问题到最后都是等量关系建立起来解答,如全等三角形对应边相等的讨论时,建立的就是线段长方程。

翼教版八年级数学上册难点探究专题动态变化中的三角形全等

翼教版八年级数学上册难点探究专题动态变化中的三角形全等

难点探究专题:动态变化中的三角形全等——以“静”制“动”,不离其宗◆类型一动点变化1.如图甲,已知AB=AC,M是BC的中点,点D是线段AM上的动点.(1)求证:BD=CD;(2)如图乙,若点D在线段MA的延长线上,BD与CD还相等吗?为什么?(3)如图丙,若M不是BC的中点,且BM=CM,则(1)中的结论还成立吗?为什么?◆类型二图形变换一、平移2.如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,且∠A=∠C.(1)试问OE=OF吗?请说明理由;(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.二、旋转3.如图,在Rt △ABC 中,∠ACB =90°,点D 、F 分别在AB 、AC 上,CF =CB ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF .(1)求证:△BCD ≌△FCE ;(2)若EF ∥CD ,求∠BDC 的度数.三、翻折4.(启东月考)如图,将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB .试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.【方法5】参考答案与解析1.(1)证明:∵M 是BC 的中点,∴BM =CM .在△ABM 和△ACM 中,∵AB =AC ,AM =AM ,BM =CM, ∴△ABM ≌△ACM (SSS),∴∠BAM =∠CAM . 在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD ≌△ACD (SAS),∴BD =CD ;(2)解:相等.理由如下:由(1)得∠BAM =∠CAM ,∴∠BAD =∠CAD .在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD ≌△ACD (SAS),∴BD =CD ;(3)解:成立.理由如下:在△ABM 和△ACM 中,⎩⎪⎨⎪⎧AB =AC ,AM =AM ,BM =CM ,∴△ABM ≌△ACM (SSS),∴∠BAM =∠CAM . 在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD ≌△ACD (SAS),∴BD =CD .2.解:(1)OE =OF .理由如下:∵DE ⊥AC ,BF ⊥AC ,∴∠DEC =∠BF A =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在△ABF 和△CDE 中,∵⎩⎪⎨⎪⎧∠A =∠C ,∠BF A =∠DEC ,AF =CE ,∴△ABF ≌△CDE ,∴BF =DE .在△BFO 和△DEO 中,∵⎩⎪⎨⎪⎧∠BFO =∠DEO ,∠BOF =∠DOE ,BF =DE ,∴△BFO ≌△DOE (AAS),∴OE =OF ;(2)结论依然成立.理由如下:由AE =CF ,得AF =CE ,结合已知得Rt △ABF ≌Rt △CDE ,得BF =DE ,从而△BFO ≌△DEO ,∴FO =EO ,即结论依然成立.3.(1)证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,∴CD =CE ,∠DCE =90°.∵∠ACB =90°,∴∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,∵⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,∴△BCD ≌△FCE (SAS);(2)解:由(1)可知∠DCE =90°,△BCD ≌△FCE ,∴∠BDC =∠E .∵EF ∥CD ,∴∠E =180°-∠DCE =90°,∴∠BDC =90°.4.解:DE +BF =EF .证明如下:延长CB 至G ,作∠5=∠1,如图.∵将Rt △ABC 沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABG =∠ADE ,∠1+∠2=∠3+∠4,∠2+∠3=∠1+∠4.∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB和△AED 中,∵⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF和△AEF 中,∵⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF =EF ,∴DE +BF =EF .习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。

专题05 难点探究专题:全等三角形中的动态问题(解析版)

专题05 难点探究专题:全等三角形中的动态问题(解析版)

专题05 难点探究专题:全等三角形中的动态问题考点一 利用全等三角形中的动点求时间问题(利用分类讨论思想)考点二 利用全等三角形中的动点求线段长问题考点三 利用全等三角形中的动点求线段长最小值问题考点四 利用全等三角形中的动点综合问题考点一 利用全等三角形中的动点求时间问题(利用分类讨论思想)例题:(2021·山东临沂·八年级期中)如图,CA AB ⊥,垂足为点A ,射线BM AB ⊥,垂足为点B ,12cm AB =,6cm AC =.动点E 从A 点出发以3cm /s 的速度沿射线AN 运动,动点D 在射线BM 上,随着 E 点运动而运动,始终保持ED CB =.若点E 的运动时间为(0)t t >,则当 t =________ 个秒时,DEB 与BCA 全等.【答案】2或6或8【解析】【分析】分两种情况:①当E 在线段AB 上时,②当E 在BN 上,再分别分成两种情况AC =BE ,AB =BE 进行计算即可.【详解】解:①当E 在线段AB 上,AC =BE 时,ACB BED ≅AC =6,∴ BE =6,∴ AE =12-6=6,∴ 点 E 的运动时间为632÷= (秒).②当E 在BN 上,AC =BE 时,ACB BED ≅AC =6,∴ BE =6,∴ AE =12+6=18.∴ 点 E 的运动时间为6318=÷ (秒).③当E 在BN 上,AB =BE 时,ACB BDE ≅∴ AE =12+12=24.∴点E 的运动时间为8324=÷ (秒)④当E 在线段AB 上,AB =BE 时,ACB BDE ≅这时E 在A 点未动,因此时间为0秒不符合题意. 故答案为:2或6或8.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式训练】1.(2021·全国·七年级专题练习)已知:如图,在长方形ABCD 中,6,10AB AD ==延长BC 到点E ,使4CE =,连接DE ,动点F 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为_______时,ABF 和DCE 全等.【答案】2或11【解析】【分析】分两种情况讨论,根据题意得出BF =2t =4和AF =26-2t =4即可求得答案.【详解】解:∵DCE 为直角三角形,且AB =DC ,∵当ABF ∵DCE 时,有BF =2t =CE =4,解得:t =2;当BAF △∵DCE 时,有AF =CE =4,此时2=10610-2t=26-2t AF BC CD DA t =++-++=4,解得:11t =,故答案为:2或11.【点睛】本题考查全等三角形的判定,注意到DCE为直角三角形,且AB=DC,故只有BF=2t=4和AF=26-2t=4两种情况.2.(2019·江苏·镇江实验学校八年级阶段练习)已知正方形ABCD中,AB=BC=CD=DA=8cm,∵A=∵B=∵C=∵D=90°.动点P以每秒2cm的速度从点B出发沿线段BC方向运动,动点Q同时以每秒8cm的速度从B点出发沿正方形的边BA-AD-DC-CB方向顺时针作折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.连接P A,当t的值为___________________秒时,P AB和QAD全等.【答案】0.8秒或83.【解析】【分析】分点Q在AB,AD,DC,BC边上这几种情况进行讨论,根据全等三角形的性质得出对应边相等,进而列出方程求得t的值.【详解】解:①当点Q在边AB上时,如图1,∵AB=AD,∵ABP=∵DAQ=90°,要使P AB和QAD全等,只能是P AB∵QDA,∵BP=AQ,∵AQ=8-8t,BP=2t,∵8-8t=2t,∵t=0.8,②当点Q在边AD时,不能构成QAD,③当点Q在边CD上时,如图2,同①的方法得,要使P AB和QAD全等,只能是P AB∵QAD,∵BP=DQ,∵2t=8t-16,∵t=83,④当点Q在边BC时,QAD不是直角三角形,而P AB是直角三角形,所以,不能全等;即:当P AB和QAD全等时,t的值为0.8或83,故答案为:0.8或83.【点睛】此题主要考查了全等三角形的判定和性质,解决本题的关键是分类讨论,用方程的思想解决问题.考点二利用全等三角形中的动点求线段长问题例题:(2019·江苏·宜兴市周铁中学八年级阶段练习)已知:如图,∵B=90°AB∵DF,AB=3cm,BD=8cm,点C 是线段BD上一动点,点E是直线DF上一动点,且始终保持AC∵CE,若AC=CE ,则DE的长为______.【答案】5【解析】【分析】根据全等得出对应边相等,即可得出答案.【详解】解:∵∵B=90°,AB∵DF,∵∵D=∵B=90°,∵AC∵CE,∵∵ACE=90°,∵∵ECD +∵CED =90°,∵ACB +∵ECD =90°,∵∵ACB =∵CED ;∴在∵ABC 和∵CDE 中ACB CED B DAC CE ∠∠∠∠⎧⎪⎨⎪⎩=== ∵∵ABC ∵∵CDE (AAS ),∵AB =CD =3cm ,∵DE =BC =8cm -3cm =5cm故答案为5.【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.【变式训练】1.(2020·江苏·泰州中学附属初中八年级阶段练习)如图,△ABC 中,点D 在边BC 上,DE ∵AB 于E ,DH ∵AC 于H ,且满足DE =DH ,F 为AE 的中点,G 为直线AC 上一动点,满足DG =DF ,若AE =4cm ,则AG = _____cm .【答案】2或6.【解析】【详解】∵DE ∵AB ,DH ∵AC ,∵∵AED =∵AHE =90°.在△ADE 和△ADH 中,∵AD =AD ,DE =DH , ∵∵ADE ∵∵ADH (HL ),∵AH =AE =4cm .∵F 为AE 的中点,∵AF =EF =2cm .在△FDE 和△GDH 中,∵DF =DG ,DE =DH , ∵∵FDE ∵∵GDH (HL ),∵GH =EF =2cm .当点G 在线段AH 上时,AG =AH -GH =4-2=2cm ;当点G 在线段HC 上时,AG =AH +GH =4+2=6cm ;故AG 的长为2或6.2.(2022·全国·八年级课时练习)如图,AO∵OM,OA=7,点B为射线OM上的一个动点,分别以OB,AB 为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,则PB的长度____________.【答案】7 2【解析】【分析】根据题意过点E作EN∵BM,垂足为点N,首先证明∵ABO∵∵BEN,得到BO=ME;进而证明∵BPF∵∵MPE并分析即可得出答案.【详解】解:如图,过点E作EN∵BM,垂足为点N,∵∵AOB=∵ABE=∵BNE=90°,∵∵ABO+∵BAO=∵ABO+∵NBE=90°,∵∵BAO=∵NBE,∵∵ABE、∵BFO均为等腰直角三角形,∵AB=BE,BF=BO;在∵ABO与∵BEN中,BAO NBE AOB BNE AB BE ∠⎪∠⎧⎩∠⎪∠⎨===,∵∵ABO ∵∵BEN (AAS ),∵BO =NE ,BN =AO ;∵BO =BF ,∵BF =NE ,在∵BPF 与∵NPE 中,FBP ENP FPB EPN BF NE ∠⎪∠⎧⎩∠⎪∠⎨===,∵∵BPF ∵∵NPE (AAS ),∵BP =NP =12BN ,BN =AO , ∵BP = 12AO = 12×7=72. 故答案为:72. 【点睛】本题考查三角形内角和定理以及全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形并灵活运用有关定理进行分析.考点三 利用全等三角形中的动点求线段长最小值问题例题:(2021·重庆八中八年级开学考试)如图,在Rt ∵ABC 中,∵ACB =90°,AC =6,BC =8,AB =10,AD 平分∵CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为________.【答案】245【解析】【分析】 在AB 上取点F ′,使AF ′=AF ,过点C 作CH ∵AB ,垂足为H .因为EF +CE =EF ′+EC ,推出当C 、E 、F ′共线,且点F ′与H 重合时,FE +EC 的值最小.【详解】解:如图所示:在AB 上取点F ′,使AF ′=AF ,过点C 作CH ∵AB ,垂足为H .∵AD 平分∵CAB ,∵∵CAD =∵BAD ,又AE =AE ,∵∵AEF ∵∵AE F ′(SAS ),∵FE =E F ′,∵S △ABC =12AB •CH =12AC •BC , ∵CH =•245AC BC AB =, ∵EF +CE =EF ′+EC ,∵当C 、E 、F ′共线,且点F ′与H 重合时,FE +EC 的值最小,最小值为245, 故答案为:245. 【点睛】本题主要考查的是勾股定理的应用、垂线段最短等知识,解题的关键是正确的作出辅助线,明确当C 、E 、F ′共线,且点F ′与点H 重合时,CE +EF 的值最小.【变式训练】1.(2021·全国·八年级专题练习)如图,在线段AB 两侧作ABC 和ABD △,使AC AB =,ABC ABD ∠=∠,E 为BC 边上一点,满足2EAD BAC ∠=∠,P 为直线AE 上的动点,连接BP 、DP .已知3AB =, 2.6AD =,BDE 的周长为3.6,则BP DP +的最小值为______.【答案】2.8【解析】 【分析】在BC上取CD′=BD,连接AD′,证明∵ACD′∵∵ABD,得到AD′=AD,∵CAD′=∵BAD,从而证明∵AED′∵∵AED,得到D′E=DE,∵AED′=∵AED,过A作AF∵BC,AF与BC交于点F,从而推断出BP+DP=BP+D′P最小值为P 点与E点重合时,BP与D′P共线,BP+D′P=BD′,利用勾股定理求出BD′的长度即可.【详解】解:在BC上取CD′=BD,连接AD′,∵AC=AB,∵∵C=∵ABC,∵∵ABC=∵ABD,∵∵C=∵ABD,又CD′=BD,AC=AB,∵∵ACD′∵∵ABD(SAS),∵AD′=AD,∵CAD′=∵BAD,∵∵DAD′=∵BAC,∵2∵EAD=∵BAC=∵DAD′,∵∵D′AE=∵DAE,又AD′=AD,AE=AE,∵∵AED′∵∵AED(SAS),∵D′E=DE,∵AED′=∵AED,∵D′在直线BD上,过A作AF∵BC,AF与BC交于点F,∵CD′=BD,D′E=DE,∵CD′+D′E+EB=BC=BD+DE+BE=3.6,∵P为AE上的动点,故BP+DP=BP+D′P最小值为P点与E点重合时,BP与D′P共线,BP+D′P=BD′,∵∵ABC中,AB=AC=3,BC=3.6,AF∵BC,AD′=AD=2.6,∵F为BC中点,即CF=BF=12BC=12×3.6=1.8,∵AF 2.4==,∵D′F1,∵BD′=BF+D′F=1.8+1=2.8,∵BP+DP的最小值为2.8,故答案为:2.8.【点睛】本题考查了最短路径问题,全等三角形的判定和性质,勾股定理,解题的关键正确作出辅助线,利用全等三角形的性质得到相等线段.2.(2019·湖北·武汉大学附属外语学校八年级阶段练习)∵ABC是边长为2的等边三角形,点P为直线BC 上的动点,把线段AP绕A点逆时针旋转60°至AE,O为AB边上一动点,则OE的最小值为____.【解析】【分析】根据题意连接EC,作CH∵AB于H,首先证明CE∵AB,再求出平行线之间的距离即可解决问题.【详解】解:如图,连接EC,作CH∵AB于H.∵∵ABC是等边三角形,∵∵BAC=∵ABC=∵ACB=60°,AB=AC,∵∵P AE=∵BAC=60°,∵∵P AB=∵EAC,∵P A=EQ,BA=CA,∵∵P AB∵∵EAC(SAS),∵∵ABP=∵ACE,∵∵ABP=180°﹣60°=120°,∵∵ACE=120°,∵∵BCE=120°﹣60°=60°,∵∵ABC=∵BCE,∵CE ∵AB ,∵点E 的运动轨迹是直线CE (CE ∵AB ),∵CB =CA =AB =2,CH ∵AB ,∵BH =AH =1,∵CH=根据垂线段最短,可知OE 的最小值=CH =【点睛】本题考查旋转变换和等边三角形的性质以及全等三角形的判定和性质和垂线段最短等知识,解题的关键是学会用转化的思想思考问题.考点四 利用全等三角形中的动点综合问题例题:(2022·辽宁葫芦岛·八年级期末)如图,在ABC 中,90,BAC AB AC ∠=︒=.点D 是直线BC 上一动点(点D 不与点B ,C 重合),90,DAE AD AE ∠=︒=,连接CE .(1)如图1,当点D 在线段BC 上时,直接写出,BC CD 与CE 之间的数量关系;(2)如图2,当点D 在边BC 的延长线上时,请探究线段,BC CD 与CE 之间存在怎样的数量关系?并说明理由;(3)如图3,若点D 在边CB 的延长线上,且点A ,E 分别在直线的两侧,其他条件不变,若10,6CD BC ==,直接写出CE 的长度.【答案】(1)CE +CD =BC ,证明见解析(2)CE =BC +CD ,证明见解析(3)CE =4【解析】【分析】(1)根据条件AB =AC ,∵BAC =90°,AD =AE ,∵DAE =90°,判定∵ABD ∵∵ACE (SAS ),即可得出BD 和CE 之间的关系,根据全等三角形的性质,即可得到CE +CD =BC ;(2)根据已知条件,判定∵ABD ∵∵ACE (SAS ),得出BD =CE ,再根据BD =BC +CD ,即可得到CE =BC +CD ;(3)根据条件判定∵ABD ∵∵ACE (SAS ),得出BD =CE ,即可解决问题.(1)解:如图1,∵∵BAC =∵DAE =90°,∵∵BAD =∵CAE ,在∵ABD 和∵ACE 中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∵∵ABD ∵∵ACE (SAS ),∵BD =CE ,∵BC =BD +CD =CE +CD ,(2)线段BC ,CD 与CE 之间存在的数量关系为BC =CE -CD .理由:如图2中,由(1)同理可得,∵∵BAC =∵DAE =90°,∵∵BAC +∵CAD =∵DAE +∵CAD , 即∵BAD =∵CAE ,∵在∵ABD 和∵ACE 中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∵∵ABD ∵∵ACE (SAS ),∵BD =CE ,∵BD =BC +CD ,即CE =BC +CD .(3)如图3,由(1)同理可得, ∵∵BAC =∵DAE =90°,∵∵BAC -∵BAE =∵DAE -∵BAE , 即∵BAD =∵EAC ,同理,∵ABD ∵∵ACE (SAS ),∵BD =CE ,∵CD =10,BC =6,∵DB =DC -BC =4,∵CE =4.【点睛】本题主要考查了全等三角形的判定与性质.解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.解题时注意:全等三角形的对应边相等.【变式训练】1.(2021·河南商丘·八年级期中)如图1,ABC 中,50A ∠=︒,AB AC =,点D 、E 别在边AB 、AC 上,且DE //BC .(1)求证:BD CE =;(2)围绕A 点旋转ADE ,使其一边AD 落在线段AC 上(如图2所示),连接CE 、BD 并延长相交于M 点.试求BMC ∠的度数.【答案】(1)证明见解析部分.(2)50°.【解析】【分析】(1)利用平行线的性质以及等腰三角形的性质证明∵ADE =∵AED ,推出AD =AE 即可解决问题.(2)证明△BAD∵∵CAE(SAS),推出∵ABD=∵ACE,可得∵BAD=∵CMD=50°.(1)证明:如图1中,∵AB=AC,∵∵B=∵C,∵DE∵BC,∵∵ADE=∵B,∵AED=∵C,∵∵ADE=∵AED,∵AD=AE,∵AB﹣AD=AC﹣AE,即BD=EC.(2)解:如图2中,∵AB=AC,∵BAD=∵CAE,AD=AE,∵∵BAD∵∵CAE(SAS),∵∵ABD=∵ACE,∵∵ADB=∵CDM,∵∵BMC=∵BAD=50°.【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.2.(2022·辽宁葫芦岛·八年级期末)如图①,点C在线段AB上(点C不与A,B重合),分别以AC,BC 为边在AB同侧作等边∵ACD和等边∵BCE,连接AE,BD交于点P.(1)观察猜想:1.AE与BD的数量关系为______;2.∵APD的度数为______;(2)数学思考:如图②,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.【答案】(1)①AE=BD;②60°(2)上述结论成立.∵APD=60°,证明见解析【解析】【分析】(1)根据已知条件只要证明∵DCB∵∵ACE,即可证明出AE于BD的数量关系,以及∵APD的角度;(2)根据∵ACD,∵BCE均为等边三角形,可知=AC,BC=EC,∵DCA=∵BCE=60°,进而可知∵DCA+∵ACB =∵ACB+∵BCE,即∵DCB=∵ACE,从而可证∵DCB∵∵ACE(SAS),则DB=AE,∵CDB=∵CAE,根据∵DCA =∵DP A=60°可证∵APD=60°.(1)解:∵∵ACD和∵CBE都是等边三角形,∵AC=DC,CE=CB,∵ACD=∵ECB=60°,∵∵ACE=∵ACD+∵DCE,∵DCB=∵DCE+∵ECB,∵∵DCB=∵ACE,∵∵DCB∵∵ACE,∵AE=BD,∵BDC=∵CAE,又∵∵DOP=∵COA,∵∵APD=∵ACD=60°,故答案是:AE=BD,60°;(2)上述结论成立,∵∵ACD,∵BCE均为等边三角形,∵DC=AC,BC=EC,∵DCA=∵BCE=60°,∵∵DCA+∵ACB=∵ACB+∵BCE,即∵DCB=∵ACE,在∵DCB和∵ACE中,DC ACDCB ACE CB CE=⎧⎪∠=∠⎨⎪=⎩,∵∵DCB∵∵ACE(SAS),∵DB=AE,∵CDB=∵CAE,如图,设BD与AC交于点O,易知∵DOC=∵AOP(对顶角相等),∵∵CDB+∵DCA=∵CAE+∵DP A,∵∵DCA=∵DP A=60°,即∵APD=60°.【点睛】本题考查全等三角形的性质与判定,等边三角形的性质,能够熟练掌握全等三角形的性质与判定是解决本题的关键.一、选择题1.(2020·广西百色·八年级期末)如图,在长方形ABCD中,4AB=,6AD=,延长BC到点E,使2CE=.动点P从点B出发,以每秒2个单位的速度沿BC CD DA--方向向终点A运动.设点P的运动时间为t秒,当ABP△和DCE全等时,t的值是()A.1B.1或3C.1或7D.3或7【答案】C【分析】分两种情况进行讨论,根据题意得出22BP t==和1622AP t=-=即可求得.【详解】解:因为AB CD=,若90ABP DCE∠=∠=︒,2BP CE==,根据SAS证得ABP DCE∆≅∆,由题意得:22BP t ==,所以1t =,因为AB CD =,若90BAP DCE ∠=∠=︒,2AP CE ==,根据SAS 证得BAP DCE ∆≅∆,由题意得:1622AP t =-=,解得7t =.所以,当t 的值为1或7秒时.ABP ∆和DCE ∆全等.故选:C .【点睛】本题考查了全等三角形的判定,解题的关键是掌握判定方法有:ASA ,SAS ,AAS ,SSS ,HL .2.(2022·全国·八年级课时练习)如图,在锐角∵ABC 中,∵BAC =45°,点B 到AC 的距离为2,∵BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是( )A .1B .1.5C .2D .3【答案】C【分析】在AC 上截取AE =AN ,连接BE ,由AD 平分∵CAB ,可得∵EAM =∵NAM ,然后根据SAS 可证∵AEM ∵∵ANM ,可得MN =ME ,然后根据BM +MN =BM +ME ≥BE ,可得当BE ∵AC ,即BE 是点B 到AC 的距离时,BM +MN 的值最小,从而求得答案.【详解】解:如图,在AC 上截取AE =AN ,连接BE ,∵AD 平分∵CAB ,∵∵EAM =∵NAM ,在∵AEM 和∵ANM 中, ∵AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩∵∵AEM ∵∵ANM (SAS ),∵MN =ME ,∵BM +MN =BM +ME ≥BE ,【点睛】本题主要考查了全等三角形的判定与性质、三角形的三边关系、点到直线的距离,通过构造全等【答案】261⊥AD BC∴BG A//∴∠=GBAAB BG=∴∆≅∆ABF∴=GE BFBF CE CE CG∴+,∴当G、三点共线时,AB AC=BC=12在Rt BCG∆故答案为:【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,通过构造三角形全等,将所求【答案】2.5或1在Rt∵ABC中,AB=10,AC=6,∵O是AB 的中点,∵OA=OB,在∵OAP和∵OBQ中,A OBQOA OBAOP BOQ∠=∠⎧⎪=⎨⎪∠=∠⎩,∵∵OAP∵∵OBQ(ASA),∵P A=BQ=6﹣1=5,OQ=OP,∵OM∵PQ,∵MQ=MP,∵52+x2=12+(8﹣x)2,解得x=2.5.当点P在AC的延长线上时,同法可得72+x2=12+(8﹣x)2,解得x=1,综上所述,满足条件的BM的值为2.5或1.故答案为:2.5或1.【点睛】本题考查勾股定理,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.5.(2022·江苏·八年级单元测试)如图, 在ABC中, 90,8cm,10cmACB AC BC∠===.点C在直线l 上, 动点P从A点出发沿A C→的路径向终点C运动; 动点Q从B点出发沿B C A→→路径向终点A运动.点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动, 其中一点到达终点时另一点也停止运动, 分别过点P和Q作PM⊥直线l于,M QN⊥直线l于N.当点P运动时间为___________秒时, PMC与QNC全等.【答案】2或6##6或2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】解:如图1所示:PMC ∆与QNC ∆全等,PC QC ,8102t t ∴-=-,解得∵2t =;如图2所示:点P 与点Q 重合,PMC 与QNC ∆全等,8210t t ∴-=-,解得∵6t =;故答案为∵1或6.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题6.(2022·江西吉安·七年级期末)如图,在长方形ABCD 中,6cm,8cm AB BC ==,动点P 从点B 出发,沿BC 方向以2cm /s 的速度向点C 匀速运动:同时动点Q 从点C 出发,沿CD 方向以2cm /s 的速度向点D 匀速运动,当一个点停止运动时,另一个点也停止运动.设运动时()()0t s t <<3.解答下列问题:(1)当点C 在线段PQ 的垂直平分线上时,求t 的值;(2)是否存在某一时刻t ,使AP PQ ⊥?若存在,求出t 的值;若不存在,请说明理由:【答案】(1)2(2)存在某一时刻t ,使AP PQ ⊥,t =1.【分析】(1)由线段垂直平分线的性质可得PC CQ =,列出方程可求解;(2)证出ABP PCQ ASA ≌(),由全等三角形的性质可得AB PC =,列出方程可求t 的值.(1)解:由题意得,2BP CQ t ==,∵82PC BC BP t =-=-,若点C 在线段PQ 的垂直平分线上,∵PC CQ =,即822t t -=,∵2t =;(2)解:存在某一时刻t ,使AP PQ ⊥.∵AP PQ ⊥,90B C ∠=∠=︒,∵90PQC QPC ∠+∠=︒,∵90∠+∠=︒APB QPC ,∵APB PQC ∠=∠.又∵BP CQ =,∵ABP PCQ ASA ≌(),∵AB CP =,∵826t -=,∵1t =.【点睛】本题考查了全等三角形的判定和性质,垂直平分线的性质,一元一次方程的应用,灵活运用这些性质解决问题是解题的关键.7.(2021·江苏南通·八年级期中)如图,在∵ABC 中,AB =AC ,∵BAC =90°,点D 是边BC 上的动点,连接AD ,点C 关于直线AD 的对称点为点E ,射线BE 与射线AD 交于点F .(1)在图中,依题意补全图形,并求证:∵ABF =∵AEB ;(2)记∵DAC =α(α<45°),求∵AFB 的大小;(3)若AB =BD ,猜想BE 和AD 的数量关系,并证明.【答案】(1)补全图见解析,证明见解析;(2)∵AFB=45°;(3)AD=BE,证明见解析【分析】(1)根据垂直平分线的性质求解即可;(2)根据三角形内角和定理计算即可;(3)连接DE,CE,AE,根据题意求得∵CAF=22.5°,再证明∵BED∵∵ADC(ASA),即可得解;【详解】解:(1)补完图并小结如图所示;连接CE,AE,由题意可知,∵点C关于直线AD的对称点为点E,AF垂直平分CE,∵AC=AE,∵AB=AC,∵AB=AE,∵∵ABF=∵AEB;(2)如图,由题意可知,∵EAF=∵CAD=α,∵∵BAE=90°﹣2α,在∵ABE中,∵BAE+∵ABF+∵AEB=180°,∵∵ABF=∵AEB=45°+α,∵∵AEB=∵EAF+∵AFB,∵EAF=α,∵∵AFB=45°;(3)结论:AD=BE;证明:如备用图,连接DE,CE,AE,在∵ABC中,AB=AC,∵ACB=∵ABC=45°,在∵ABD中,AB=BD,∵BAD=∵BDA=67.5°,∵∵CAF=22.5°,由(2)可知,∵ABE=∵ABC+∵CBF=45°+α,∵ABC=45°,∵∵CBF=α=22.5°,∵∵CAF=∵CBF,∵点C关于直线AD的对称点为点E,∵ED=DC,【点睛】本题主要考查了几何综合变换,结合全等三角形的判定与性质,三角形内角和定理证明是解题的(1)若点Q的运动速度与点P的运动速度相等,当t=1时,∵ACP∵BPQ是否全等?PC与PQ是否垂直?请分Rt ABC C 中,出发,沿折线CA -(1)点P 在CA 上运动的过程中,当CP =______时,CPD △与CBD 的面积相等;(直接写出答案)是等腰三角形,求∠CD 所在直线上存在另一动点______.(直接写出答案)与CBD 的面积相等时,证∵PCD 45°,分两种情况:=∵PCD =45∵CPD =∵与CBD 的面积相等,理由如下:45=︒, 在PCD 和△CP CB PCD CD CD =∠=∠=与CBD 的面积相等.)得:PCD ∠分两种情况:AC 上,如图若PC PD =,则45PDC PCD ∠=∠=︒,存在DP DC =,'∥,则MP AC八年级)如图,在ABC中,(1)求线段AO的长;∵AD是高,∵CQ=OP,∵CQ=OP,。

难点探究专题:全等三角形中的动态问题

难点探究专题:全等三角形中的动态问题

难点探究专题:全等三角形中的动态问题◆类型一全等三角形中的动点问题1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN 上的一个动点,在点P移动的过程中,若NA=NB,则∠PAM与∠PBM是否相等?说明理由.2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.◆类型二 全等三角形中的动图问题3.已知等边三角形的三条边相等、三个角都等于60°.如图,△ABC 与△CDE 都是等边三角形,连接AD ,BE.(1)如果点B ,C ,D 在同一条直线上,如图①所示,试说明:AD =BE ;(2)如果△ABC 绕C 点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.◆类型三 全等三角形中的翻折问题4.如图,将Rt △ABC 沿斜边翻折得到△ADC ,E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并说明理由.参考答案与解析1.解:∠P AM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△P AN ≌△PBN (SAS),∴∠P AN =∠PBN .∴∠P AM =∠PBM .2.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD与△BCE 中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE .(2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如图所示.∵将Rt △ABC沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG =90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF 和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF=EF ,∴DE +BF =EF .。

全等三角形动点专题

全等三角形动点专题

全等三角形动点专题全等三角形动点专题,这可是让不少同学抓耳挠腮的难题,但别怕,咱们一起来把它拿下!先来说说啥是动点问题。

就好比在一个三角形的舞台上,有个点像个调皮的小精灵,不停地跑来跑去。

这一动,可就把原本简单的三角形变得复杂又神秘啦。

我记得有一次在课堂上,给同学们讲这部分内容。

当时有个同学小A,眼睛瞪得大大的,一脸的迷茫。

我就问他:“咋啦,小A,被这个动点难住啦?”他苦着脸说:“老师,这个点怎么动来动去的,我脑袋都晕啦!”我笑了笑说:“别着急,咱们一步步来。

”那咱们先搞清楚为啥要研究全等三角形的动点问题。

其实啊,这就像是一场智力大冒险!通过研究动点在三角形中的运动轨迹和它带来的变化,能锻炼咱们的逻辑思维和空间想象力。

比如说,一个点从三角形的这边跑到那边,对应的边和角会发生啥变化,两个三角形还能不能全等。

来,咱们看看具体咋解题。

第一步,一定要认真读题,把题目中的关键信息都揪出来。

就像侦探破案一样,不放过任何一个小线索。

比如说,动点的速度是多少,运动的范围有没有限制。

第二步,画个草图。

把三角形画出来,动点的位置标上,随着它的运动,多画几个关键的位置。

这就像是给动点拍了一系列的照片,咱们能清楚地看到它的“行踪”。

第三步,找等量关系。

这可是解题的关键!通常可以从边相等、角相等这些角度入手。

比如说,如果两个三角形全等,那对应的边和角肯定是相等的。

举个例子吧。

有一个等腰三角形 ABC,AB = AC,点 P 从 A 点出发,沿着 AB 边以每秒 1 个单位的速度向 B 点运动。

设运动时间为 t 秒,问当 t 为何值时,三角形 ACP 和三角形 BCP 全等。

咱们先画个草图,把点 P 的运动轨迹表示出来。

然后分析,因为三角形 ACP 和三角形 BCP 全等,所以有两种情况。

一种是 AP = BP,这时候 t =(AB 的长度)÷ 2 。

另一种情况是 AC = BP,AP = BC ,这时候通过计算就能求出 t 的值。

全等三角形动点问题

全等三角形动点问题

全等三角形动点问题咱来说说全等三角形的动点问题哈。

你可以想象有两个三角形,它们一开始可能是分开的,但是呢,有一些点是可以动的,就像小虫子在三角形的边上或者内部爬来爬去。

这些动点的运动就会带来各种好玩的情况。

比如说,一个三角形的某个顶点沿着一条直线慢慢移动,然后我们就得看看在这个移动过程中,这两个三角形啥时候能全等。

二、解题的关键思路1. 找对应关系- 这就像是给三角形的边和角找对象一样。

全等三角形嘛,得有对应的边相等,对应的角相等。

当有动点的时候,我们得时刻盯着哪些边和角是对应的。

比如说,有个动点在一条边上移动,我们得看这个动点所在的边和另一个三角形的哪条边可能是对应边呢。

有时候题目会直接告诉你一些对应关系,那还好,如果没说,我们就得根据已知条件去推理。

- 例如,已知两个三角形有一个角相等,然后有一条边相等,那我们就得看这个相等的边是不是对应边。

如果是,再看看其他的边和角能不能也对应相等。

2. 用方程思想- 动点在动的过程中,会产生一些数量关系。

我们可以设动点移动的距离为一个未知数,比如设为x。

然后根据三角形全等的条件列出方程。

- 比如说,一个三角形的一条边长是5,另一个三角形对应的边长是 3 + x,如果这两个三角形全等,那这条边就相等啊,我们就可以列出方程 3 + x=5,然后解出x = 2。

这时候就知道动点移动到什么位置的时候这两个三角形全等啦。

3. 考虑运动范围- 动点可不是能无限制地跑,它有自己的活动范围。

这个范围可能是一条线段,也可能是一个区域。

我们得考虑在这个范围内,有多少种情况能让三角形全等。

- 就像一个动点在一条线段AB上移动,线段AB的长度是10,那这个动点P的位置AP的长度就只能在0到10之间。

如果根据全等条件列出方程得到AP的值不在这个范围里,那这个解就不合理,得舍去。

4. 分类讨论- 比如说,一个动点在三角形的一条边上移动,可能会出现这个动点靠近这条边的一个端点的时候,三角形和另一个三角形全等是一种情况;当动点靠近这条边的另一个端点的时候,又可能是另一种全等情况。

难点探究专题:全等三角形中的动点问题(3类热点题型讲练)(解析版)--初中数学北师大版7年级下册

难点探究专题:全等三角形中的动点问题(3类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第07讲难点探究专题:全等三角形中的动点问题(3类热点题型讲练)目录【题型一利用分类讨论思想求解动点中三角形全等问题】..................................................................................1【题型二利用三角形全等求证线段之间的关系问题】........................................................................................11【题型三利用三角形全等求证角之间的关系问题】.. (21)【题型一利用分类讨论思想求解动点中三角形全等问题】例题:(23-24八年级上·重庆·阶段练习)如图,在长方形ABCD 中,4,6AB AD ==,延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA →→向终点A 运动,设点P 的运动时间为t 秒,当t 的值为秒时,ABP 与DCE △全等.【答案】1或7【分析】本题考查了全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL .根据题意,分两种情况进行讨论,根据题意得出22BP t ==和1622AP t =-=即可求得.【详解】解:由题意得:AB CD =,若90,2ABP DCE BP CE ∠=∠=︒==,根据SAS 证得ABP DCE ≌△△,∴22BP t ==,即1t =,若90,2BAP DCE AP CE ∠=∠=︒==,根据SAS 证得BAP DCE ≌ ,∴1622AP t =-=,即7t =.∴当t 的值为1或7秒时.ABP 与DCE △全等.故答案为:1或7.【变式训练】1.(23-24八年级上·山东日照·阶段练习)如图,CA AB ⊥,垂足为点A ,12AB =米,6AC =米,射线BM AB ⊥,垂足为点B ,动点E 从A 点出发以2米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 经过秒时(不包括0秒),由点D E B 、、组成的三角形与BCA V 全等.【答案】3秒或9秒或12【分析】本题考查了三角形全等的判定与性质,分四种情况:当点E 在线段AB 上,AC BE =时,ACB BED ≌;当E 在BN 上,AC BE =时,ACB BED ≌;当E 在线段AB 上,AB EB =时;当E 在BN上,AB EB =时,ACB BDE ≌;分别利用三角形全等的性质进行求解即可,熟练掌握三角形全等的判定与性质是解此题的关键.【详解】解:当点E 在线段AB 上,AC BE =时,ACB BED ≌,6AC = ,6BE ∴=,1266AE AB BE ∴=-=-=,∴点E 的运动时间为623÷=(秒);当E 在BN 上,AC BE =时,ACB BED ≌,6AC = ,6BE ∴=,12618AE AB BE ∴=+=+=,∴点E 的运动时间为1829÷=(秒);当E 在线段AB 上,AB EB =时,此时E 在A 点未动,时间为0秒,不符合题意;当E 在BN 上,AB EB =时,ACB BDE ≌,12AB = ,12BE ∴=,121224AE AB BE ∴=+=+=,∴点E 的运动时间为24212÷=(秒);综上所述,当点E 经过3秒或9秒或12秒时(不包括0秒),由点D E B 、、组成的三角形与BCA V 全等,故答案为:3秒或9秒或12.2.(23-24八年级上·北京西城·期中)如图,在平面直角坐标系xOy 中,()5,0A ,()0,7B ,动点P ,Q 分别按照A O B --和B O A --的路线同时开始运动,到各自的终点时停止.直线l 经过原点O ,且l AB ∥,过P ,Q 分别作l 的垂线段,垂足分别为F ,E .若点P 的速度为每秒2个单位长度,点Q 的速度为每秒4个单位长度,运动时间为t 秒,当OPE 与OQF △全等时,t 的值为.【答案】1或2或5【分析】本题主要考查了全等三角形的性质和一元一次方程的应用,解题的关键是恰当分类并利用全等三角形的性质建立方程.判断出OP OQ =再分三种情况讨论,表示出OP ,OQ 建立一元一次方程求解即可.【详解】解:∵()5,0A ,()0,7B ,∴5OA =,7OB =,由题意,OP 和OQ 是两直角三角形的斜边,当OPE 与OQF △全等时,OP OQ =,①当点P 在OA 上,点Q 在OB 上时,根据题意可得∶s t 时,2AP t =,4BQ t =,∴52OP OA AP t =-=-,74OQ OB BQ t =-=-,∴5274t t -=-,解得∶1t =;②当点P ,Q 都在OA 上时,点P ,Q 重合时,两三角形重合时,P 点行程为2t ,Q 点行程为4t ,∴2457t t +=+,解得2t =;③当点P 在OB 上,点Q 在OA 上且点Q 与点A 重合时,25OP t =-,5OQ =∴255t -=.解得:5t =当OPE 与OQF △全等时,满足题意的t 的值为1或2或5.故答案为:1或2或5.3.(23-24八年级下·江苏泰州·阶段练习)如图,在长方形ABCD 中,3cm AB DC ==,2cm BC AD ==,现有一动点P 从点A 出发,以1cm /s 的速度沿长方形的边A B C D A →→→→运动,到达点A 时停止;点Q在边DC 上,DQ BC =,连接AQ .设点P 的运动时间为s t ,则当t =s 时,以长方形的两个顶点及点P 为顶点的三角形与ADQ △全等.(不考虑两个三角形重合的情况)【答案】1或2或7【分析】本题考查了全等三角形的判定和长方形的性质,掌握全等三角形的判定和恰当分类是解题的关键.先确定ADQ △是等腰直角三角形,再分三种情况:点P 在AB 边上,BP BC =或AP AD =,点P 在CD 边上,CP BC =,利用动点运动的路径求解即可.【详解】解:在长方形ABCD 中,90DAB B C D ∠=∠=∠=∠=︒,∵DQ BC =,∴DQ AD =,∴ADQ △是等腰直角三角形,分三种情况:当点P 在AB 边上,BP BC =时,BPC ADQ ≌,则1cm AP AB PB =-=,∴1s t =;当点P 在AB 边上,AP AD =时,DAP ADQ ≌,则2s=t 点P 在CD 边上,CP BC =时,BCP ADQ ≌,则(322)s =7s t =++,综上,当1s t =或2s 或7s 时,以长方形的两个顶点及点P 为顶点的三角形与ADQ △全等.故答案为:1或2或7.4.(23-24八年级上·福建泉州·阶段练习)如图,CA AB ⊥,垂足为点A ,射线BM AB ⊥,垂足为点B ,16cm AB =,8cm AC =.动点E 从A 点出发以4cm/s 的速度沿射线AN 运动,动点D 在射线BM 上,随着E 点运动而运动,始终保持ED CB =.若点E 的运动时间为()0t t >,则当t =秒时,DEB 与BCA V 全等.12cm BC =,现有一动点P 从点A 出发,沿着三角形的边AC CB BA →→运动,回到点A 停止,速度为2cm/s ,设运动时间为s t .(1)如图1,当t =s 时,12BPC ABC S S =;(2)如图2,在DEF 中,90E ∠=︒,8cm DE =,10cm DF =,D A ∠=∠.在ABC 的边上,若另外有一个动点Q ,与点P 同时从点A 出发,沿着边AB BC CA →→运动,回到点A 停止.在两点运动过程中的某一时刻,恰好APQ △与DEF 全等,求点Q 的运动速度.②点P 在AB 上时,过点∴点P 的运动路程为(2)∵在DEF∴①当点P在AC∴点Q的速度为:②当点P在AB上,点∴点Q的速度为:③当点P在AB上,④当点P 在AC 上,点∴点Q 的速度为:综上所述,两点运动过程中的某一时刻,19cm /s 10cm /s 或8cm 56.(2023·广西南宁·二模)如图,在ABC 中,AD 为高,18AC =.点E 为AC 上的一点,2CE AE =,连接BE ,交AD 于O ,若BDO ADC △≌△.(1)猜想线段BO 与AC 的位置关系,并证明;(2)有一动点Q 从点A 出发沿射线AC 以每秒6个单位长度的速度运动,设点Q 的运动时间为t 秒,是否存在t 的值,使得BOQ △的面积为27?若存在,请求出t 的值;若不存在,请说明理由;(3)在(2)条件下,动点P 从点O 出发沿线段OB 以每秒2个单位长度的速度向终点B 运动,P 、Q 两点同时出发,当点P 到达点B 时,P 、Q 两点同时停止运动,设运动时间为t 秒,点F 是直线BC 上一点,且CF AO =,当AOP 与FCQ 全等时,求t 的值.1118(1222BOQ S BO QE ∆=⨯=⨯⨯-解得:32t =(舍去);当2t >时,Q 在射线EC 上,如图1118(612)22BOQ S BO QE t ∆=⨯=⨯⨯-=解得:52t =,此时Q 与C 重合;综上所述,存在t 的值,使得BOQ △(3)由(1)可知,BDO ADC △≌△BOD ACD \Ð=Ð,当点F 在线段BC 延长线上时,如图BOD ACD Ð=ÐQ ,BOD ACD Ð=ÐQ ,AOP FCQ \Ð=Ð,AO CF =Q ,∴当OP CQ =时,AOP FCQ ≌此时,2618t t =-,解得:92t =;综上所述,当AOP 与FCQ 全等时,【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、三角形面积、三角形面积和定理、对顶角相等以及分类讨论等知识,本题综合性强,熟练掌握全等三角形的判定与性质,进行分类讨论是解题的关键.【题型二利用三角形全等求证线段之间的关系问题】例题:(23-24八年级上·北京海淀·阶段练习)在ABC 中,AC BC =,90ACB ∠=︒,点D 在BC 的延长线上,M 是BD 的中点,E 是射线CA 上一动点,且CE CD =,连接AD ,作DF AD ⊥,DF 交EM 延长线于点F .(1)如图1,当点E 在CA 上时,填空:AD ________DF (填“=”、“<”或“>”).(2)如图2,当点E 在CA 的延长线上时,请根据题意将图形补全,判断AD 与DF 的数量关系,并证明你的结论.【答案】(1)=,详见解析;(2)AD DF =,详见解析.【分析】本题考查了全等三角形的判定与性质的综合应用等知识;(1)连接BE ,先证SAS ACD BCE ≌(),得AD BE EBM DAC =∠=∠,,再证ASA EBM FDM ≌(),得BE DF =,即可得出结论;(2)连接BE ,先证SAS ACD BCE ≌(),得AD BE ADC BEC =∠=∠,,再证ASA BME DMF ≌(),得BE DF =,即可得出结论.证明三角形全等是解题的关键.【详解】(1)AD DF =,理由如下:连接BE ,如图1所示:∵90ACB ∠=︒,∴90DCA ∠=︒,在ACD 和BCE 中,CD CE DCA ECB AC BC =⎧⎪∠=∠⎨⎪=⎩,∴SAS ACD BCE ≌(),∴AD BE EBM DAC =∠=∠,,∵9090DAC ADC FDM ADC ∠+∠=︒∠+∠=︒,,∴DAC FDM ∠=∠,∴EBM FDM ∠=∠,∵M 是BD 的中点,∴BM DM =,在EBM △和FDM 中,EBM FDM BM DM EMB FMD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ASA EBM FDM ≌(),∴BE DF =,∴AD DF =,故答案为:=;(2)根据题意将图形补全,如图2所示:AD 与DF 的数量关系:AD DF =,证明如下:连接BE ,∵90ACB ∠=︒,点D 在BC 的延长线上,∴90ACD BCE ∠=∠=︒,在ACD 和BCE 中,CD CE DCA ECB AC BC =⎧⎪∠=∠⎨⎪=⎩,∴SAS ACD BCE ≌(),∴AD BE ADC BEC =∠=∠,,∵90ACB DF AD ∠=︒⊥,,∴90BEC MBE ADC MDF ∠+∠=∠+∠=︒,∴MBE MDF ∠=∠,∵M 是BD 的中点,∴MB MD =,在BME 和 DMF 中,MBEMDF MB MD EMB FMD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ASA BME DMF ≌(),∴BE DF =,∴AD DF =.【变式训练】1.(22-23八年级上·山西大同·阶段练习)如图1,在等腰直角三角形ABC 中,90AB AC BAC =∠=︒,,点P 为BC 边上的一个动点,连接AP ,以AP 为直角边,A 为直角顶点,在AP 右侧作等腰直角三角形PAD ,连接CD .(1)当点P 在线段BC 上时(不与点B 重合),求证:BAP CAD ≌V V .(2)当点P 在线段BC 的延长线上时(如图2),试猜想线段BP 和CD 的数量关系与位置关系分别是什么?请给予证明.【答案】(1)见解析(2)猜想:BP CD BP CD =⊥,,证明见解析【分析】(1)先证明BAP CAD ∠=∠,再根据三角形全等的判定定理证明BAP CAD ≌V V ,即可;(2)先证明BAP CAD ∠=∠,再根据三角形全等的判定定理证明BAP CAD ≌V V ,由全等三角形的性质,即可得证.【详解】(1)90BAC PAD ∠=∠=︒BAC PAC PAD PAC ∴∠-∠=∠-∠即∶BAP CAD∠=∠在BAP △和CAD 中AB AC BAP CAD PA DA =⎧⎪∠=∠⎨⎪=⎩()BAP CAD SAS ∴ ≌(2)猜想∶,BP CD BP CD=⊥90BAC PAD ∠=∠=︒Q BAC PAC PAD PAC∴∠+∠=∠+∠即∶BAP CAD∠=∠在BAP △和CAD 中ABAC BAP CAD PA DA =⎧⎪∠=∠⎨⎪=⎩()BAP CAD SAS ∴ ≌BP CD ∴=(全等三角形的对应边相等)B ACD ∠=∠(全等三角形的对应角相等)90B ACB ∠+∠=︒90ACD ACB ∴∠+∠=︒即∶BP CD⊥综上所述,,BP CD BP CD =⊥.【点睛】本题主要考场三角形全等的判定定理和性质定理,熟练掌握全等三角形的判定定理和性质定理,是解题的关键.2.(23-24八年级上·河北沧州·期末)问题情境:如图,等腰Rt ABC △,D 是斜边BC 上一点,连接AD ,在AD 右侧作AF AD ⊥,且AF AD =,AE 平分DAF ∠交边BC 于点E ,连接EF 和CF ,请直接写出线段BE CF EF 、、的关系:;猜想验证:若D 是斜边BC 上一动点,且AE 平分DAF ∠交边BC 于点E ,其他条件不变,此时上面的结论是否还成立,请说明理由.拓展延伸:若点D 运动到斜边CB 的延长线上,AE 平分DAF ∠交边BC 于点E ,其他条件不变,请直接写出线段BE CF EF 、、的关系:.【答案】问题情景:BE CF EF =+;猜想验证:成立,见解析;拓展延伸:BE EF CF=-【分析】本题主要考查了等腰三角形的性质、全等三角形的判定与性质等知识点,灵活运用全等三角形的判定与性质是解题的关键.问题情景:根据作图过程可解决问题情境;猜想验证:根据等腰直角三角形和已知条件可证明()SAS CAF BAD ≌可得=CF BD ,进而证明()SAS EAF EAD ≌可得EF ED =,然后根据BE BD ED =+即可证明结论;拓展延伸:先根据题意画出图形,然后参照猜想验证进行解答即可.【详解】解:问题情境:BE CF EF =+.猜想验证:BE CF EF =+,理由如下:∵ABC 是等腰直角三角形∴,90=∠=︒AC AB BAC ∵AF AD⊥∴90DAF =︒∴DAF CAD BAC CAD ∠-∠=∠-∠,即:CAF BAD∠=∠在CAF V 和BAD 中,AC AB CAF BAD AF AD=∠=∠=,,∴()SAS CAF BAD ≌∴=CF BD ,∵AE 平分DAF ∠,∴EAF EAD∠=∠在EAF △和EAD 中,AF AD EAF EAD AE AE =∠=∠=,,,∴()SAS EAF EAD ≌,∴EF ED =,∴BE BD ED CF EF =+=+,∴BE CF EF =+.拓展延伸:BE EF CF =-,理由如下:∵ABC 是等腰直角三角形∴,90=∠=︒AC AB BAC ∵AF AD⊥∴90DAF =︒∴DAF CAD BAC CAD ∠-∠=∠-∠,即:CAF BAD∠=∠在CAF V 和BAD 中,AC AB CAF BAD AF AD=∠=∠=,,∴()SAS CAF BAD ≌∴=CF BD ,∵AE 平分DAF ∠,∴EAF EAD∠=∠在EAF △和EAD 中,AF AD EAF EAD AE AE =∠=∠=,,,∴()SAS EAF EAD ≌,∴EF ED =,∴BE ED BD EF CF =-=-,∴BE EF CF =-.3.(23-24八年级上·湖北武汉·期末)如图,在等腰Rt ABC △中,90A ∠=︒,AB AC =,点E 为线段AB 上一动点(不与点B 重合),CE CF ⊥且CE CF =.(1)连接BF 交AC 于点M ,设BE m AB =.①当1m =时,如图1,则BM MF =______.②当49m =时,如图2,若18AB =,求MC 的长.(2)如图3,作FP CF ⊥交CA 的延长线于点P ,EQ EC ⊥交BC 于点Q ,连接PQ ,求证:PQ PF EQ =-.∵49BE AB =,AB =∴8,BE AE AB ==∵FCN ACE ∠+∠∴FCN CEA∠=∠∵FNC CAE ∠=∠∵CE CF =,FG EQ =,90CFG CEQ ∠=∠=︒,∴CFG CEQ△≌△∴CG CQ =,FCG ECQ∠=∠∵90ECF FCG ECG ∠=∠+∠=︒,∴90ECQ ECG QCG ∠+∠=∠=︒∵,AB AC AB AC=⊥∴45PCQ PCG∠=︒=∠∵PC PC=∴PCG PCQ△≌△∴PQ PG=∵PG PF FG PF EQ=-=-PQ PF QE∴=-4.(23-24八年级上·广东阳江·期末)如图1,已知:90MCN ∠=︒,点A 、B 在MCN ∠的边CM CN 、上,AC BC =,点D 为直线CN 上一动点,连接AD ,过点A 作AE AD ⊥,且AE AD =,作EF CM ⊥,垂足为F .(1)当点D 在线段BC 上时,证明:EF BC =;(2)如图2,当点D 在线段BC 延长线上时,(1)的结论是否仍然成立?若成立,请证明,若不成立,请说明理由;(3)如图3,在(2)的条件下,作点E 关于直线CM 的对称点E ',连接FE '、DE ',DE '与直线AB 交于点H ,求证:DH HE '=.【答案】(1)见解析(2)成立,见解析(3)见解析【分析】本题主要考查三角形全等的判定及性质,能熟练应用三角形全等证明线段相等是解题的关键.(1)根据“同角的余角相等”证明EAF ADC ∠=∠,再根据“AAS ”证明ACD EFA △≌△即可;(2)类比(1)的方法证明即可;(3)延长BA 交FE 的延长线于点G ,利用“ASA ”证明'BDH GE H △≌△即可得证.【详解】(1)证明: 90MCN ∠=︒,AE AD ⊥,∴90CAD EAF Ð+Ð=°,90CAD ADC ∠+∠=︒,∴EAF ADC ∠=∠,EF CM ⊥,∴90EFA ∠=︒,90EFA ACD ∴∠=∠=︒,在ACD 和EFA △中C EFA ADC EAF AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD EFA△≌△∴EF AC =,AC BC =,∴EF BC =.(2)解:结论成立.90MCN ∠=︒,∴=90ACD ∠︒,AE AD ⊥,∴90CAD EAF Ð+Ð=°,90CAD ADC ∠+∠=︒,∴EAF ADC ∠=∠,EF CM ⊥,∴90EFA ∠=︒,90EFA ACD ∴∠=∠=︒在ACD 和EFA △中C EFA ADC EAF AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD EFA △≌△,∴EF AC =,AC BC =,∴EF BC =.(3)证明:如图:如图,延长BA 交FE 的延长线于点G ,90MCN ∠=︒,AC BC =,∴45CAB ∠=︒,45FAG CAB Ð=Ð=°,EF CM ⊥,∴45FAG G Ð=Ð=°,∴FG FA =,又 E 、E '关于直线CM 对称,∴EF E F =',EF CM ⊥,∴E 、F 、E '三点共线,由(2)可得,ACD EFA△≌△∴AF CD =,EF AC BC ==,∴GF E F CD BC +=+',即GE BD '=,EF CM ⊥,90MCN ∠=︒,∴'GE BD ∥,∴HDB E ∠=∠',HBD G Ð=Ð,在BDH △和GE H ' 中'HDB E GE BD HBD G ∠=∠⎧⎪=⎨⎪∠=∠⎩'∴BDH GE H' ≌∴DH HE ='.【题型三利用三角形全等求证角之间的关系问题】例题:(23-24八年级上·湖南永州·期中)在ABC 中,AB AC =,90BAC ∠=︒,点D 为AC 上一动点.(1)如图1,点E 、点F 均是射线BD 上的点并且满足AE AF =,90EAF ∠=︒.求证:ABE ACF ≌ ;(2)在(1)的条件下,求证:CF BD ⊥;(3)由(1)我们知道45AFB ∠=︒,如图2,当点D 的位置发生变化时,过点C 作CF BD ⊥于F ,连接AF .那么AFB ∠的度数是否发生变化?请证明你的结论.【答案】(1)见解析(2)见解析(3)45AFB ∠=︒,不变化,理由见解析【分析】本题属于三角形综合题,主要考查了全等三角形的判定与性质,三角形内角和定理的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的性质进行推导.(1)根据90BAC BAE EAD ∠=∠+∠=︒,90EAF CAF EAD ∠=∠+∠=︒得出BAE CAF ∠=∠,即可根据SAS 证明ABE ACF ≌ ;(2)易得90ABE BDA ∠+∠=︒,根据ABE ACF ≌ ,得出ABE ACF ∠=∠,则90BDA ACF ∠+∠=︒,进而得出90CDF ACF ∠+∠=︒,则90BFC ∠=︒,即可求证CF BD ⊥;(3)过点A 作AF 的垂线交BM 于点E ,易得90ABD BDA ∠∠+=︒,90ACF CDF ∠∠+=︒,即可得出ABD ACF ∠∠=,通过求证()ASA ABE ACF ≌ 得出AE AF =,则AEF 是等腰直角三角形,即可求出45AFB ∠=︒.【详解】(1)解:∵90BAC BAE EAD ∠=∠+∠=︒,90EAF CAF EAD ∠=∠+∠=︒∴BAE CAF ∠=∠,在ABE 和ACF △中AB AC BAE CAF AE AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ACF ≌△△;(2)解:∵90BAC ∠=︒,∴90ABE BDA ∠+∠=︒,由(1)得ABE ACF ≌ ,∴ABE ACF ∠=∠,∴90BDA ACF ∠+∠=︒,又∵BDA CDF ∠=∠,∴90CDF ACF ∠+∠=︒,∴90BFC ∠=︒,∴CF BD ⊥;(3)解:45AFB ∠=︒,不变化,理由如下:过点A 作AF 的垂线交BM 于点E∵CF BD⊥∴90BAC ∠=︒∴90ABD BDA ∠∠+=︒同理90ACF CDF ∠∠+=︒∵CDF ADB∠∠=∴ABD ACF∠∠=同(1)理得BAE CAF∠∠=在ABE 和ACF 中BAE CAF AB AC ABD ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE ACF ≌ ∴AE AF=∴AEF 是等腰直角三角形∴45AFB ∠=︒.【变式训练】1.(22-23八年级上·江苏徐州·阶段练习)点P 、Q 分别是边长为4cm 的等边ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都是1cm /s .(1)连接AQ 、CP 交于点M ,则在P 、Q 运动的过程中,CMQ ∠变化吗?若变化,则说明理由;若不变,则求出它的度数;(2)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则CMQ ∠变化吗?若变化,则说明理由;若不变,请求出它的度数.【答案】(1)不变,60CMQ ∠=︒(2)不变,120CMQ ∠=︒【分析】(1)因为点P 从顶点A 、点Q 从顶点B 同时出发,且它们的速度都为1cm /s ,所以AB CA =,BQ AP =,60B CAP ∠=∠=︒,因而运用边角边定理可知ABQ CAP ≌△△.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得CMQ ∠的度数.(2)首先利用边角边定理证得PBC QCA ≌△△,再利用全等三角形的性质定理得到BPC CQM ∠=∠,再运用三角形角间的关系求得CMQ ∠的度数.【详解】(1)解:60CMQ ∠=︒不变.等边三角形ABC 中,AB CA =,60B CAP ∠=∠=︒,又由条件得BQ AP =,∴()SAS ABQ CAP ≌△△,∴BAQ ACP ∠=∠,∴60CMQ ACP CAM BAQ CAM BAC ∠=∠+∠=∠+∠=∠=︒;(2)解:120CMQ ∠=︒不变.在等边三角形ABC 中,60ABC CAP ∠=∠=︒,∴120PBC QCA ∠=∠=︒,又由条件得BP CQ =,BC CA =,∴()SAS PBC QCA ≌△△,∴BPC CQM ∠=∠,又 PCB MCQ ∠=∠,∴120CMQ PBC ∠=∠=︒.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,根据题意证明三角形全等是解题的关键.2.(23-24八年级上·贵州遵义·期末)在Rt ABC △中,90ACB AC BC ∠=︒=,,点E 为AC 上一动点,过点A 作AD BE ⊥于D ,连接CD .(1)【观察发现】如图①,DAC ∠与DBC ∠的数量关系是;(2)【尝试探究】点E 在运动过程中,CDB ∠的大小是否改变,若改变,请说明理由,若不变,求CDB ∠的度数;(3)【深入思考】如图②,若E 为AC 中点,探索BE 与DE 的数量关系.【答案】(1)DAC DBC∠=∠(2)CDB ∠的大小不变,45CDB ∠=︒(3)5BE DE=【分析】此题考查等腰直角三角形的判定与性质、全等三角形的判定与性质等知识.(1)由90ACB ADB ∠=∠=︒,得9090DAC AED DBC BEC ∠+∠=︒∠+∠=︒,,而AED BEC ∠=∠,所以DAC DBC ∠=∠,于是得到问题的答案;(2)作CF CD ⊥交BD 于点F ,则90ACD BCF ACF ∠=∠=︒-∠,而DAC FBC AC BC ∠=∠=,,即可证明DAC FBC ≌ ,得CD CF =,则45CDB CFD ∠=∠=︒,所以CDB ∠的大小不改变,45CDB ∠=︒;(3)作CG CD ⊥交BD 于点G ,作CH BD ⊥于点H ,可证明CHE ADE ≌ ,得HE DE CH AD ==,,由DAC GBC ≌ ,得AD BG =,则CH BG =,由CG CD CH DG =⊥,,得DH GH =,则CH DH GH ==,所以2BG DH GH DE ===,即可推导出5BE DE =.【详解】(1)∵90ACB AD BE∠=︒⊥,∴90ACB ADB ∠=∠=︒,∴9090DAC AED DBC BEC ∠+∠=︒∠+∠=︒,,∵AED BEC ∠=∠,∴DAC DBC ∠=∠,故答案为:DAC DBC ∠=∠.(2)CDB ∠的大小不改变,如图①,作CF CD ⊥交BD 于点F ,则90DCF ∠=︒,∴90ACD BCF ACF ∠=∠=︒-∠,由(1)得DAC FBC ∠=∠,∵AC BC=∴()ASA DAC FBC ≌,∴CHE ADE ∠=∠,∵E 为AC 中点,∴CE AE =,∵CEH AED ∠=∠,∴()AAS CHE ADE ≌,合),以AD 为一边在AD 的右侧作ADE V ,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图1,当点D 在线段CB 上时,BD 与CE 有何数量关系,请说明理由.(2)在(1)的条件下,当90BAC ∠=︒时,那么DCE ∠=________度.(3)设BAC DCE ∠α∠β==,.①如图2,当点D 在线段CB 上,90BAC ∠≠︒时,请探究α与β之间的数量关系.并证明你的结论;②如图3,当点D 在线段CB 的延长线上,90BAC ∠≠︒时,请将图3补充完整并直接写出此时α与β之间的数量关系.【答案】(1)BD CE =,理由见解析;(2)90;(3)①180αβ+=︒,证明见解析;②图见解析,αβ=.【分析】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质(1)由题意可得BAD CAE ∠=∠,即可证明BAD CAE ≌,可得BD CE =,ACE B ∠=∠,即可解题;(2)由题意可得BAD CAE ∠=∠,即可证明BAD CAE ≌,可得BD CE =,ACE B ∠=∠,即可解题;(3)①由题意可得BAD CAE ∠=∠,即可证明BAD CAE ≌,可得ACE B ∠=∠,根据180B ACB α∠+∠=︒-即可解题;②由题意可得BAD CAE ∠=∠,即可证明BAD CAE ≌,可得ACE B ∠=∠,根据180ADE AED α∠+∠+=︒,180CDE CED β∠+∠+=︒即可解题;【详解】(1)解:BD CE =,理由:90BAD DAC ∠+∠=︒ ,90DAC CAE ∠+∠=︒,BAD CAE ∴∠=∠,在BAD 和CAE V 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴ ≌,BD CE ∴=;(2)解:BAD CAE △≌△,ACE B ∴∠=∠,90B ACB ∠+∠=︒ ,90DCE ACE ACB ∴∠=∠+∠=︒;故答案为:90;(3)解:①BAD DAC α∠+∠= ,DAC CAE α∠+∠=,BAD CAE ∴∠=∠,在BAD 和CAE V 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴ ≌,ACE B ∴∠=∠,180B ACB α∠+∠=︒- ,180DCE ACE ACB αβ∴∠=∠+∠=︒-=,180αβ∴+=︒;②作出图形,BAD BAE α∠+∠= ,BAE CAE α∠+∠=,BAD CAE ∴∠=∠,在BAD 和CAE V 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴ ≌,AEC ADB ∴∠=∠,180ADE AED α∠+∠+=︒ ,180CDE CED β∠+∠+=︒,CED AEC AED ∠=∠+∠,αβ∴=.。

中考数学专题复习教案 全等三角形中动点问题

中考数学专题复习教案 全等三角形中动点问题

A B CDE F 个性化辅导授课案教师: 学生: 日期: 星期: 时段:课题全等三角形的动点问题分析讲解学情分析 .动点一般在中考都是压轴题,步骤不重要,重要的是思路。

动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 教学目标 考点分析思路:1.利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4.分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论教学 重点 难点 利用熟悉的知识点解决陌生的问题 教学方法教师引导,自主思考教学过程 三角形与动点问题1、如图,在等腰△ACB 中,AC =BC =5,AB =8,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,则DE +DF = .2、在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).3、如图,将边长为1的等边△OAP 按图示方式,沿x 轴正方向连续翻转2011次,点P 依次落在点P1,P2,P3,P4,…,P2007的位置.试写出P1,P3,P50,P2011的坐标.4、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF(2)试证明△DFE是等腰直角三角形5、如图,在等边ABC∆的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问(1)在爬行过程中,CD和BE始终相等吗?(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,,求证:︒CQE∠60=(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确6、如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.7、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说图1 图2 图3明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?8、如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ).(1)若m = n 时,如图,求证:EF = AE ;(2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE ?若存在,请求出点E 的坐标;若不存在,请说明理由.9.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右.侧.作ADE △,使AD AE DAE BAC =∠=∠,,连接CE . (1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; (2)设BAC α∠=,BCE β∠=.xOE BAyCFxOE BAyCFx O EBAyCFAQCDBP①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.10.如图, 直线l 与x 轴、y 轴分别交于点) 0,8 ( M ,点) 6,0 ( N .点P 从点N 出发,以每秒1个单位长度的速度沿N →O 方向运动,点Q从点O 出发,以每秒2个单位长度的速度沿O →M 的方向运动.已知点QP 、同时出发,当点Q到达点M 时,QP 、两点同时停止运动, 设运动时间为t 秒.(1)设四边形...MNPQ 的面积为S ,求S 关于t 的函数关系式,并写出t 的取值范围.(2)当t 为何值时,QP 与l 平行?教学反思:AEEAC CD D BB图1 图2 AA备用图B CB C 备用图l QOM N xy PA BC DEF G H KMN12345678ACQ B P 三、本次课后作业:1、如图,AC 为正方形ABCD 的一条对角线,点E 为DA 边延长线上的一点,连接BE ,在BE 上取一点F ,使BF BC =,过点B 作BK BE ⊥于B ,交AC 于点K ,连接CF ,交AB 于点H ,交BK 于点G . (1)求证:BG BH =; (2)求证:AE BG BE +=2、已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),解答下列问题: (1)当t 为何值时,△PBQ 是直角三角形? (2)设四边形APQC 的面积为y (cm 2),求y 与t 的关系式;是否存在某一时刻t ,使四边形APQC 的面积是△ABC 面积的三分之二?如果存在,求出相应的t 值;不存在,说明理由;3、已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.4、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒). (1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.5、在ABC ∆中,,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿AC 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形全等中的动点问题难点专题探究
——以“静”制“动”,不离其宗
◆类型一动点变化
1.如图,Rt△ABC中,∠C=90°,AC =6,BC=3,PQ=AB,点P与点Q分别在AC和AC的垂线AD上移动,则当AP=_________时,△ABC和△APQ全等.
2.如图,△ABC中,AB=AC=12cm,∠B=∠C,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.若点Q的运动速度为v cm/s,则当△BPD与△CQP全等时,v的值为____________【提示:三角形中有两个角相等,则这两个角所对的边相等】.
3.△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC 上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.【方法11】
(1)观察猜想:如图①,当点D在线段BC上时,
①BC与CF的位置关系为_______;
②线段BC,CD,CF之间的数量关系为___________ (将结论直接写在横线上).
(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
◆类型二图形变换
4.如图甲,已知A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,且AB=CD,连接BD.
(1)试问OE=OF吗?请说明理由;
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.
5.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
参考答案与解析
1.3或6 解析:∵△ABC 和△APQ 全等,AB =PQ ,∴有△ABC ≌△QP A 或△ABC ≌△PQA .当△ABC ≌△QP A 时,则有AP =BC =3;当△ABC ≌△PQA 时,则有AP =AC =6,∴当AP =3或6时,△ABC 和△APQ 全等,故答案为3或6.
2.2或3 解析:当BD =PC 时,△BPD 与△CQP 全等.∵点D 为AB 的中点,∴BD =1
2AB =6cm ,∴PC =6cm ,∴BP =8-6=2(cm).∵点P 在线段BC 上以2cm/s 的速度由B 点向C 点运动,∴运动时间为1s.∵△DBP ≌△PCQ ,∴CQ =BP =2cm ,∴v =2÷1=2(cm/s); 当BD =CQ 时,△BDP ≌△QCP .∴PB =PQ ,∠B =∠CQP .又∵∠B =∠C ,∴∠C =∠CQP ,∴PQ =PC ,∴PB =PC .∵BD =6cm ,BC =8cm ,PB =PC ,∴QC =6cm ,∴BP =4cm ,∴运动时间为4÷2=2(s),∴v =6÷2=3(cm/s),故答案为2或3.
3.解:(1)①垂直 ②BC =CD +CF (2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下: ∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF . 在△DAB 与△F AC 中,⎩⎪⎨⎪
⎧AD =AF ,∠BAD =∠CAF ,
AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =
∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .
4.解:(1)OE =OF .理由如下:∵DE ⊥AC ,BF ⊥AC ,∴∠DEC =∠BF A =90°.∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在Rt △ABF 和Rt △CDE 中,

⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE (HL),∴BF =DE .在△BFO 和△DEO 中,⎩⎪⎨⎪
⎧∠BFO =∠DEO ,∠BOF =∠DOE ,BF =DE ,
∴△BFO ≌△DEO (AAS),∴OE =OF .
(2)结论依然成立.理由如下:∵AE =CF ,∴AE -EF =CF -EF ,∴AF =CE .同(1)可得△BFO ≌△DEO ,∴FO =EO ,即结论依然成立.
5.(1)证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,∴CD =CE ,∠DCE =90°.∵∠ACB =90°,∴∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎪⎨⎪
⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,
∴△BCD ≌△FCE (SAS).
(2)解:由(1)可知∠DCE =90°,△BCD ≌△FCE ,∴∠BDC =∠E .∵EF ∥CD ,∴∠E =180°-∠DCE =90°,∴∠BDC =90°.。

相关文档
最新文档