第一章金属自由电子气体模型

合集下载

10 Drude模型

10 Drude模型

§1.0.2 Drude电子模型的成就与失效
尽管在Drude电子模型中对电子的运动作了最大胆的 简化,但却在解释金属材料的导电性和导热性以及光学特 性等问题上取得了相当可观的成就。 然而,对于金属中的另外一些问题,如金属中电子的
平均自由程、比热以及顺磁磁化率等等问题上,Drude电
子模型却遇到了根本性的困难。
rs
rs 1.41 2.67 a0 0.529
若给出的是 m
[解]若金属元素原子的原子量为A、价电子数为Z,其 所形成的晶体的质量密度为 m,则该金属中的电子浓度 为
ne ZN a
m
A
其中 N =6.022×1022为Avogadro常数。设金属中 a 每个传导电子平均占据体积的等效球体半 径为 r s, 则有
v 0 T
经典近似假设:热运动遵循Maxwell速度分布律,故有
返 回
驰豫时间近似假设: 若与离子实相继两次碰撞之间的时间 间隔为t,则有 e E e eEe 可得 e t E V ve t v e e D m m me e e
在外电场作用下金属中的自由电子将形成与外电场方向相反的宏观定向运动于是就形成了电流著名的ohm定律微分形式由此可得到金属材料电导率的微观表达式2drude电子模型的失效下面就以电子的平均自由程为例来说明drude电子模型所遇到的根本性困难
第一章 金属自由电子气体模型
固体是由很多原子组成的复杂体系。作为近似, 可以把原子分为离子实和价电子两部分。 离子实由原子核和内层结合能高的芯电子组成。 形成固体时,离子实的变化可以忽略。 价电子是原子外层结合能低的电子,在固体中, 其状况可能和在孤立原子中十分不同。
这显然是Drude电子模型所无法解释的。

17.1 自由电子气体模型

17.1 自由电子气体模型

dN
N

F
0
3
F3

3d

3 4
F
单位体积内, 能量区间 E~E+dE 内的状态数
dNE g(E)dE V
g(E)
dNE VdE

(2me )3/2
2 2 3
E1/2
-- 态密度
电子是按能量规则地从低向高排布, 一个态一个电子(泡利不相容原理)
能量区间 E~E+dE 电子数密度
金属自由电子气体模型
平均场近似下,金属原子的价电子是在均
匀的势场中运动,金属表面对电子可近似看作 无限高势垒。(功函数远大于电子动能)
这些价电子称为自由电子。
U

0
内部 外部
如果考虑立方体形状,N个自由电子好象 是装在三维盒子里的气体。
L L
每个电子都要满足驻波条件
L

nx 2
x
kxL nx
dN E V

g(E)dE 0
E EF E EF
小于费米能量,电子数 = 状态数 小于费米能量态,电子占据几率 1
大于费米能量态,电子占据几率 0
f(E) 1
T=0
0 系统 T = 0
EF E
编者: 安宇
§1 自由电子气体按能量的分布
金属中的电子受到周期排布的晶格上离子 库仑力的作用。
一晶 维格 晶、 体点

U(x)
21
21
考虑电子受离子与其它电子的(2) 电子的运动有隧道效应
(1) 蕊电子 (2) 价电子
价电子的势垒穿透概率较大 在整个固体中运动, 称为共有化电子
(2,1,1) (1,2,1) (1,1,2)

固体物理基础参考解答

固体物理基础参考解答

当 T > 0 K 时,费米分布函数有

⎪1
f

)
=
⎪ ⎨0
⎪ ⎪
1
⎩2
ε << µ ε >> µ
ε =µ
下图给出了在基态 T=0K 和较低温度下 T > 0 K 时的费米分布函数。
基态和较低温度下的费米分布函数

− ∂f ∂ε
=
1 kBT
1 e(ε −µ ) kBT
1 + 1 e-(ε −µ ) kBT
三维自由电子体系,在低能态的能态密度趋于零,因而低温下所引起的热涨落极
小,体系可具有长程序。对一维自由电子体系来说,从图中可以看出,在低能态
的能态密度很大,而且随能量的降低而趋于无穷,因而低温下所引起的热涨落极
大,导致一维体系不具长程序。从图中可以看出,二维自由电子体系的能态密度
是常数,介于一维和三维中间,体系可具有准长程序,而且极易出现特殊相变,
费米分布函数可表示为:
f
(εi )
=
1 e(εi −µ ) kBT
+1
上 式 直 接 给 出 了 体 系 在 热 平 衡 态 (温 度 为 T)时 ,能 量 为 εi 的 单 电 子 本 征 态 被 一
个电子占据的概率。根据泡利原理,一个量子态只能容纳一个电子,所以费米分
布函数实际上给出了一个量子态的平均电子占据数。
∵εF =
2kF 2 2m
,
kF 3
=

2n
2
2
( ) ∴εF
= 2m
3π 2n
3
( ) 1.0557 ×10−34 2
2
( ) ∴ε F = 2 × 9.11×10−31 × 3× 3.142 ×8.48×1028 3 = 1.13×10−18 J = 7.06eV

固体物理阎守胜第一章_金属自由电子气体模型

固体物理阎守胜第一章_金属自由电子气体模型

费 米 球
费米面: 费米能, 费米动量, 费米速度, 费米温度
2 kF EF 2m 2
pF kF
vF
kF m
TF
EF kB
由于
N 2
1 4 3 V 4 3 kF 2 3 kF k 3 8 3
N k 3 3 2 n V
3 F 2
自由电子气体模型中仅有的一个独立参量:
k2 E (k ) 2m
2
皆与波矢有关
p k
p k v m m
Born-von Karman边界条件
( x, y, z ) ( x L, y, z ) ( x, y, z ) ( x, y L, z ) ( x, y, z ) ( x, y, z L)
2. 对于电子受到的散射或碰撞,简单地用弛豫时间 描述。在dt时间内,电子受到碰撞的几率为 dt / , 大体
相当于相继两次散射间的平均时间。
在外加电场E情况下,自由电子的运动满足含时 薛定谔方程
2 2 e (r , t ) i (r , t ) 2m
固体通常指在承受切应力时具有一定程度刚 性的物质,包括晶体、准晶体和非晶态固体。 固体物理学的基本问题有:固体是由什么原子 组成?它们是怎样排列和结合的?这种结构是如何 形成的?在特定的固体中,电子和原子取什么样的 具体的运动形态?它的宏观性质和内部的微观运动 形态有什么联系?各种固体有哪些可能的应用?探 索设计和制备新的固体,研究其特性,开发其应用。
(1.1.3)
•自由电子近似使 V (r ) 为常数势,可简单地取为零。 则方程(1.1.3)成为:

2
2m
2 (r ) E (r )

固体物理第一章金属电子气体模型

固体物理第一章金属电子气体模型

⇓ ⇓ ⇓
为计算方便,设金属是边长为 L 的立方体, 内有N个原子,一个原子提供1个价电子。 则金属的体积: V=L3 自由电子数目为:N 由自由电子气体模型, N 个原子和N 个电子 的多体问题转化为单电子问题。 按照量子力学假设,单电子的状态用波函 数 Ψ (r ) 描述,且满足薛定谔方程。
1.薛定谔方程及其解
(3)价电子速度服从费米—狄拉克分布—自由电 子费米气体 (free electron Fermi gas) (4)不考虑电子和金属离子之间的碰撞 (No collision) 2.电子密度 理想气体在温度恒定下可用气体密度来描述, 与此类似,自由电子气体模型也可用电子密度 n来描述,而且,n是唯一的一个独立的参量。 电子的能量、动量、速度等都可以写成n的 数。
k
为波矢,其方向为平面波的传播方向 的大小与电子的德布罗意波长的关系为:
k
k =

λ
把波函数
1 ik ⋅r ψ k (r ) = e 代入薛定谔方程 V
2 2
得到电子的本征能量:
k = 2 2 2 (k x + k y + k z ) ε = 2m 2m
2. 电子的动量 将动量算符
2
ˆ p = −i ∇
(3) 发展—1904年洛仑兹发展了这个理论:认 为金属中的电子不仅是自由的,而且遵守麦— 玻统计规律,同时认为电子和金属离子的碰撞 是弹性的。从而半定性地解释上述问题。 (4) 困难--(a) 根据经典统计的能量均分定 理,N个价电子的电子气有3N个自由度,它们 对热容的贡献为3NkB/2,但对大多数金属,实验 值仅为这个理论值的1% 。 (b) 根据这个理论得出的自由电子的顺磁磁 化率和温度成正比,但实验证明,自由电子的 顺磁磁化率几乎与温度无关。(第三节)

SSP第1章自由电子论1_电子气模型110722

SSP第1章自由电子论1_电子气模型110722
11
1.2 金属的量子电子气理论
1.2.2 量子力学及复数基本知识复习
一、光的波粒二象性和微粒的波粒二象性 (1) 十九世纪末,经典物理学已相当完善 1、机械运动 ----牛顿定律,理论力学 2、电磁现象 ----麦克斯韦方程,电动力学 3、光的现象 ----线性光学及衍射理论 4、热的现象 ----热力学及统计物理学 似乎所有物理现象都可以得到合理解释。 但是,不久物理学家遇到了新的问题。
上式中 V,N 分别为金属的体积和总传导电子数目。
定义:电子半径 rs,(每个电子平均占据以 rs为半径的球)
则根据 V / N 1/ n
4 3
rs , 有
3
rs ( 3 ( 4 n )) 3
1
实验测得一般金属 n 为 1023/cm3 量级(比理想气体标准状态大 了103倍),rs 为10-1nm 量级。
V V 0 ( e E t / m ) ( 定向速度 Ft / m)
V 平 V 0 ( eE t / m ) e E / m
ne m
2
( V 0 0, t )
E
j ne V 平 ne ( e E / m ) m 即:E ρ j , 或, 1 / 2 ne
9
1.1 金属的经典电子气理论
1.1.2 特鲁德模型的成功与失败
例3:无法解释金属低温比热实验结果 根据理想气体服从的玻尔兹曼统计规律, 每个电子平均能量服从能均分定律, 金属电子气内能密度
u u T 3 2 nk B T 3 2 nk B
3 2 K BT
可求出电子比热为
结果与温度无关。
d ( x, y, z, t ) c ( x, y, z, t ) d

金属自由电子模型

金属自由电子模型

0 EF
0
3 V 2m 3/2 3/2 3 0 ( 2 ) E dE EF 3eV 2 2 3 5
如果把电子比作费米子的理想气体分子,则在绝对零度,电子基态的平均能 量相当于 T~23077K,对应于平均速度为
3kBT | v | v 2 1106 m / s ~ 1/ 300 光速 me
E TF r C F r dr z
一,金属自由电子气体模型
1.1 经典电子论 特鲁德电子气模型: 特鲁德提出了第一个固体微观理论利用微观概念计算宏 观实验观测量 自由电子气+波尔兹曼统计 欧姆定律 电子平均自由程+分子运动论 电子的热导率 特鲁德(Paul Drude)模型的基本假设 1 1.自由电子近似: 传导电子由原子的价电子提供,离子实对电子的作用可以 忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。 2.独立电子近似: 电子与电子之间的相互作用可以忽略不计。 外电场为零时, 忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气 体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能 带论中证明是错误的。 ) 特鲁德(Paul Drude)模型的基本假设 2 3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。 4.弛豫时间近似:电子在单位时间内碰撞一次的几率为 1 / , 称为弛豫时 间(即平均自由时间) 。每次碰撞时,电子失去它在电场作用下获得的能量,即 电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。 特鲁德模型的成功之处——成功解释了欧姆定律 欧姆定律 E j (或 j E ) ,其中 E 为外加电场强度、 为电阻率、 j 为 电流密度。
用托马斯一费米模型处理原子中的问题.为方便起见,下面均采用原子单位. 即。e= =μ=1 的单位制。 基于统计的考虑,Thomas 和 Fermi 于 1927 年曾几乎是同时地分别提出,将 多电子运动空间划分为边长为 l 的小容积(立方元胞) v l 3 。其中含有 N 个 电子 (不同的元胞中所含电子数不同) 。假定在温度近于 0K 时每一元胞中电子的 行为是独立的 Fermi 粒子, 并且各个元胞是无关的。则有三维有限势阱中自由里 子的能级公式

2023年大学_固体物理基础第三版(阎守胜著)课后题答案下载

2023年大学_固体物理基础第三版(阎守胜著)课后题答案下载

2023年固体物理基础第三版(阎守胜著)课后题答案下载固体物理基础第三版(阎守胜著)课后答案下载第一章金属自由电子气体模型1.1 模型及基态性质1.1.1 单电子本征态和本征能量1.1.2 基态和基态的能量1.2 自由电子气体的热性质1.2.1 化学势随温度的变化1.2.2 电子比热1.3 泡利顺磁性1.4 电场中的`自由电子1.4.1 准经典模型1.4.2 电子的动力学方程1.4.3 金属的电导率1.5 光学性质1.6 霍尔效应和磁阻1.7 金属的热导率1.8 自由电子气体模型的局限性第二章晶体的结构2.1 晶格2.1.1 布拉维格子2.1.2 原胞2.1.3 配位数2.1.4 几个常见的布拉维格子2.1.5 晶向、晶面和基元的坐标2.2 对称性和布拉维格子的分类2.2.1 点群2.2.2 7个晶系2.2.3 空间群和14个布拉维格子2.2.4 单胞或惯用单胞2.2.5 二维情形2.2.6 点群对称性和晶体的物理性质 2.3 几种常见的晶体结构2.3.1 CsCl结构和立方钙钛矿结构 2.3.2 NaCl和CaF、2结构2.3.3 金刚石和闪锌矿结构2.3.4 六角密堆积结构2.3.5 实例,正交相YBa2Cu307-82.3.6 简单晶格和复式晶格2.4 倒格子2.4.1 概念的引入2.4.2 倒格子是倒易空间中的布拉维格子 2.4.3 倒格矢与晶面2.4.4 倒格子的点群对称性2.5 晶体结构的实验确定2.5.1 X射线衍射2.5.2 电子衍射和中子衍射2.5.3 扫描隧穿显微镜第三章能带论I3.1 布洛赫定理及能带3.1.1 布洛赫定理及证明3.1.2 波矢七的取值与物理意义3.1.3 能带及其图示3.2 弱周期势近似3.2.1 一维情形3.2.2 能隙和布拉格反射3.2.3 复式晶格3.3 紧束缚近似3.3.1 模型及计算3.3.2 万尼尔函数3.4 能带结构的计算3.4.1 近似方法3.4.2 n(K)的对称性3.4.3 n(K)和n的图示3.5 费米面和态密度3.5.1 高布里渊区3.5.2 费米面的构造3.5.3 态密度第四章能带论Ⅱ4.1 电子运动的半经典模型 4.1.1 模型的表述4.1.2 模型合理性的说明4.1.3 有效质量4.1.4 半经典模型的适用范围4.2 恒定电场、磁场作用下电子的运动4.2.1 恒定电场作用下的电子4.2.2 满带不导电4.2.3 近满带中的空穴4.2.4 导体、半导体和绝缘体的能带论解释 4.2.5 恒定磁场作用下电子的准经典运动 4.3 费米面的测量4.3.1 均匀磁场中的自由电子4.3.2 布洛赫电子的轨道量子化4.3.3 德哈斯一范阿尔芬效应4.3.4 回旋共振方法4.4 用光电子谱研究能带结构4.4.1 态密度分布曲线4.4.2 角分辨光电子谱测定n(K)4.5 一些金属元素的能带结构4.5.1 简单金属4.5.2 一价贵金属4.5.3 四价金属和半金属4.5.4 过渡族金属和稀土金属第五章晶格振动5.1 简谐晶体的经典运动5.1.1 简谐近似5.1.2 一维单原子链,声学支 5.1.3 一维双原子链,光学支 5.1.4 三维情形5.2 简谐晶体的量子理论5.2.1 简正坐标5.2.2 声子5.2.3 晶格比热5.2.4 声子态密度5.3 晶格振动谱的实验测定 5.3.1 中子的非弹性散射5.3.2 可见光的非弹性散射 5.4 非简谐效应5.4.1 热膨胀5.4.2 晶格热导率第六章输运现象6.1 玻尔兹曼方程6.2 电导率6.2.1 金属的直流电导率6.2.2 电子和声子的相互作用 6.2.3 电阻率随温度的变化 6.2.4 剩余电阻率6.2.5 近藤效应06.2.6 半导体的电导率6.3 热导率和热电势6.3.1 热导率6.3.2 热电势6.4 霍尔系数和磁阻第七章固体中的原子键合7.1 概述7.1.1 化学键7.1.2 晶体的分类7.1.3 晶体的结合能7.2 共价晶体7.3 离子晶体7.3.1 结合能7.3.2 离子半径7.3.3 部分离子部分共价的晶体7.4 分子晶体、金属及氢键晶体7.4.1 分子晶体7.4.2 量子晶体7.4.3 金属……第八章缺陷第九章无序第十章尺寸第十一章维度第十二章关联固体物理基础第三版(阎守胜著):基本信息阎守胜,1938生出生,1962年毕业于北京大学物理系,现任北京大学物理学院教授,博士生导师,兼任中国物理学会《物理》杂志主编,他长期从事低温物理,低温物理实验技术,高温超导电性物理和介观物理方面的实验研究,并讲授大学生的固体物理学,低温物理学和现代固体物理学等课程。

金属自由电子气模型

金属自由电子气模型
这里涉及dt的二次项,是个二阶小量,可以略去。
(1.2.2)式在一级近似下为
p(t
dt)
p(t)
F (t)dt
P(t)
dt
(1.2.3)
更简练的形式为
dp(t)
F (t )
P(t)
dt
(1.2.4)
引入外场作用下电子的漂移速度(Drift velocity)d
m
d d
(t)
F (t)
• 作为研究金属特性的Drude模型在1900年提出,现在仍 然被用来迅速了解金属及其它一些材料的特性。这个 模型后来经过稍许修改就取得了巨大成功。
1. Drude模型
1)传导电子和芯电子
Na: K L M 1s 2s2p 3s 281
Na 蒸汽 3s 轨道半径 0.19 nm Na 固体 最近邻原子间距 0.365 nm
传导电子密度 n:单位体积的传导电子数
原子数/mole: N0 = 6.022 ∙ 1023,Avogadro常数 mole数/cm3: ρm/A, 其中 m是金属的质量密度(g/cm3),A 是元素的原子量
n
N0
Zm
A
6.022 1023
Zm
A
Z是每个原子贡献的价电子(传导电子)数目
对于金属,n的典型值为1022-1023/cm3。这个值要比理想 气体的密度高上千倍3源自0.22rs a0
1014 sec .
(1.2.10)
其a0为中玻,尔为半金径属。电阻率,rs为一个所占据体积的等效球半径,
金属Cu的室温电阻率ρ=1.56∙10-6Ohm-cm, τ=2.7 ∙10-14 sec
3)金属中电子的平均自由程
l = v0τ ; 而 mv02/2 =3kBT/2

第一章 金属自由电子气体模型

第一章 金属自由电子气体模型

K-空间中,本征波矢均匀分布,间隔:2π/L.由 于L很大,称为准连续谱 定义k-空间的态密度:k-k+dk范围的状态数:
ρ(k) = L 2π
三维导体
电子在三维金属体内运动,看成电子在三维无限 深势阱中运动(单电子薛定谔方程):
ℏ2 2 ∇ +U(r)ψ (r) = Eψ (r) − 2m 2m
()
()
π
π
在k-空间,k - k+dk 范围电子状态数
9
V 3 dN = g(ε )d ε = 2 3 2m ε d ε πℏ V 3 g(ε ) = 2 3 2m ε ∝ ε πℏ
在能量层 ε-ε+ dε范围的电子状态数 请讨论1、2维电子的能态密度
kz
g (ε )
kx
ky
ε
例:应用态密度计算电子的基态能
13
一、费米分布
T=0时,电子先占据低能量状态: f (ε )
limT →0
1, ε i < µ f (ε i ) = 0, ε i > µ
T>0 时,量子态上(自由) 电子占据的几率:
µ
ε
f (ε i ) =
e
(ε i − µ ) k BT
1
+1
k
∆ε ~ k BT
14
问题:常温下电子的热容量可以忽略?
z
费米面半径 :
kF
V 4 3 N = 2× 3 × π kF 8π 3 3 2 kF = 3π n TF = εF kB ≈10 ~ 10 K
4 5
8
kx
ky
电子的平均动能 为费米能时,体 系具有的温度
四、态密度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档