3总体均值的假设检验

合集下载

正态总体均值的假设检验

正态总体均值的假设检验
t 检验 用 t 分布
2 用 分布
检验
下,若能求得检验统计量的 极限分布,依据它去决定临界值C.
例 1 (用例中数据,但未知)
n=10, =0.05, 0=10 t10-1(/2)=t9(0.025)=2.2622
X 10.05,S2 0.05, S 0.224 X 10 0.05 , 即未落入拒绝域为 S 10 2.262 0.160 S 10 2.262
抽取 样本
检验 假设
拒绝还是不能 拒绝H0
P(T W)=
类错误的概率, W为拒绝域
对差异进行定量的分析, 确定其性质(是随机误差 显著性 水平
还是系统误差. 为给出两 者界限,找一检验统计量T, 在H0成立下其分布已知.)
-----犯第一

一般说来,按照检验所用的统计量的分布, 分为 U 检验 用正态分布
以上检验法叫U检验法.
X ~tn 1 S/ n
0
于是当原假设 H0:μ =μ X 0 ~tn 1 S/ n
成立时,有:
X 0 P tn 1 2 S / n S 即P X 0 tn 1 n 2 S 拒绝域为 X 0 tn 1 n 2 以上检验法叫t检验法.
第八章 第二节
正态总体均值的假设检验
一、单个正态总体N(,2)均值的检验
(I) H0:μ = μ
0
H1:μ ≠ μ
0
设X1,X2, ,Xn为来自总体N(,2)的样本. 求:对以上假设的显著性水平=的假设检验. 方差2已知的情况
根据第一节例1,当原假设 H0:μ =μ , 有:

总体均数的估计和假设检验PPT课件

总体均数的估计和假设检验PPT课件

5、t’检验
当方差不齐时,两小样本均数的比较用t’
检验。 检验统计量:t'
x1 x2 s12 s22 n1 n2
临界值:
t'
s2 x1
t ,v1
s2
s2 x2
s2
t ,v2
x1
x2
如果t’ >t’α,则P<α,则拒绝原假设。
6、z检验
当样本含量较大时,可用z检验来进行
两样本均数的比较。它是用于两大样本均 数的比较,目的是推断两总体均数是否相 同。所用公式:
4、成组t检验
(3) 资料要求:两样本来自正态或近似正态 分布,并且两组总体方差相等。
(4) 对数正态分布的资料,在进行t检验时,
要先把数据进行对数转换,用对数值作为
新变量进行成组t检验。
4、成组t检验
(4) 公式: H0: μ1= μ2 H1:μ1 ≠ μ2
t x1 x2 s
x1 x2
(1) 小样本资料的估计(未知)
P(t ,<t<t , ) 1
由1-αx时 t,,计( 算sn )总<体<均x数的t,可( 信sn区)可间得的到通当式可为信:度
即:x
t
,
s x
例2:试求例1中该地1岁婴儿血红蛋白平 均值的95%的可信区间。
s
由ν于 =nn= -215=,24s=,11α.取9g双/L尾, 0s.x 05,n查t2界.3值8 g表/ L得:
准差s2=1.626 mg/dl,配对t检验结果,t =-
3.098,P<0.05,故认为脑病病人尿中类固醇排出 量高于正常人。
表3 正常人和脑病病人尿中类固醇排出量 (mg/dl)
正常人
2.90 5.41 5.48 4.60 4.03 5.10 4.97 4.24 4.37 3.05 2.78脑ຫໍສະໝຸດ 病人差别是由抽样误差引起的。

总体均数的假设检验

总体均数的假设检验
总体均数的假设检验
$number {01}
目 录
• 引言 • 假设检验的基本原理 • 总体均数的假设检验方法 • 实例分析 • 总结与展望
01 引言
目的和背景
确定样本数据是否与假设的总体均数 存在显著差异,从而对总体均数进行 假设检验。
在科学实验、统计学、医学研究等领 域广泛应用,用于评估样本数据是否 支持或拒绝关于总体均数的假设。
配对样本均数假设检验实例
总结词
配对样本均数假设检验用于比较同一组研究对象在不同条件下的均数是否存在统计学显 著性差异。
详细描述
例如,为了比较同一组患者在接受两种不同治疗措施前后的改善程度,研究者收集了患 者的基线数据和接受不同治疗措施后的数据,并计算出各自治疗组的平均改善程度。然 后,研究者使用配对样本均数假设检验来比较同一组患者在不同治疗措施下的平均改善
概念简介
假设检验是一种统计推断方法,通过 检验样本数据是否符合某个假设,从 而对总体参数进行推断。
它基于概率论原理,通过计算样本数 据与假设的总体参数之间的差异,评 估这种差异是否具有统计学上的显著 性。
02
假设检验的基本原理
假设检验的步骤
建立假设
根据研究目的,提出一个关于总 体参数的假设,通常包括零假设 和备择假设。
收集样本数据
从总体中随机抽取一定数量的样 本,并记录样本数据。
确定检验水准
选择合适的检验水准,如α和β, 以平衡第一类和第二类错误的概 率。
计算统计量
根据样本数据计算适当的统计量, 如t值、Z值或χ^2值。
假设检验的类型
1 2
3
单样本均数检验
比较一个样本均数与已知总体均数或正常值范围。
两样本均数比较

总体均值的假设检验

总体均值的假设检验

总体均值的假设检验一、正态总体均值的检验设n X X X ,,, 21为总体),(2σμN 的一个容量为n 的样本. 1.方差2σ已知,μ的检验——u 检验法. 当202σσ=已知时,假设检验问题:0100μμμμ≠=:;:H H . 选择检验统计量nX U /00σμ-=,当0H 成立时,)1,0(~N U .给定显著性水平α,由标准正态分布分位点的定义, 有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= ,这种利用服从正态分布的检验统计量的检验方法称为u 检验法.有时我们只关心总体的均值是否增大(或减小).比如,经过工艺改革后,产品的质量(如材料的强度)比以前是否提高,此时我们要研究的是新工艺下总体的均值μ是小于等于原来的均值0μ,还是大于0μ,即检验假设 0100μμμμ>≤:;:H H . 可以证明,在显著性水平α下,上述假设检验问题和检验假设0100μμμμ>=:;:H H 有相同的拒绝域,因此,遇到形如00μμ≤:H 的检验问题,可归结为后一个假设检验问题讨论. 类似地,形如0100μμμμ<≥:;:H H 的检验问题, 可归结为检验假设 0100μμμμ<=:;:H H .这都是单边检验问题.给定显著性水平α,求得的临界值点是上α分位点或上α-1分位点.例1 某厂生产的某种钢索的断裂强度X 服从),(2σμN ,其中40=σ(kg/cm 2),现从这批钢索中抽取容量为9的样本,测得断裂强度的平均值x 较以往正常生产的μ大20(kg/cm 2),设总体方差不变,问在1.00=α下,能否认为这批钢索质量有显著提高?解 依题意,检验假设0100μμμμ>≤:;:H H , 由于40=σ已知,选择检验统计量nX U /0σμ-=因为0H 中的μ全部都比1H 中的μ要小,从直观上看,当0H 成立时,X 的取值x 不应比μ大很多,若偏差0μ-x 过大,则拒绝0H 而接受1H .因为 0100μμμμ>=:;:H H 的拒绝域为}{αu U W >=, 故在显著性水平1.00=α下原假设的拒绝域为}{}{0nu X u U W σμαα+>=>=.本题中,9=n ,40=σ,200=-μx ,33.201.0=u , 计算U 的值33.25.1/0<=-=nx u σμ因此在显著性水平1.00=α下不能拒绝0H ,即认为这批钢索质量没有显著提高.2.方差2σ未知,μ的检验——t 检验法. 检验假设0100μμμμ≠=:;:H H .因为2σ未知,而样本方差2S 是总体方差2σ的无偏估计量,用S 代替σ. 选择检验统计量 nS X T /0μ-=,当0H 成立时,)1(~-n t T .给定显著性水平α,由t 分布分位点的定义, 有αα=->)}1(|{|2/n t T P ,故拒绝域)}1({)}1({)}1(|{|2/2/2/->--<=->=n t T n t T n t T W ααα , 这种利用服从t 分布的检验统计量的检验方法称为t 检验法.例2 某切割机工作正常时,切割每段金属棒的平均长度为10.5cm .今在某段时间随机地抽取15段进行测量,其结果如下(cm):10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7问此段时间该机工作是否正常(5.00=α)?假设金属棒长度服从正态分布.解 依题意,检验假设0100.510μμμμ≠==:;:H H , 由于2σ未知,故选择检验统计量nS X T /0μ-=.在0H 下,)1(~-n t T ,15=n .给定显著性水平5.00=α,查t 分布表, 得临界值1448.2)14()1(025.02/==-t n t α,故拒绝域)}1(|{|2/->=n t T W α.由已知条件可得48.102.15715111=⨯==∑=n i i x n x056.0784.0141)(11122=⨯=--=∑=n i ix x n s 故2366.0=s .计算统计量的值3274.015/2366.05.1048.10/0-=-=-=ns x t μ因为)1(||2/-<n t t α,所以接受0H ,认为切割机工作正常.例3 设木材的小头直径),(~2σμN X ,12≥μcm 为合格,今抽出12根测得小头直径的样本均值为2.11=x cm ,样本方差为44.12=s cm 2,问该批木材是否合格(5.00=α)?解 依题意,检验假设010012μμμμ<=≥:;:H H ,选择检验统计量nS X T /0μ-=.在假设0100μμμμ<=:;:H H 下,)1(~-n t T ,12=n .给定显著性水平5.00=α,查t 分布表,得临界值7959.1)11()1(05.0==-t n t α,故拒绝域)}1({--<=n t T W α,也是假设010012μμμμ<=≥:;:H H 的拒绝域. 由于2.11=x ,44.12=s ,计算统计量的值3094.212/44.1122.11/0-=-=-=ns x t μ因为)1(--<n t t α,故拒绝0H ,认为该批木材是不合格的. 二、正态总体方差的检验——2χ检验法设n X X X ,,, 21为来自总体),(2σμN 的一个样本,检验假设 20212020σσσσ≠=:;:H H .1.均值μ已知. 因为)1,0(~N X i σμ-,n i ,,2,1 =,则选取检验统计量∑∑==-=⎪⎪⎭⎫ ⎝⎛-=ni ini i XX 12201202)(1μσσμχ.当0H 成立时,)(~22n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=><-))}(())({(22/222/12n n P ,故得拒绝域)}({)}({22/222/12n n W ααχχχχ><=- .2.均值μ未知.因为X 是总体均值μ的无偏估计量,用X 代替μ.选择检验统计量202122)1(σσχS n XX ni i -=⎪⎪⎭⎫ ⎝⎛-=∑=. 当0H 成立时,)1(~22-n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=->-<-))}1(())1({(22/222/12n n P故得拒绝域)}1({)}1({22/222/12->-<=-n n W ααχχχχ .类似地,在μ已知和μ未知时,可以求出检验假设20212020σσσσ>≤:;:H H 和20212020σσσσ<≥:;:H H的拒绝域.例如,在μ未知时,检验假设2020σσ≤:H 的拒绝域为)}1({22->=n W αχχ.上述检验所用的检验统计量均服从2χ分布,称这种检验方法为2χ检验法例4 某无线电厂生产的一种高频管,其中一指标服从正态分布),(2σμN ,今从一批产品中抽取8只管子,测得指标数据:68 43 70 65 55 56 60 72(1) 总体均值60=μ时,检验228=σ(取5.00=α); (2) 总体均值μ未知时,检验228=σ(取5.00=α). 解 本题是在显著性水平5.00=α下,检验假设2021220208σσσσ≠==:;:H H ,这里8=n .(1) 60=μ已知时临界值35.517)8()(2025.022/==χχαn ,80.12)8()(2975.022/1==-χχαn ,而检验统计量的值359.10663641)(811222=⨯=-=∑=ni i x μχ, 由于)()(22/222/1n n ααχχχ<<-,故接受0H .(2) μ未知时临界值13.016)7()1(2025.022/==-χχαn ,90.61)7()1(2975.022/1==--χχαn ,而125.614898111=⨯==∑=n i i x n x ,875.652)()1(122=-=-∑=ni i x x s n ,检验统计量的值2012.1075.86526412=⨯=χ, 由于)1()1(22/222/1-<<--n n ααχχχ,故接受0H .§8.3 两个正态总体参数的假设检验设121n X X X ,,, 为总体),(~112σμN X 的一个样本,221n Y Y Y ,,, 为总体),(~222σμN Y 的一个样本.∑==1111n i i X n X 和∑==2121n i iYn Y 分别是两个样本的样本均值,∑=--=112121)(11n i i X X n S 和∑=--=212222)(11n i i Y Y n S 是相应的两个样本方差.设这两个样本相互独立..一、两个正态总体均值的检验考虑检验假设 211210μμμμ≠=:;:H H . 1.方差21σ与22σ已知——u 检验法. 选取 22212121)()(n n Y X U σσμμ+---=.当0H 成立时,检验统计量)1,0(~222121N n n YX U σσ+-=.给定显著性水平α,由标准正态分布表分位点的定义,有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= .例1 设从甲乙两场所生产的钢丝总体X ,Y 中各取50束作拉力强度试验,得1208=x ,1282=y ,已知801=σ,942=σ,请问两厂钢丝的抗拉强度是否有显著差别(5.00=α)?解 本题是在显著性水平5.00=α下, 检验假设211210μμμμ≠=:;:H H , 这里5021==n n .选取检验统计量222121n n YX U σσ+-=.给定显著性水平05.0=α,查标准正态分布表,得临界值96.1025.02/==u u α,故拒绝域}|{|2/αu U W >=.由于1208=x ,1282=y ,801=σ,942=σ, 计算检验统计量的值2392.450/)(2221-=+-=σσy x u .由于2/||αu u >,故拒绝0H ,认为两厂钢丝的抗拉强度有显著差别. 2.方差21σ与22σ未知,但2221σσ=——t 检验法.选取 212111)()(n n S Y X T w+---=μμ.这里2)1()1(21222211-+-+-=n n S n S n S w .当0H 成立时,检验统计量)2(~112121-++-=n n t n n S Y X T w.给定显著性水平α,由t 分布表分位点的定义, 有αα=-+>)}2(|{|212/n n t T P ,故拒绝域)}2({)}2({212/212/-+>-+-<=n n t T n n t T W αα .例2 某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量有无显著差异?解 检验假设211210μμμμ≠=:;:H H ,这里621==n n ..525=x ,67.625=y ,7386.21=s ,3267.32=s ,0469.3=w s . 选取检验统计量2111n n S Y X T w+-=.给定显著性水平5.00=α,查t 分布表,得临界值2281.2)10()2(025.0212/==-+t n n t α,故拒绝域)}2(|{|212/-+>=n n t T W α.计算统计量的值0949.00469.33)667.255.25(1121-=⨯-=+-=n n s y x t w.由于)2(||212/-+<n n t t α,故接受0H ,认为两种香烟的尼古丁含量无显著差异. 二、两个正态总体方差的检验——F 检验法 考虑检验假设 2221122210σσσσ≠=:;:H H . 1.均值1μ与2μ已知.因为)(~)(11212121211n Xn i iχμσχ∑=-=,)(~)(12212222222n Yn i iχμσχ∑=-=,选取221222211211222121/)(1/)(1//21σμσμχχ∑∑==--==n i i n i i Y n X n n n F . 当0H 成立时,检验统计量),(~)(1)(1211222121121n n F Y n X n F n i i n i i ∑∑==--=μμ.给定显著性水平α,由F 分布分位点的定义,有ααα=><-))},(()),({(212/212/1n n F F n n F F P , 故得拒绝域)},({)},({212/212/1n n F F n n F F W αα><=- . 2.均值1μ与2μ未知.因为)1(~)1()(112212111221211--=-=∑=n S n X X n i i χσσχ,)1(~)1()(122222221222222--=-=∑=n S n Y Yn i iχσσχ,选取22222121222121//)1/()1/(σσχχS S n n F =--=.当0H 成立时,检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,由F 分布分位点的定义,有ααα=-->--<-))}1,1(())1,1({(212/212/1n n F F n n F F P , 故得拒绝域)}1,1({)}1,1({212/212/1-->--<=-n n F F n n F F W αα .例3某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量的方差是否相等? 解 考虑检验假设2221122210σσσσ≠=:;:H H . 由于两个正态总体的均值都未知,选取检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,查F 分布表,得两个临界值:15.7)5,5()1,1(025.0212/==--F n n F α1399.015.71)5,5(1)5,5()1,1(025.0975.0212/1====---F F n n F α,故得拒绝域}15.7{}1399.0{><=F F W . 计算统计量的值6777.03267.37386.2222221===s s F .由于15.71399.0<<F , 故接受0H ,认为两种香烟的尼古丁含量的方差也无显著差异.§8.4 非正态总体参数的大样本检验本节讨论一般总体参数的检验.设总体X 的均值为μ,方差为2σ, n X X X ,,, 21为总体X 的一个样本.由中心极限定理可知,当样本容量n 足够大时,nX U /σμ-=近似地服从标准正态分布.因此,我们可以用正态分布去近似.如果对均值μ进行检验,方差2σ未知时,可以用样本方差2S 代替2σ;如果对方差2σ进行检验,均值μ未知时,可以用样本均值X 代替μ.下面举两个例子.例1 设某段高速公路上汽车限速为104.6km/h ,现检验85辆汽车的样本,测出的平均车速为106.7km/h ,已知总体标准差为.413=σ km/h ,但不知总体是否服从正态分布.在显著性水平50.0=α下,试检验高速公路上的汽车是否比限制速度104.6km/h 显著地快?解 依题意,检验假设0100.6104μμμμ>=≤:;:H H , 由于.413=σ已知,n =85足够大, 选择检验统计量nX U /0σμ-=近似地服从)10(,N .其拒绝域}{αu U W >=,其中65.105.0==u u α. 计算U 的值449.4185/4.136.1047.106=-=u ,由于αu u <,因此接受0H ,没有理由认为高速公路上的汽车比限制速度104.6km/h 显著地快.例2 为比较甲乙两种小麦植株的高度(单位:cm),分别抽得甲、乙小麦各100穗,在相同条件下进行高度测定,算得甲乙小麦样本均值和样本方差分别为28=x ,8.3521=s ,26=y ,3.3222=s ,问这两种小麦的株高有无显著差异(50.0=α)?解 依题意,检验假设 211210μμμμ≠=:;:H H , 选取 22212121)()(n n Y X U σσμμ+---=,这里两个方差用样本方差代替.当0H 成立时, 检验统计量 222121n Sn S Y X U +-=近似地服从)1,0(N .给定显著性水平05.0=α,查附表3,得临界值96.1025.02/==u u α, 得拒绝域}|{|2/αu U W >=.计算U 的值4236.21003.328.352628=+-=u ,由于αu u >,因此拒绝0H ,认为这两种小麦的株高有显著差异.当总体服从(0-1)分布),1(p b 时,由于只有一个参数p ,总体均值p 和方差)1(p p -均只与p 有关,这时对参数p 进行假设检验时,检验统计量可以直接用样本和参数p 表示出来.例3 某厂有一批产品须经检验后方可出厂.按规定二级品率不得超过10%,从中随机抽取100件产品进行检查,发现有二级品14件,问这批产品是否可以出厂(50.0=α)?解 这里n =100,14.0=x .检验假设01001.0p p H p p H >=≤:;:, 选取检验统计量 np p p X U )1(000--=,U 近似地服从)1,0(N .由显著性水平50.0=α,可以得到拒绝域}{αu U W >=,其中65.105.0==u u α,计算U 的值333.31100.90.10.104.10=⨯-=u ,由于αu u <,因此接受0H ,认为这批产品二级品率没有超过10%,可以出厂.§8.5 分布的拟合检验前几节的检验都是参数的检验.实际问题中,有时需要对分布作出假设,进行检验.本节只介绍一种分布的检验方法——皮尔逊2χ检验法,它只适合于大样本的情形,一般要求样本容量50≥n .设总体X 的分布函数为)(x F ,)(0x F 为一个已知的分布函数,n X X X ,,, 21为总体X 的一个样本,我们来检验关于总体分布的假设)()()()(0100x F x F H x F x F H ≠=:;:.一、基本原理2χ检验法的基本思想是:将随机试验的所有可能结果的全体分成k 个两两互不相容的事件k A A A ,,, 21,在n 次试验中,将i A 发生的次数i f 叫做i A 发生的频数,如果0H 为真,则由大数定律,在n 次试验中(n 足够大),i A (k i ,,, 21=)出现的实际频率nf i与理论频率)(i i A P p =(可由分布函数)(0x F 算出)不应相差很大.基于这种想法,皮尔逊构造了统计量∑=-=ki i i i np np f 122)(χ或∑=-=ki i i i p n p n f 122ˆ)ˆ(χ, 其中i p ˆ是由)(ˆ0x F 计算出来的理论频率,)(ˆ0x F 是)(0x F 中未知参数估计出后的分布函数,并证明了如下定理:定理1 若n 足够大,当0H 成立时,统计量2χ总是近似地服从自由度为1--r k 的2χ分布,其中r 是已知的分布函数)(0x F 中未知参数的个数.直观上看,2χ值表示实际观测结果与理论期望结果的相对差异的总和,当它的取值大于临界值时,应拒绝0H . 二、检验步骤如果)(0x F 为不带有未知参数的已知分布,皮尔逊2χ检验法的具体步骤如下:(1) 将总体X 的值域划分成k 个不交的区间i A (k i ,,, 21=),使得每个区间包含的理论频数满足5≥i np ,否则将区间适当调整; (2) 在0H 成立时,计算各理论频率即概率i p 的值:)()()(100--==i i i i y F y F A P p ,k i ,,, 21=.这里1-i y 与i y 为区间i A 的端点,即](1i i i y y A ,-=;(3) 数出i A 中含有样本值的个数,即i A 的频数i f ,并计算统计量∑=-=ki i iinp np f 122)(χ 的值2χ;(4) 由2χ分布,对于给定的显著性水平α,找出临界值)1(2-k αχ; (5) 判断:若)1(22->k αχχ,则拒绝0H ,否则可接受0H . 如果总体X 是离散型的,则假设0H 相当于假设总体X 的概率分布00}{i i p x X P H ==:, ,,21=i .如果总体X 是连续型的,则假设0H 相当于)()(00x f x f H =:,这里)(x f 为总体的概率密度.例1 至1984年底,市开办有奖储蓄以来,13期兑奖中诸数码的频数汇总如表8.1:表8.1试检验器械或操作方法是否有问题(50.0=α).解 设抽取的数码为X ,它可能的取值为0~9,如果检验器械或操作方法没有问题,则0~9出现是等可能的,即检验假设 1010=i p H :,9210,,,, =i ,这里}{i X P p i ==. 依题意知k =10,令}{i A i =,9210,,,, =i ,n =350,则理论频数35=i np .57.61935688)(9022==-=∑=i ii i np np f χ给定显著性水平5.00=α,查2χ分布表,得临界值9.16)9()1(205.02==-χχαk .由于19.675>16.9,故拒绝0H ,即认为器械或操作方法有问题.如果)(0x F 为带有未知参数的已知分布,未知参数为r θθθ,,, 21,这时用这r 个未知参数的极大似然估计量r θθθˆˆˆ21,,, 来代替)(0x F 中的参数r θθθ,,, 21,得到分布函数)(ˆ0x F ,然后建立统计量∑=-=ki ii i p n p n f 122ˆ)ˆ(χ,这里i p ˆ是由)(ˆ0x F 计算出来的理论频率,再用以上检验步骤进行检验,但此时检验统计量2χ近似服从)1(2--r k χ分布(这里k >r +1).例2 某高校对100名新生的身高(厘米)做了检查,把测得的100个数据按由大到小的顺序排列,相同的数合并得表8.2:表8.2试问,在显著性水平5.00=α下是否可以认为学生身高X 服从正态分布? 解 这里n =100,我们来检验假设222)(021)(σμσπ--=x ex f H :,+∞<<∞-x ,这里)(x f 为正态分布),(2σμN 的概率密度,设其分布函数为)(x F ,μ与0>σ为未知参数.先求μ与2σ的极大似然估计值μˆ,2ˆσ: 33.1661ˆ1==∑=n i i x n μ, 06.28)ˆ(1ˆ212=-=∑=μσn i i x n . 设服从正态分布)ˆ,ˆ(2σμN 的随机变量为Y ,分布函数为)(ˆy F .按照分组要求,每个小区间的理论频数i pn ˆ不应小于5,因此我们将数据分成了7个组,使得每组的实际频数不小于5,各计算结果如下表8.3所示.表8.3中第3列i pˆ的计算如下: )(ˆ)(ˆ}{ˆ11---=≤<=i i i i i y F y F y Y y P p ,7210,,,, =i , 例如,}06.2833.1665.164ˆˆ06.2833.1665.161{}5.1645.161{ˆ3-≤-<-=≤<=σμY P Y P p1837.0)911.0()345.0(=-Φ--Φ=.给定显著性水平5.00=α,查2χ分布表,得临界值488.9)4()127()1(205.0205.02==--=--χχχαr k .由于1.8843<9.488,故接受0H ,即认为学生身高服从正态分布.。

正态总体均值的假设检验讲义PPT(39张)

正态总体均值的假设检验讲义PPT(39张)
第二节 正态总体均值的假设检验
一、单个总体均值 的检验
二、两个总体均值差的检验(t 检验) 三、基于成对数据的检验(t 检验) 四、小结
一、单个总体 N(,2)均值 的检验
1 . 2为,关 已的 于 知 (Z 检 检 )验 验
在上节中讨论过体 正N态(总 ,2)
当 2为已 ,关 知 于 时 0的检验 : 问题
1.9 0 1.6 0 1.8 0 1.5 0 1.7 0 1.2 0 1.7 0 假定切割的长度服从正态分布, 且标准差没有变
化, 试问该机工作是否正常? (0.05 )
解 因X 为 ~N (,2),0.15,
要检验假设
H 0:1.5 0, H 1:1.5 0,
n15, x1.04,80.0,5
(1)假设检 H0:验 0,H1:0; (2)假设检 H0:验 0,H1:0; (3)假设检 H0:验 0,H1:0.
讨论中都是H利 0 为用真时服N(从 0,1)分布
的统计Z量X0 来确定拒绝,这 域种 的 / n
检验法称 Z检 为验.法
一个有用的结论
解 设该次考试的学生为 成X绩, 0.0,5
则 X ~N (,2)样 , 本均X值 ,样为 本标准 S, 差
需检验假设: H 0 : 7 ,0 H 1 : 7 .0
因为 2未知 , 故采t用 检验,法 当H0为真, 时
统t 计 X 0 量 X 7~ 0 t(n 1 ), S /nS /n 查表 8-1 知拒绝域为 tX S/7n0 t/2(n1), 由 n 3 ,X 6 6 . 5 ,S 6 1 ,t 0 . 0 5 ( 3 2 ) 5 2 5 . 0,3
S/ n
当观察 t 值 xs/n0 过分大时 H0,就拒绝

统计学第六章假设检验

统计学第六章假设检验

10
即 z 拒绝域,没有落入接受域,所以没有足够理由接受原假设H0, 同
时,说明该类型电子元件的使用寿命确实有了显著的提高。
第六章 假设检验
1. 正态总体均值的假设检验
(2) 总体方差 2 未知的情形
双侧举例:【例 6-6】某厂用生产线上自动包装的产品重量服从正态
分布,每包标准重量为1000克。现随机抽查9包,测得样本平均重量为
100个该类型的元件,测得平均寿命为102(小时), 给定显著水平α=0.05,
问,该类型的电子元件的使用寿命是否有明显的提高?
解:该检验的假设为右单侧检验 H0: u≤100, H1: u>100
已知 z z0.05 1.645
zˆ x u0 n 100 (102 100 ) 2 1.645
986克,样本标准差是24克。问在α=0.05的显著水平下,能否认为生产线
工作正常? 解:该检验的假设为双侧检验 H0: u=0.5, H1: u≠0.5
已知 t /2 (n 1) t0.025 (9 1) 2.306, 而 tˆ x u 986 1000 1.75 可见 tˆ 1.75 2.306
设H0, 同时,说明该包装机生产正常。
其中 P( Z 1.8) 1 P( Z 1.8) 1 0.9281 0.0719 0.05。
第六章 假设检验
单侧举例:【例 6-4】某电子产品的平均寿命达到5000小时才算合格,
现从一批产品中随机抽出12件进行试验,产品的寿命分别为
5059, 3897, 3631, 5050, 7474, 5077, 4545, 6279, 3532, 2773, 7419, 5116
的显著性水平=0.05,试测算该日生产的螺丝钉的方差是否正常?

正态总体均值和方差的假设检验

正态总体均值和方差的假设检验

给定检验水平,查t(n-1)表得, t1-/2(n-1),使
得,
P{| T | t (n 1)}
即得,
1 2
P{|
x s
0
|
t 1
(n 1)}
n
2
拒绝域: 即
算出|T|与 t1比较,若 2 否则,接受H 0.
T , t1拒 绝 , H 0 2
例3 在某砖厂生产的一批砖中,随机地抽取6块进 行抗断强度试验,测得结果(单位:kg/cm2)如下: 32.56, 29.66, 31.64, 30.00, 31.87, 31.03, 设砖的抗断强度服从正态分布.问这批砖的 平均抗断强度是否为32.50 (kg/cm2)?(=0.05)。
2 0
,
H1
:
2
2 0
给定检验水平 ,查 2 n 1 分布表得
2 (n 1),
使得 P 2 2 (n 1)
根据样本值计算统计量的值.
如果 2 2 (n 1)
则拒绝 H 0 , 接受 H1.
第一类错误
弃真错误
第二类错误
取伪错误
假设检验的两类错误
所作判断 真实情况
H0 为真 H0 为假
接受 H0
拒绝 H0
正确
第二类错误 (取伪)
第一类错误 (弃真)
正确
犯第一类错误的概率通常记为 犯第二类错误的概率通常记为
P
否定H0
H
为真
0
P第一类错误
P
不否定H0
H
为假
0
P第二类错误
若 T t,1拒绝 ,H接0 受
H1
T t1 ,接受 H,0 拒绝 H。1
3,4形式的检验成为右边检验.

正态总体均值的假设检验

正态总体均值的假设检验

假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)

又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验

假设检验

假设检验

p(z≤-1.96)=0.025
-1.96
p(z≥1.96)=0.025 0 p-值=2×0.025=0.05
1.96
(二)单侧检验
美国联邦贸易委员会(FTC)定期设计调查以对制造商的产品说 明进行检查。例如,听装Hill-top咖啡的标签上表明其容量为3磅。 FTC知道Hilltop的生产线无法精确地将3磅咖啡放入每听中,甚 至无法保证所有听的填充重量的总体均值为每听3磅。当然,只 要填充重量的总体均值每听至少为3磅,则消费者的权益将得到 保障。从而,FTC认为咖啡的标签上可以看做Hilltop的声明—— 其填充物重量的总体均值为每听至少3磅。
解:根据问题可知总体标准差已知,σ = 0.015,X~
N(μ, 0.0152),本题需要对总体均值μ进行假设检验。
第一步: 提出原假设和备择假设
H0:μ = 0.5
H1:μ ≠ 0.5
第三步,根据原假设以及样本观测值计算出检验统计量的 值
原假设μ= 0.5 ,样本均值为0.511,n=9,代入检验统 计量,得
根据不同情况,总体参数的假设检验采取如下三种形式 之一,以总体均值的假设检验为例,令μ0 代表假定值:
(1)H0:μ≥ μ0 (2)H0:μ≤ μ0 (3)H0:μ= μ0
H1:μ< μ0 左侧检验 H1:μ> μ0 右侧检验 H1:μ≠ μ0 双侧检验
前面两种形式称为单边(侧)检验,第三种形式称为
(2) 零假设H0一定要设为“≤”或“≥”,相应的备
则假设H1要设为“>”或“<”,这是因为人们实 际上就是在零假设H0成立的前提下来建立理论分布 的。 (3) 拒绝域在图形的左侧或右侧大体上与零假设H0 中的不等式开口方向一致。零假设H0为“≤”,开 口朝右,则拒绝域在分布的右边,称为右边检验; 零假设H0为“≥”,开口朝左,则拒绝域在分布的 左边,称为左边检验。

总体均值的假设检验

总体均值的假设检验
有检验统计量

Z X 0 ~ N (0,1)
2
n
天津财经大学 统计学系
(二)总体分布未知,总体方差已知,大 样本
统 • 来自总体的样本为(x1, x2, …, xn)。对于
假设:H0: = 0,在H0成立的前提下,
计 如果样本足够大(n≥30),近似地有检 验统计量

Z X 0 ~ N (0,1)
(四)总体分布未知,总体方差未知,大 样本

• 来自总体的样本为(x1, x2, …, xn)。对于
假设:H0: = 0,在H0成立的前提下,

如果总体偏斜适度,且样本足够大,近 似地有检验统计量

Z X - m0 ~ N (0,1)
S2
n
天津财经大学 统计学系
• 例:某厂采用自动包装机分装产品,假 定每包产品的重量服从正态分布,每包
新方法(x2) 35 31 29 25 34 40 27 32 31
旧方法(x1) 32 37 35 38 41 44 35 31 34
天津财经大学 统计学系
• 解:原假设与备择假设如下:

H0:旧 - 新 0 H1:旧 - 新 > 0
计 该题属于两个正态总体,方差相等(但
学 未知)的情况。因此,可利用下式计算 检验统计量。
x2i
i 1
,
s
2 2
1 n2Biblioteka n2 1 i1x2i
x2
2
并且,两样本独立。
天津财经大学 统计学系
• 那么,只要n1和n2都足够大,在原假设
H0: 1 = 2成立的条件下,以下检验统
统 计量近似服从标准正态分布。

假设检验 正态总体均值的假设检验

假设检验 正态总体均值的假设检验
如在前面实例中,
拒绝域 |u|为 u/2,
临界点 u/2及 为 u/2.
.
11
3. 两类错误及记号
假设检验是根据样本的信息并依据小概率原 理,作出接受还是拒绝H0的判断。由于样本具有 随机性,因而假设检验所作出的结论有可能是错 误的. 这种错误有两类:
(1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称做第一类错误, 又叫弃
第八章 假 设 检 验
第1节 假设检验
一、假设检验的基本原理 二、假设检验的相关概念 三、假设检验的一般步骤
.
1
一、假设检验的基本原理
在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下, 为了推断总体的某些性 质, 提出某些关于总体的假设.
例如, 提出总体服从泊松分布的假设;
又如 ,对于正态总体 期提 望出 等 0的 数 于学
1.9 0 1.6 0 1.8 0 1.5 0 1.7 0 1.2 0 1.7 0 假定切割的长度X服从正态分布, 且标准差没有 变化, 试问该机工作是否正常?
解 X~N(,2),0.15,
1.提出假设
H0:1.0 5, H 1:1.0 5,
.
17
2.求统计量值
n15, X 10.48, 则 uX01.048 1.05 0.51,6
下面结合实例来说明假设检验的基本思想.
.
3
实例 某车间用一台包装机包装葡萄糖, 包得的 袋装糖重是一个随机变量, 它服从正态分布.当 机器正常时, 其均值为0.5公斤, 标准差为0.015 公斤.某日开工后为检验包装机是否正常, 随机 地抽取它所包装的糖9袋, 称得净重为(公斤): 0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?

统计学--假设检验(第五章)-(1)-2

统计学--假设检验(第五章)-(1)-2

左侧检验:
×
抽样分布
Region of Rejection
拒绝H0
置信水平
1 -
Region of Non rejection
临界值
H0
观察到的样本统计量
【例3】一家研究机构估计,某城市中家庭拥有汽车的比例超 过30%。为验证这一估计是否正确,该研究机构随机抽取 了一个样本进行检验。试陈述用于检验的原假设与备择 假设。
36.6
36.9
36.7
37.2
36.3
37.1
36.7
36.8
37.0
37.0
36.1
37.0
根据样本数据,计算的平均值为36.8oC,标准差为0.36oC 根据参数估计方法,健康成年人平均体温的95%的置信区
间为(36.7,36.9) 研究人员发现这个区间内并没有包括37oC! 因此,提出了“不应该再把37oC作为正常人体温的一个有
解:研究者抽检的意图是倾向于证实这种洗涤剂的平均
净含量并不符合说明书中的陈述。
建立的原假设和备择假设为:
H0 : 500 H1 : < 500
<提出假设>
【例3】一家研究机构估计,某城市中家庭拥有汽车的比例超 过30%。为验证这一估计是否正确,该研究机构随机抽取 了一个样本进行检验。试陈述用于检验的原假设与备择 假设。
传统上,做出决策所依据的是样本统 计量,现代检验中人们直接使用由统计量
算出的犯第一类错误的概率,即所谓的P
值。
注:假设检验不能证明原假设正确。
① 假设检验只提供不利于原假设的证据。当拒绝原假设时, 表明样本提供的证据证明它是错误的;当没有拒绝原假设时 ,我们也不说“接受原假设”,因为没法证明原假设是正确 的

第二节单正态总体的假设检验

第二节单正态总体的假设检验

P{|T |k }
查 t 分布表得 kt / 2t0.025(8) 2.306,从而拒绝域
为 | t | 2.306. (4) 因为 x 49.9, s2 0.29, 所以
| t | x 50 0.56 2.036,| t | 0.56 2.036, s/ n
故应接受 H0 , 即以为包装机工作正常.
由此即得拒绝域为
u
x
0
/n
u / 2 ,

W (,u / 2 ) (u / 2 ,).
根据一次抽样后得到旳样本观察值 x1, x2 ,, xn 计 算出 U旳观察值 u, 若 u u / 2 , 则拒绝原假设 H0 ,
即以为总体均值与0 有明显差别;
若 u u / 2 , 则接受原假设 H0 , 即以为总体均值与
S/ n 故选用 T 作为检验统计量,记其观察值 t. 因为 X
是 旳无偏估计量,S 2是 2 旳无偏估计量, 当 H0
成立时,t 不应太大,当 H1 成立时,t 有偏大旳趋
势, 故拒绝域形式为
t x 0 k
s/ n
( k 待定).
对于给定旳明显性水平 , 查分布表得
k t / 2(n 1), 使 P{T t / 2(n 1)} ,
使
P{ 2
2 1
/
2
(
n
1)

2
2
/
2
(
n
1)}
,
由此即得拒绝域为
2
n1
2 0
s
2
2 1
/
2
(
n
1)

2
n1
2 0
s
2
2 1

正态总体均值的假设检验

正态总体均值的假设检验

于是
x
0
/n
0.516
z0.05
1.645,
故接受 H0 , 认为该机工作正常.
2. 2为未知, 关于 的检验( t 检验)
设总体 X ~ N (, 2 ), 其中, 2 未知, 显著性水平为 .
求检验问题 H0 : 0 , H1 : 0 的拒绝域.
设 X1 , X2 ,, Xn 为来自总体 X 的样本,
正态总体均值的假设检验
一、单个总体均值 的检验
二、两个总体均值差的检验(t 检验) 三、基于成对数据的检验(t 检验)
一、单个总体N(, 2)均值 的检验
1. 2 为已知, 关于 的检验( Z 检验)
在正态总体 N(, 2) 讨论中

2为已知时,
关于
的检验问题
0
:
(1) 假设检验 H0 : 0 , H1 : 0 ; (2) 假设检验 H0 : 0 , H1 : 0 ; (3) 假设检验 H0 : 0 , H1 : 0 .
设两样本独立. 注意两总体的方差相等. 又设 X ,Y 分别是总体的样本均值, S12 , S22 是样本方
差, 1, 2 , 2 均为未知,
求检验问题 H0 : 1 2 , H1 : 1 2 ( 为已知常数)的拒绝域.
取显著性水平为 .
引入 t 统计量作为检验统计量:
t
(X Sw
11 n1 n2
k
得 k t / 2 (n1 n2 2).
故拒绝域为
t
(x sw
y)
11 n1 n2
t / 2 (n1
n2
2).
关于均值差的其它两个检验问题的拒绝域见表
8.1, 常用 0 的情况.

正态总体均值的假设检验

正态总体均值的假设检验
u X 0 ~ N(0, 1) , / n
拒绝域为 u u u0.05 1.645 .
现在 u x 0 41.25 40 3.125 1.645 , / n 2 / 25
即 u 的取值落在拒绝域中,所以在显著性水
平 = 0.05下拒绝 H0,接受 H1,即认为这

2


2 0

2 0
H0:
,H1:

其中
为已知常数.检验统计量
T
1

2 0
n
(Xi )2
i 1
~ 2 (n) .
对于给定的显著性水平 ,拒绝域为
t 12 / 2 (n) 或
t


2
/
2
(n)

上述检验的统计量服从 2 分布,称此种检
验为 2 检验,类似地可以进行单边检验(见表
右边检验的拒绝域为 t k ,左边检验的拒绝域为 t k .
例2 某工厂生产的固体燃料推进器的燃烧率
服从正态分布 N (, 2 ), 40cm / s , 2cm/ s ,
现在用新方法生产了一批推进器,从中抽取 n=25 只,测得样本均值为 x 41.25cm / s .设在新方
二、两类错误
由于检验法则是依据样本作出的,因此假设 检验的结果可能犯两类错误:
第一类错误:当原假设H0为真时,作出的决 定却是拒绝H0,犯这类错误的概率记为 ,即
P{拒绝H0|H0为真}= . 第二类错误:当原假设H0不正确时,作出的决定却是接受H0,犯这类错 误的概率记为 ,即
P{接受H0|H0不正确} = .
在H0成立时,检验统计量

统计学--第三章总体均数的估计与假设检验

统计学--第三章总体均数的估计与假设检验
第三章
总体均数的估计 与假设检验
课件
1
统计推断的目的:
用样本的信息去推论总体。
医学研究中大多数是无限总体, 即使是有限总体,但也经常受各种条 件的限制,不可能直接获得总体的信 息。
课件本科生卫生学(5)
2
第一节 均数的抽样误差与标准误
• 抽样误差(sampling
error):因各样本 包含的个体不同,所得的各个样本统计量 (如均数)往往不相等,这种由于个体差 异和抽样造成的样本统计量与总体参数的 差异,称为抽样误差。
均数的95%可信区间为3.47~ 3.81(mmol / L) 95%参考值范围为1.29~ 5.99(mmol / L)
S 1.20 X u / 2 S X X 1.96 3.64 1.96 n 200 (3.47, 3.81)
X 1.96S 3.64 1.961.20 (1.29, 5.99) 32 课件本科生卫生学(5)
t分布的应用: 总体均数的区间估计 t检验
课件本科生卫生学(5) 18
第三节 总体均数的置信区间估计 confidence interval
可信区间的概念 总体均数可信区间的计算 均数可信区间与参考值范围的区别
课件本科生卫生学(5)
19
一、可信区间的概念
统计推断:参数估计与假设检验。 参数估计: parametric estimation,用样本统 计量估计总体参数的方法。 点(值)估计:point estimation,直接用样 本统计量作为总体参数的估计值。方法简 单但未考虑抽样误差大小。 区间估计:interval estimation,按预先给定 的概率95%,或(1-),确定的包含未知总 体参数的可能范围。考虑了抽样误差。

假设检验与总体均值检验

假设检验与总体均值检验
原假设H0为真
点估计量的抽样分布
3. 标准化的检验统计量
标准化检验统计点量 点估估计计量量 —的假抽设样值标准差
第 六章 假设检验
第一节 假设检验的基本问题
总体方差 是否已知
大样本
总体是否服从 正态分布
Z

x
0
n
第 六章
样本方差 代替
总体方差 是否已知
将样本容量 增加到30
Z x 0 s
2. 将检验统计量的值与 水平的临界值进
行比较
3. 作出决策
双侧检验: I统计量I > 临界值,拒绝H0 左侧检验: 统计量 < -临界值,拒绝H0 右侧检验: 统计量 > 临界值,拒绝H0
第 六章 假设检验
第一节 假设检验的基本问题
假设 检验统 H0的拒--------计量 绝域
H0: μ=μ0 H1 :μ≠μ
第 六章 假设检验
第一节 假设检验的基本问题
提出假设
(结论与建议)
1. 原假设和备择假设是一个完备事件组,而且 相互对立
在一项假设检验中,原假设和备择假设必有 一个成立,而且只有一个成立
2. 先确定备择假设,再确定原假设
3. 等号“=”总是放在原假设上
4. 因研究目的不同,对同一问题可能提出不同 的假设(也可能得出不同的结论)
n
Z

x 0
n
样本方差 代替
t

x s
0
n
假设检验
第一节 假设检验的基本问题
抽样分布
拒绝H0
显著性水平和拒绝域
(双侧检验 )
置信水平
拒绝H0
/2
1-
/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 第3步:在分析工具中选择“t检验:平均值的成对二样 本分析”
• 第4步:当出现对话框后

在“变量1的区域”方框内键入数据区域

在“变量2的区域”方框内键入数据区域
• 为0)
在“假设平均差”方框内键入假设的差值(这里

在“”框内键入给定的显著性水平
1 - 29
质量管理 学实验
匹配样本
(数据形式)
质量管理
实验三
学实验 总体均值的假设检验
1 一个(单)总体均值的检验 2 两个(双)总体均值之差的检验
1 -1
质量管σ2理已知时,样本均值的抽样分布 学实验
总体是否正态分布


样本容量n


正态分布
x
~N
(, 1 2 )
n
或Z x ~ N (0,1) / n
1 -2
正态分布 非正态分布
x
~N
•第1步:将原始数据输入到Excel工作表格中
•第2步:选择“工具”下拉菜单并选择“数据分析”选项
•第3步:在“数据分析”对话框中选择 “t-检验:双样本异方 差假设”
•第4步:当对话框出现后

在“变量1的区域”方框中输入第1个样本的数据区域

在“变量2的区域”方框中输入第2个样本的数据区域

在“假设平均差”方框中输入假定的总体均值之差

在“”方框中输入给定的显著性水平(本例为0.05)

在“输出选项”选择计算结果的输出位置,然后“确
定”
1 - 25
质量管理 学实验
两个总体均值之差的 检验
(匹配样本)
1 - 26
质量管理 两个总体均值之差的检验
学实验
(匹配样本)
1. 假定条件
两个总体配对差值构成的总体服从正态分布 配对差是由差值总体中随机抽取的 数据配对或匹配(重复测量 (前/后))
•n1 = 44,n2 = 32 •临界值(c):
拒绝 H0
拒绝 H0
0.025
0.025
-1.96 0 1.96 z
1 - 16
检验统计量:
z 决策:
75 70 3.002 64 42.25 44 32
拒绝H0
结论:
该公司男女职员的平均小时工 资之间存在显著差异
质量管理 学实验
两个总体均值之差的 检验
两个方法组装产品所需的时间
1
方法1
方法2
28.3
36.0
27.6
31.7
30.1
37.2
22.2
26.0
29.0
38.5
31.0
32.0
2
37.6
34.4
33.8
31.2
1 3- 22.41
28.0
20.0
33.4
28.8
30.0
30.2
26.5
质量管理 两个总体均值之差的检验
学实验
(用Excel进行检验)
个样本的均值、方差等资
料如右表。在显著性水平
为0.05的 条件下 ,能否认
为男性职员与女 - 15
两个样本的有关数据 男性职员 女性职员
n1=44
n1=32
x1=75
x2=70
S12=64 S22=42.25
质量管理 两个总体均值之差的检验
学实验
(例题分析)
•H0 : 1- 2 = 0 •H1 : 1- 2 0 = 0.05
学实验 (大样本检验方法的总结)
假设 假设形式
统计量
拒绝域 P值决策
1 - 14
双侧检验
左侧检验
右侧检验
H0 : 1- 20 H1 : 1- 2 0
12

2 2
已知
12

2 2
未知
H0 : 1- 20 H0 : 1- 20
H1 : 1- 2<0 H1 : 1- 2>0
z ( x1 x2 ) (1 2 )
学实验 (12,22 未知但12=22)
1. 假定条件
两个独立的小样本
两个总体都是正态分布 12、 22未知但相等,即12=22
2. 检验统计量
t (x1 x2 ) (1 2 )
sp
11
n1
n2其中:
s
2 p
(n1
1)s12 n1
(n2 1)s22 n2 2
1 - 19
自由度: n1 n2 2
s/ n
•表明:当总体方差未知时,对于正态总体、小样本时,样本均
值的标准化值(t值)服从 t(n 1) 分布
1 -7
质量管理 σ2未知时——t检验法 学实验
1. 假定条件
2 未知 正态总体 小样本
2、使用t检验统计量
t x 0 ~ t(n 1)
sn
1 -8
质量管理 σ2未知时——t检验法 学实验
3.给定显著性水平α,查表得出相应的
临界值tα或tα/2
4.将检验统计量z的值与α水平的临界值进行比较, 然后作出决策
•双侧检验:当 t 时t ,2 拒绝H0 •左侧检验:当 t 时t, 拒绝H0 •右侧检验:当 t 时t,拒绝H0
1 -9
质量管理 σ2 未知的总体均值检验
学实验
(正态总体、小样本)
• 1. 假定条件
– 两个样本是独立的随机样本 – 正态总体或非正态总体大样本(n130和 n230)
2. 检验统计量
2 1

2 2
已知:z
( x1
x2 ) (1
2 1
2 2
2 )
~
N (0,1)
n1 n2
2 1

2 2
未知:z
( x1
x2 )
(1
2 )
~
N (0,1)
s12
s
2 2
n1 n2
质量管理 两个总体均值之差的检验
乙 20.7 19.8 19.5 20.8 20.4 19.6 20.2
1 - 22
质量管理 两个总体均值之差的检验
学实验
(例题分析)
•H0 :1- 2 = 0 •H1 :1- 2 0 = 0.05
•n1 = 8,n2 = 7 •临界值(c):
检验统计量:
t (x1 x2 ) 0.855 s p 1/ n1 1/ n2
质量管理 两个总体均值之差的检验
学实验 (12, 22 未知且不相等1222)
1. 假定条件
两个总体都是正态分布
12, 22未知且不相等,即1222
样本容量相等,即n1=n2=n
2. 检验统计量
t (x1 x2 ) (1 2 ) (x1 x2 ) (1 2 )
s12 s22
观察序号
1 2 M i M n
1 - 30
样本1
x11 x12 M
x1i M
x1n
样本2
x21 x22 M
z 2 质量管理 学实验 解:
•提出假设
H0 :μ = 255 H1 :μ 255
• 根据α = 0.05查找 临界值(zα/2):
拒绝 H0
拒绝 H0
0.025
0.025
•计算检验统计量:
z x 0 255.8 255 1.01 n 5 40
•作出决策:
∵│z│=1.01≤
∴不拒绝H0 结论:
产线生产,每罐的容量是255ml
,标准差为5ml。为检验每罐容 量是否符合要求,质检人员在某
双侧检验
天生产的饮料中随机抽取了40罐
进行检验,测得每罐平均容量为
255.8ml 。 取 显 著 性 水 平 =0.05
,检验该天生产的饮料容量是否
符合标准要求?
绿色
健康饮品
255
绿色 健康饮品
255
1 -5
z 1.96 2
1-1-.966
0 1.96
可以认为该天生产的饮料符合 标准要求
z
质量管σ2理未知时,样本均值的抽样分布 学实验

总体是否正态分布

样本容量n


样本容量n


z 分布
t 分布
Z x ~ N (0,1) t x ~ t(n 1)
s/ n
s/ n
z分布 非正态分布
Z x ~ N (0,1)
(, 1 2 )
n
或Z x ~ N (0,1) / n
质量管理 σ2已知时——z检验法 学实验
1. 假定条件
2 已知 正态总体(大样本或小样本) 非正态总体、大样本
2、使用z检验统计量
z x 0 ~ N (0,1) n
1 -3
质量管理 σ2已知时——z检验法 学实验
3.给定显著性水平α,查表得出相应的
决策:
拒绝 H0
0.025
拒绝 H0
不拒绝H0
0.025 结论:
-2.1600 2.160 t
没有理由认为甲、乙两台机床 加工的零件直径有显著差异
1 - 23
质量管两理个总体均值之差的估计
学实验
(例题分析)
【例】为检验两种方法组装产品所需时间的差异,分别对两
种不同的组装方法各随机安排12个工人,每个工人组装一件 产品所需的时间(分钟) 如下表。假定两种方法组装产品的时 间服从正态分布,但方差未知且不相等。取显著性水平0.05 ,能否认为方法1组装产品的平均数量明显地高于方法2?
2. 检验统计量
t d d0 ~ t(n 1) 样本差值均值
sd nd
n
di
d i1
相关文档
最新文档