【精选课件】初中数学1.2 全等三角形课件.ppt
全等三角形ppt课件
三、概念剖析
为了方便书写,我们可以用符号表示两个三角形的全等.
例如△ABC与△DEF是全等的,
A
D
可以记作:“△ABC ≌△DEF”,
读作:“△ABC 全等于△DEF”. B
CE
F
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.
例如,△ABC与△DEF全等,点A 与点D、点B 与点E、点C 与点F为对应
三、概念剖析
猜想:全等三角形对应边和对应角有什么关系呢? 全等三角形的性质:全等三角形的对应边相等,对应角相等.
应用格式 ∵△ABC≌△DEF,
A
D
∴AB=DE,BC=EF,AC=DF
∠A=∠D,∠B=∠E,∠C=∠F B
CE
F
四、典型例题
例1.如图△OCA≌△OBD,点C和点B,点A和点D是对应点.
在我们的周围,经常可以看到形状、大小完全相同的图形, 这样的图形叫做全等形.研究全等形的性质和判定两个图形全等 的方法,是几何学的一个重要内容,本章将以三角形为例,对这 些问题进行研究.
同一种剪纸
风扇的叶片
上一章我们通过推理论证得到了三角形内角和定理等重要结 论.本章中,推理论证将发挥更大的作用.我们将通过证明三角 形全等来证明线段或角相等,利用全等三角形证明角的平分线的 性质.通过本章学习,你对三角形的认识会更加深入,推理论证 能力会进一步提高.
新知一览
全等三角形
“边边边”
全
等
三角形全等
“边角边”
三
的判定
“角边角”“角角边”
角
“斜边、直角边”
形 角平分线的性质
角平分线的性质
角平分线的判定
第十二章 全等三角形
人教版初中数学《全等三角形》_PPT-优秀版
证明:(1)∵BD⊥m,CE⊥m,
∴∠ADB=∠CEA=90°,
∴∠ABD+∠BAD=90°.
∵AB⊥AC,
∠ADB=∠C
∠ABD=∠CAE.
AB=AC,
在△BDA和△AEC中, ∴△BDA≌△AEC(AAS).
【获奖课件ppt】人教版初中数学《全 等三角 形》_p pt-优 秀版1- 课件分 析下载
归纳总结
两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边”或“AAS”.
A
在△ABC和△A′B′C′中,
∠A=∠A′(已知),
∠B=∠B′ (已知),
B
C
A′
AC=A′C ′(已知),
∴ △ABC≌△ A′ B′ C′ (AAS). B ′
C′
【获奖课件ppt】人教版初中数学《全 等三角 形》_p pt-优 秀版1- 课件分 析下载
C
A
B
E
D
C
C′
A
B
A′
B′
作法:
(1)画A'B'=AB;
(2)在A'B'的同旁画∠DA'B '=∠A,∠EB'A '=∠B,
A'D,B'E相交于点C'.
想一想:从中你能发现什么规律?
知识要点
“角边角”判定方法
u文字语言:有两角和它们夹边对应相等的两个三角 形全等(简写成“角边角”或“ASA”). A
A
D
∠ABC=∠DCB(已知),
BC=CB(公共边),
∠ACB=∠DBC(已知)B,
C
∴△ABC≌△DCB(ASA ).
判定方法:两角和它们的夹边对应相等两个三角形全等.
苏科版初中八年级数学上册第一章《全等三角形》PPT课件
C
BC=EF,
CA=FD,
∴ △ABC ≌△ DEF(SSS).
E
F
1.3 探索三角形全等的条件(6)
二、自主探究
如果一个三角形三边的长度确定,那么这个三角 形的形状和大小就完全确定.三角形的这个性质叫做 三角形的稳定性.
1.3 探索三角形全等的条件(6)
三、知识应用
1.下列图形中,哪两个三角形全等?
分别以点C、 D为圆心,大 于为半12 径CD作的弧长, 两弧在 ∠AOB的内部 交于点M.
画射线OM 作射线OM
C
M
D
∴射线OM就是所求作的图形.
1.3 探索三角形全等的条件(7)
3.证 请对你的作法进行证明. 证明:在△MOC和△MOD中,
OC=OD,
4.用 用直尺和圆规完成以下作图:OM=OM,
四、尝试练习
1.已知:如图,AB=CD,AD=CB,
求证:∠B=∠D.
D
C 证明:连结AC,
在△ABC 和△CDA中,
A
B
AB=CD(已知),
BC=DA(已知),
AC=CA(公共边),
∴ △ABC≌△CDA(SSS),
∴∠B=∠D .
1.3 探索三角形全等的条件(6)
四、尝试练习
2.如图,AC、BD相交于点O,且AB=DC, AC=BD.求证:∠A=∠D.
1.3 探索三角形全等的条件(1)
探索活动:
(二)如图,△ABC与△DEF、 △MNP能完全重合
吗?
A
1.5
45
B
3
D
1.5 60
M
3
E C
F
3
N
45
全等三角形ppt课件
斜边直角边定理
总结词
斜边和一条直角边对应相等的两个直角三角形全等
详细描述
斜边直角边定理是全等三角形的基本定理之一,它表明如果两个直角三角形的斜边和一条直角边相等 ,则这两个直角三角形全等。这个定理可以用于证明两个直角三角形全等,也可以用于构造全等直角 三角形。
03
全等三角形的证明方法
利用全等三角形的性质和判定方法证明
两线垂直等。
在几何中,全等三角形可用于解 决角度、长度等问题,为许多几
何定理的证明提供了工具。
通过全等三角形,我们可以证明 两个平面图形是否全等,这对于 研究几何形状的性质和面积、体
积的计算非常重要。
在代数中的应用
全等三角形在代数中也有广泛的 应用,主要体现在因式分解、解
方程等方面。
利用全等三角形的性质,可以将 一个复杂的式子通过恒等变形转 化为一个更易于处理的式子,从
02
全等三角形的基本定理和 推论
边边边定理
01
总结词
三边对应相等的两个三角形全等
02
详细描述
边边边定理是全等三角形的基本定理之一,它表明如果两个三角形的 三条对应边相等,则这两个三角形全等。这个定理可以用于证明两个 三角形全等,也可以用于构造全等三角形。
边角边定理
总结词
两边和它们的夹角对应相等的两个三角形全等
全等三角形在三角函数的应用中,可以帮助我们理解如何用三角函数解决实际问题 ,如测量不可直接测量的角度或长度。
05
全等三角形的拓展知识
勾股定理的证明与应用
勾股定理的证明 欧几里得证法:利用相似三角形的性质证明勾股定理。 毕达哥拉斯证法:利用正方形的性质证明勾股定理。
勾股定理的证明与应用
全等三角形的判定课件
全等三角形的判定课件全等三角形是初中数学中的重要概念,其判定方法是解决相关几何问题的关键。
本课件将详细介绍全等三角形的判定方法,帮助同学们深入理解并熟练运用。
一、全等三角形的定义两个能够完全重合的三角形叫做全等三角形。
完全重合意味着它们的形状和大小完全相同,对应边相等,对应角也相等。
二、全等三角形的性质1、全等三角形的对应边相等。
例如,若△ABC≌△DEF,则 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等。
比如,△ABC≌△DEF,则∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等。
因为对应边相等,所以周长也相等。
4、全等三角形的面积相等。
形状大小完全相同,面积自然相等。
三、全等三角形的判定方法1、“边边边”(SSS)三边对应相等的两个三角形全等。
举例说明:在△ABC 和△DEF 中,如果 AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。
证明思路:通过构建三角形的框架,三边确定了,三角形的形状和大小也就唯一确定了。
2、“边角边”(SAS)两边和它们的夹角对应相等的两个三角形全等。
例如:在△ABC 和△DEF 中,若 AB = DE,∠A =∠D,AC =DF,则△ABC≌△DEF。
证明要点:夹角确定了三角形的形状,两边确定了三角形的大小。
3、“角边角”(ASA)两角和它们的夹边对应相等的两个三角形全等。
比如:在△ABC 和△DEF 中,若∠A =∠D,AB = DE,∠B =∠E,则△ABC≌△DEF。
证明关键:夹边和两角共同确定了三角形的形状和大小。
4、“角角边”(AAS)两角和其中一个角的对边对应相等的两个三角形全等。
举例:在△ABC 和△DEF 中,若∠A =∠D,∠B =∠E,BC =EF,则△ABC≌△DEF。
证明方法:通过三角形内角和定理,可以将“角角边”转化为“角边角”来证明。
5、直角三角形的特殊判定方法“斜边、直角边”(HL)斜边和一条直角边对应相等的两个直角三角形全等。
全等三角形PPT课件
在计算机图形学中,全等三角形被用于三维模型的构建和渲染。通过组合和变换全等三角形, 可以创建出复杂的三维物体和场景。
05
全等三角形拓展知识
相似三角形概念及性质
相似三角形定义
两个三角形如果它们的对应角相等, 则称这两个三角形相似。
相似比
相似三角形的对应边之间的比例称 为相似比。
相似三角形概念及性质
全等三角形PPT课件
目录
• 全等三角形基本概念 • 全等三角形证明方法 • 全等三角形在几何中的应用 • 全等三角形在生活中的应用 • 全等三角形拓展知识 • 课程总结与回顾
01
全等三角形基本概念
定义与性质
01
定义
能够完全重合的两个三角形叫 做全等三角形。
全等三角形的对应边相等,对应 角相等。
06
课程总结与回顾
关键知识点总结
全等三角形的定义与 性质
掌握全等三角形的基 本性质,如对应边相 等、对应角相等。
能够准确描述全等三 角形的定义。
关键知识点总结
全等三角形的判定方法 掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
能够灵活运用判定方法解决相关问题。
关键知识点总结
段的中点、角的平分线等。
结合其他几何知识(如中心对称、 旋转对称等)来进一步探讨图形
的对称性质。
04
全等三角形在生活中的应 用
建筑设计中的应用
01
建筑设计中的对称美
全等三角形在建筑设计中常被用来创造对称美,如古希腊神庙的立面设
计,通过全等三角形的排列组合,形成和谐而富有节奏感的视觉效果。
02 03
地形测量
在工程测量中,全等三角形原理 被用于地形测量。通过观测两个 已知点和一个未知点构成的全等 三角形,可以计算出未知点的坐
《全等三角形》ppt课件
《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。
注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。
利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。
构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。
典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。
例如,可以先构造角平分线,再利用中线或高线的性质进行证明。
在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。
这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。
通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。
相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。
定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
初中数学《全等三角形》课件
3.“全等”用符号≌“ ”来表示,读全作等于
4“.全等三角”形的 对应边 和对应角 相等
5.书写全等式时要求把对应字母放在对应的 位置上
先写出全等式,再指出 它们的对应边和对应角
A ∵△ABC≌△FDE
E B
∴AB=FD,AC=FE,
BC=DE
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
D
C
规律四:一对最长的边是对应边
一对最短的边是对应边
规律五:一对最大的角是对应角
F
一对最小的角是对应角
1.有公共边的,公共边一定是对应边。
∴BE=3cm,BD=5cm
如图, △EFG≌△NMH
E H
M
F
G
1、请找出对应边和对应角。
N
2、如果EF=2.1cm,EH=1.1cm,
HN=3.3cm, 求NM、HG的长.
解:∵△EFG ≌ △NMH ∴NM=EF=2.1,EG=HN=3.3
∴HG=EG-HG=3.3-1.1=2.2
△ABD≌△ACE,若∠ADB=100°,∠B=30°, 说出△ACE中各角的大小?
形状相同
大小相同
两个图形全等,它们的形状 一定相同 ,大小一定相等!
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
E
A PC M
D
A
BN
B
C
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
A
B
D
A
B
C
D
C
E
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
全等三角形的判定PPT课件共34张
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
直角三角形全等判定 —初中数学课件PPT
A
A′
B
C
B′
C′
做一做
已知线段a、c(a﹤c)和一个直角α,利用尺规作 一个Rt△ABC,使∠C= ∠ α ,CB=a,AB=c.
a
c
到更多课件
按照下面的步骤做一做:
⑴ 作∠MCN=∠α=90°; M
⑵ 在射线CM上截取线段CB=a; M
斜边和一条直角边对应相等的两个直角三角形全等.
B
∵∠C=∠C′=90°
在Rt△ABC和Rt△ ABC中
A
C
AB=AB BC=BC
B′
∴Rt△ABC≌Rt△A′B′ C′ (HL) A ′
C′
想一想
你能够用几种方法说明两个直角 三角形全等?
直角三角形是特殊的三角形,所以不 仅有一般三角形判定全等的方法:SAS、 ASA、AAS、SSS,还有直角三角形特殊 的判定方法——“HL”.
A
B
AB=BA(共公边)
AC=BD.(已知)
∴ Rt△ACB≌Rt△BDA (HL). ∴BC=AD
(全等三角形对应边相等).
2.如图,AB=CD,AE⊥BC, DF⊥BC,CE=BF. 求证:AE=DF.
C
D
F E
A
B
3.已知: AB BD, ED BD,C是BD上一点 且AC EC, AC EC 求证:BD AB ED
想一想
对于一般的三角形“SSA”不可以证明两个三角形全等
A
B
D
C
但直角三角形作为特殊的三角形, SSA时也就是斜边、 直角边判定
共同学习
例题1:如图:AC⊥BC,BD⊥AD, AC=BD.求证:BC=AD.
D
初中数学《全等三角形》优质课件
所以AB=DE,AC=DF,BC=EF.
F
它们的对应角分别相等,所以
∠A=∠D,∠B=∠E
∠ACB=∠DFE.
C E
D
试一试4:
先写出全等式,再指出它们的对应边 和对应角
∵△ABC≌△DEC
∴AB=DE,AC=DC, BC=EC
∴∠A=∠D, ∠B=∠E, ∠ACB= ∠DCE.
A
C D
规律四:一对最长的边是对应边 一对最短的边是对应边
E B
试一试5:
先写出全等式,再指出它们的对应边 和对应角
FF FFFFFFA
∵△ABC≌△FDE
∴AB=FD,AC=FE, BC=DE
C EEEEEEEEE ∴∠A=∠F,
∠B=∠D, ∠ACB= ∠FED.
DDDDDDDDD
B
规律五:一对最大的角是对应角 一对最小的角是对应角
1、请指出下列全等三角形的对应边和对应角
形吗?你能把它分成三个全等三角形吗?四个呢?
总结:寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,
最小的边是对应边; (5)两个全等三角形最大的角是对应角,
最小的角是对应角;
作业:
1.习题1.1
2.思考: 下图是一个等边三角形,你能把它分成两个全等三角
所以BC=DE.
4、如图,已知ΔABE≌ΔACD,且∠1=∠2, ∠B=∠C,请指出其余的对应边和对应角.
A
分析:由ΔABE≌ΔACD以及
∠1=∠2, ∠B=∠C知:
B
2
D
∠ BAE与∠CAD是对应角,
北师大版初中数学8年级下册1.2 第2课时 直角三角形全等的判定[1] -课件
随堂训练
A
1.已知:如图,D是△ABC的BC边
上的中点,DE⊥AC,DF⊥AB,垂足
分别为E,F,且DE=DF.
F
E
求证: △ABC是等腰三角形.
B
D
C
分析:要证明△ABC是等腰三角形,
就需要证明AB=AC; 从而需要证明∠B=∠C;
进而需要证明∠B∠C所在的
△BDF≌△CDE; 而△BDF≌△CDE的条件:
第一章 三角形的证明
1.2 直角三角形
第2课时 直角三角形全等的判定
复习 导入
合作 探究
课堂 小结
随堂 作业
复习导入
三角形全等的判定
公理:三边对应相等的两个三角形全等(SSS). 公理:两边及其夹角对应相等的两个三角形全等(SAS). 公理:两角及其夹边对应相等的两个三角形全等(ASA) . 推论:两角及其中一角的对边对应相等的两个三角形全等 (AAS).
你作的直角三角形与小明作的全等吗?
直角三角形全等的判定定理及其 三种语言
定理:斜边和一条直角边分别相等的两个直角三角形 全等(斜边,直角边或HL).
如图,在△ABC和△A′B′C′中, ∠C=∠C′=900 , ∵AC=A′C ′, AB=A′B′(已知), ∴Rt△ABC≌Rt△A′B′C′(HL).
首页
做一做
已知一条直角边和斜边,求作一个直角三 角形. 已知:如图,线段a,c (a<c),直角 . 求作:Rt △ABC,使∠C=
∠ ,BC=a,AB=c.
小明的作法如下: (1)作∠MCN= ∠ =90(°2)在射线CM上截取CB=a.
(3)以点B为圆心,线 (4)连接AB,得到Rt △ABC. 段c的长为半径作弧,交 射线CN与点A.
《全等三角形》课件 初中数学人教八年级上册
(4) (8) (12)
合作探究
举出现实生活中能够完全重合的图形的例子.
合作探究
能够完全重合的两个图形叫做全等形.
探究新知
1.平移 2.翻折
合作探究
3.旋转
合作探究
A
D
B
C
E
互相重合的顶点叫做对应顶点.
AD
BE
互相重合的边叫做对应边.
AB与DE
BC与EF
互相重合的角叫做对应角.
∠A与∠D
∠B与∠E
F
CF AC与DF ∠C与∠F
合作探究
A
D
B
CE
F
“全等”用符号“≌ ”,图中的△ABC和△DEF全等.
记作△ABC≌ △DEF,读作△ABC全等于△DEF.
记两个三角形全等时,通常把表示对应顶点的字母
写在对应的位置上.
合作探究
A
D
B
C
E
F
全等三角形的性质:
全等三角形的对应边相等,
全等三角形的对应角相等.
2.找全等三角形对应元素的方法,注意挖掘图形 中隐含的条件,如公共元素、对顶角等,但公 共顶点不一定是对应顶点.
3.在运用全等三角形的定义和性质时应注意规范 书写格式.
确定全等三角形中对应元素的规律
再见
其中正确的命题有( B ).
A.1个 B.△BAD,点A,C的对应点分别出为
B,D,如果AB=5 cm,BC=7 cm,AC=10 cm,那么BD等
于( )A
A.10 cm
B.7 cm
C.5 cm
D.无法确定
课堂小结
1.在自己动手实际操作中,得到了全等三角形的 哪些知识?
三角形重合,从而发现对应元素. b.旋转法:三角形绕某一点旋转一定角度能与另
全等三角形ppt课件
∴ △ABD≌△ACD(全__等__三__角__形__的__定__义__)_________
解:∵∠A=50°,∠B=48°, ∴∠C=180°-50°-48°=82°. 又∵△ABC≌△DEF, ∴∠C=∠F,∴∠F=82°. ∵DE的对应边为AB,所以DE=AB, ∴AB=10 cm.
【点悟】利用全等三角形的对应角相等、对应边相等解决问 题时,应注意不要将对应边(对应角)弄错,也就是要求在表 示两个三角形全等时书写规范.
寻找对应边、角的规律:
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,最小的边是对应边; (5)两个全等三角形最大的角是对应角,最小的角是对应角;
例2 如图,AD平分∠BAC,AB=AC.△ABD与△ACD全等吗?
起可以重合
能够完全重合的 两个图形叫做全
等图形
A
B′
A′
B
C
C′
1.它们重合时,能互相重合的顶点叫做全等三角形的对应顶点:如A和A′、B和 B′、C和C′; 2.互相重合的边叫做全等三角形的对应边:如AB和A′B′、BC和B′C′、CA和C′A′; 3.互相重合的角叫做全等三角形的对应角:如∠A和∠A′、 ∠B和∠B′、 ∠C和 ∠C′.
怎样判断两个图形是不是全等图形?
确定两个图形全等要符合两个条件: ①形状相同,②大小相同; 是否是全等图形与位置无关. 判断两个图形是否全等还可以通过平移、旋转、翻折等方法把两 个图形叠合在一起,看它们能否完全重合,即用叠合法判断.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考:怎样改变△ABC的位置,使它与△DEF重合?
A
AD
BE
B CF
F C
D A
E D
两个全等三角形的位置 变化了,对应边、对应角的 大小有变化吗?由此你能得 到什么结论?
B
F C
E
1.2 全等三角形
尝试交流
1.如图△ABD ≌ △CDB, 若AB=4,AD=5,BD=6, ∠ABD=30°,则BC=_____, CD=_____,∠CDB=_____.
图形都是全等形.
1.2 全等三角形
新知探究
A
D
B
CE
F
两个完全重合的三角形叫做全等三角形.
记作: △ABC≌△DEF.
1.2 全等三角形
A
D
B
CE
F
对应顶点 对应角 对应边
表示两个三角形全等时,通常把 对应顶点的字母写在对应的位置上.
如:△BCA≌ △EFD.
1.2 全等三角形
A
D
B
CE
F
∵△ABC ≌ △DEF (已知),
∴AB=DE,BC=EF,AC=DF
(全等三角形的对应边相等),
∴ ∠A=∠D,∠B=∠E,∠C =∠F (全等三角形的对应角相等).
1.2 全等三角形
操作思考 要求: 1.任意剪两个全等的三角形. 2.利用这两个全等三角形组合新的图形. 3.小组内讨论交流. 4.各组代表展示.
1
1.2 全等三角形
2.如图△ABC ≌ △DCB,
(1)写出图中相等的边和角.
(2)若∠A=100°,∠DBC=20°,
求∠D和∠ABC的度数.
A
O
B
D C
1.2 全等三角形
拓展延伸
1.如图,△ABC≌△ADE,∠C=50°,∠D=45°, ∠CFA=75°,求∠BAC和∠BAE的度数.
CE
D
F
B
A
1.2 全等三角形
2.如图,△ABC≌△DEF,B与E,C与F是 对应顶点.通过怎样的图形变换可以使这两个 三角形重合?
1.2 全等三角形
课堂小结
基础知识:
从观察全等图形着手,类比归纳出全等 三角形的有关概念,会用几何语言表示两个 三角形全等,会在全等三角形中正确地找出 对应顶点、对应边、对应角.
初中各学科优质课件
初中课件
1.2 全等三角形
图片欣赏
这两个图形有怎样的关系?
1.2 全等三角形
这两个图形有怎样的关系?
1.2 全等三角形
这两个图形有怎样的关系?
1.2 全等三角形
这两个图形有怎样的关系?
1.2 全等三角形
这两个图形有怎样的关系?
1.2 全等三角形
以上各组中的图形 都能完全重合,每一组
基本思想方法:
用运动变化的观点让学生经历平移、翻折、 旋转等全等变换的过程,了解用图形变换识别 全等三角形的方法.
1.2 全等三角形
课后作业
习题1.2第1、2、3题.