环介导等温扩增技术原理
第8章环介导等温扩增
扩增分两个阶段
第1阶段为起始阶段,任何一个引物向双链 DNA的互补部位进行碱基配对延伸时,另 一条链就会解离,变成单链。
扩增分两个阶段
上游内部引物FIP的F2 序列首先与模板F2c结合 (如图B所示),在链置 换型DNA聚合酶的作用下 向前延伸启动链置换合成 。
扩增分两个阶段
外部引物F3与模板F3c结 合并延伸,置换出完整的 FIP连接的互补单链(如图 C所示)。FIP上的F1c与 此单链上的Fl为互补结构 。自我碱基配对形成环状 结构(如图C所示)。
F3引物:上游外部引 物(Forward Outer Primer),由F3区组 成,并与靶基因的 F3c区域互补。
BIP引物:下游内部引物 (Backward Inner Primer ),由B1C和B2区域 组成,B2区与靶基因3’ 端的 B2c区域互补,B1C域与靶 基因5’端的Blc区域序列相同。
B3引物:下游外部引物 (Backward Outer Primer ),由B3区域组成, 和靶基因的B3c区域互补。
2.扩增原理
60—65℃是双链DNA复性及延伸的中间温 度,DNA在65℃左右处于动态平衡状态。 因此,DNA在此温度下合成是可能的。利 用4种特异引物依靠一种高活性链置换DNA 聚合酶。使得链置换DNA合成在不停地自 我循环。
结合。开始链置换合成,解离出的单链核 酸上也会形成环状结构。迅速以3’末端的 B1区段为起点,以自身为模板。进行DNA 合成延伸及链置换.
扩增分两个阶段
第2阶段是扩增循环阶段。 形成长短不一的2条新茎环状结构的DNA,BIP
引物上的B2与其杂交。启动新一轮扩增。且产物 DNA长度增加一倍。在反应体系中添加2条环状 引物LF和LB,它们也分别与茎环状结构结合启动 链置换合成,周而复始。
等温扩增是PCR的补充还是代替??来看看他们的优劣势!
等温扩增是PCR的补充还是代替??来看看他们的优劣势!近年来,随着分子生物学技术的迅速发展,基于核酸检测的诊断方法已大量建立并广泛应用于人类疾病的实验室检测中,等温扩增技术便是其中一种,与其他的核酸扩增技术相比,等温扩增有快速、高效、特异的优点且无需专用的设备,所以它一经出现就被许多学者认为是一种有可能与PCR媲美的检测方法。
相信以等温核酸扩增技术为基础的诊断仪器和试剂盒的开发和应用会是未来一,二十年的方向。
本文总结了目前常见的等温核酸扩增技术:LAMP、NERA、NASBA、RCA、HDA、RPA和ERA。
同时对PCR和几种恒温核酸扩增技术进行了比较。
为了更好地有选择地开发利用这方面技术,现就这些等温扩增技术的原理、特点及应用进行简要总结。
聚合酶链式反应(PCR)聚合酶链式反应(PCR)是利用耐高温的DNA聚合酶(Taq 酶),将模板DNA,引物,脱氧核苷三磷酸(dNTP)和缓冲液等在不同温度间循环,从而达到双链DNA分离,引物粘合到模板上的互补区间,最后在DNA聚合酶作用下脱氧核苷三磷酸逐个添加到新合成的DNA 链上的过程。
PCR是利用DNA 在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。
基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。
环介导等温扩增 (LAMP )环介导等温扩增其扩增原理是基于DNA在65℃左右处于动态平衡状态,任何一个引物向双链DNA的互补部位进行碱基配对延伸时,另一条链就会解离,变成单链,在此前提下利用4种不同的特异性引物识别靶基因的6个特定区域,在链置换型DNA聚合酶的作用下,以外侧引物区段的3`末端末端为起点,与模板DNA互补序列配对,启动链置换DNA合成。
rpa等温扩增原理解析
rpa等温扩增原理解析RPA(等温扩增)原理解析1. 引言RPA(等温扩增)是一种基于循环介导核酸回路的核酸扩增技术,与PCR(聚合酶链式反应)相比具有许多优势。
本文将深入探讨RPA的原理、应用以及对该技术的观点和理解。
2. RPA原理RPA的目标是在等温条件下扩增特定的核酸序列。
其主要原理基于两个关键组分:寡核苷酸引物和核酸酶。
引物包括一个引导引物(primer)和两个酶拆分引物(probe),它们都与目标序列互补。
在反应开始时,引物与DNA模板的目标序列结合形成引物-模板复合物。
外源的核酸酶通过切割酶拆分引物的作用将其离解,并释放出一个能够启动下一轮循环的寡核苷酸。
这种循环迭代的过程可以产生大量的目标序列。
3. RPA优势和应用- 等温条件:RPA在等温条件下进行,无需复杂的温度循环设备,可以在简单的实验条件下进行。
- 灵敏度:由于循环介导核酸回路的特点,RPA对目标序列的敏感性较高,可以在极低的起始DNA模板浓度下有效扩增。
- 速度:与PCR相比,RPA具有更快的扩增速度,通常在15-60分钟内完成。
- 特异性:RPA可以通过引物设计实现高度特异性的扩增,避免了非特定性的产物形成。
- 简单性:RPA反应体系简单,操作方便,不需要复杂的实验步骤和设备。
RPA技术已广泛应用于许多领域,包括:- 分子诊断:RPA可以用于检测和诊断致病微生物的核酸标记,从而实现快速和准确的病原体检测。
- 食品安全:RPA可用于检测食品中的致病微生物或污染物,保障食品安全。
- 环境监测:RPA技术可用于检测环境中的微生物污染、环境污染物等,为环境监测提供快速准确的方法。
- 法医学:RPA可用于快速鉴定和识别DNA样本,为法医学病例提供科学依据。
4. 对RPA的观点和理解RPA作为等温核酸扩增技术的代表,具有许多优势,使其在分子生物学和临床诊断领域得到广泛应用。
RPA不仅具有灵敏度高、特异性强等优点,还具有操作简单、快速扩增等特点,使其成为一种理想的核酸扩增技术。
LAMP环介导等温扩增法技术临床应用
技术改进方向
提高反应灵敏度 提高扩增产物的特异性 提高自动化程度
降低反应时间 降低成本和操作难度 拓展应用领域
应用领域拓展
病原体检测:快速、 准确检测病原体,
提高诊断效率
环境监测:应用于 环境监测,提高环 境监测效率和准确
性
基因编辑:应用于 基因编辑技术,提 高基因编辑效率和
安全性
食品安全检测:应 用于食品安全检测, 提高食品安全检测
04
政策支持:政府加大对医疗 领域的投入,推动技术发展
感谢您的观看
利用LAMP酶,在 特定序列上进行链
置换扩增
扩增产物具有高度 特异性,可区分不
同病原体
扩增过程快速,可 在1小时内完成
适用于多种样本类 型,如血液、唾液、
组织等
技术优势
操作简便:无需昂 贵的仪器设备,可 在普通实验室进行
快速高效:反应时 间短,可在1小时 内完成扩增
灵敏度高:可检测 低浓度样本,适用 于临床诊断
LAMP环介导等温扩 增法技术临床应用
目录
LAMP LAMP LAMP
壹
术 原 理
环 介 导 等 温 扩 增 法 技
贰
术 临 床 应环 用介
导 等 温 扩 增 法 技
叁
术 发 展 前环 景介
导 等 温 扩 增 法 技
1
LAMP环介导等温 扩增法技术原理
工作原理
利用环介导等温扩 增技术,在恒温条 件下进行核酸扩增
特异性强:针对特定基因序列 设计引物,避免非特异性扩增
结果直观:扩增产物可直接通 过凝胶电泳或荧光定量PCR检 测
2
LAMP环介导等温 扩增法技术临床应 用
病原体检测
lamp原理
lamp原理和应用情况
LAMP 原理:
环介导等温扩增法(loop-mediated isothermal amplification,LAMP),是一种新型的核酸扩增方法,其特点是针对靶基因的6个区域设计4种特异引物,在链置换DNA聚合酶(Bst DNA polymerasc)的作用下,60--65℃恒温扩增,15-60rain左右即可核酸扩增,效率可达109~10m个数量级,具有操作简单、特异性强、产物易检测等特点。
在DNA合成时,从脱氧核酸三磷酸基质(dNTPs) 中析出的焦磷酸根离子与反应溶液中的镁离子反应,产生大量焦磷酸镁沉淀,呈现白色。
因此,可以把浑浊度作为反应的指标,只用肉眼观察白色浑浊沉淀,就能鉴定扩增与否,而不需要繁琐的电泳和紫外观察。
由于LAMP反应不需要PCR 仪和昂贵的试剂,有着广泛的应用前景。
LAMP法的应用领域:
灵活运用能够简单、快速地进行基因扩增的特征,在各个领域得到广泛应用
食品领域:食物中毒致病菌的检测,食品的卫生管理,食物中毒的防止;
临床领域:病原菌、病毒的检测及鉴定,通过SNP多态性分型决定用药量;
农业领域:植物病害的早期发现及蔓延防止,转基因作物的检测;
环境领域:环境、水中病原微生物的检测;
工业领域:工业产品用大量DNA的生产成为可能;
畜牧业领域:雌雄性别判断,病原微生物的检测,遗传病的发现.。
转基因植物及其产品成分检测 环介导等温扩增方法制定指南
转基因植物及其产品成分检测环介导等温扩增方法制定指南下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言近年来,随着转基因技术的飞速发展,转基因植物及其产品在农业生产中得到了广泛应用。
转基因植物及其产品成分检测 环介导等温扩增方法制定指南
转基因植物及其产品成分检测环介导等温扩增方法制定指南1. 引言1.1 概述本篇文章旨在介绍转基因植物及其产品成分检测中的一种重要方法——环介导等温扩增,并制定相关操作指南。
转基因植物技术是现代生物技术领域的一个重要研究方向,通过引入外源基因改变植物的遗传特性,以实现对植物性状和品质的调控。
然而,随着转基因植物产品在市场上的广泛应用,对其合规性和安全性的检测也愈发重要。
目前,PCR技术是最常用于转基因植物及其产品成分检测的方法之一,但存在耗时长、复杂度高等问题。
相比之下,环介导等温扩增作为一种新兴的核酸扩增方法,在特异性、快速性、简便性以及成本效益上具有明显优势。
本文将详细介绍环介导等温扩增原理并制定相应操作指南,以期为广大科研工作者提供实验操作参考。
1.2 转基因植物简介转基因植物是通过人为手段将外源基因导入自然界中不存在的植物基因组中而产生的植物。
这些外源基因通过转化技术嵌入到植物细胞中,被遗传到下一代,并在整个生长过程中被表达出来。
转基因植物技术在农业、医药等领域具有广泛的应用前景,例如提高抗病虫害能力、改善产量和品质等。
然而,鉴别转基因植物及其产品成分的重要性日益凸显。
政府和国际组织对转基因食品进行严格管理与监控,以确保消费者的食品安全和权益。
因此,在有关立法和标签法规的约束下,开发可靠快速的检测方法是十分必要的。
1.3 环介导等温扩增方法简介环介导等温扩增(Loop-Mediated Isothermal Amplification, LAMP)作为一种新兴的核酸扩增方法,由于其高度特异性、高效率、简单操作以及成本效益受到了广泛关注。
该方法利用DNA引物和Bst DNA聚合酶在等温条件下完成扩增反应,无需复杂设备与复杂试剂制备流程,大大降低了实验操作的难度。
环介导等温扩增方法通过特异性引物对目标序列进行扩增,将其从复杂样本中快速准确地检测出来。
该方法具有传统PCR技术无法比拟的优势,如高特异性、高灵敏度、快速反应速度和便捷实施等。
环介导等温扩增技术
环介导等温扩增技术(LAMP)法扩增
实时浊度检测或目视检测绿色荧光
精品PPT
精品PPT
精品PPT
精品PPT
优缺点
• 优点:灵敏度高(比传统的PCR方法高2~5个数量级); 反应时间短(30~60分钟就能完成反应);临床使用不需 要特殊的仪器(试剂盒研发阶段推荐用实时浊度仪);操 作简单(不论是DNA还是RNA,检测步骤都是需将反应液、 酶和模板混合于反应管中,置于水浴锅或恒温箱中63℃左 右保温30~60分钟,肉眼观察结果)。
其检测结果可直接肉眼观察白色沉淀 或者绿色荧光,是一种适合现场、基层快 速检测的方法。
精品PPT
原理
扩增启动阶段 循环扩增阶段
延伸循环阶段
精品PPT
精品PPT
扩增启动阶段
FIP F3
(5):有1个环状构造(Fc1末端5’端游离) 的单链
BIP B3
(8):有2个环状构造(F1末端即3’端游 离和Bc1末端即5’端游离)的单链
环介导等温扩增技术
精品PPT
主要内容
• 定义 • 原理 • 操作步骤 • 优缺点及
精品PPT
定义
环介导等温扩增技术(loop-mediated isothermal amplification,LAMP)是指在等 温(60-65℃)条件下,利用链置换DNA聚 合酶短时间(通常<1h)内进行核酸扩增, 是一种“简便、快速、精确、低价”的基 因扩增方法。
精品
• FIP
F1末端延伸至形成一个环状构造(B1末端即3’端游 离);FIP 退火到茎环结构(8)上,引导链置换DNA 合 成反应,产生结构(9)的产物;随后产物(9)的B1末 端即3’ 端自动引导链置换DNA 的合成,生成产物(10) 和茎环结构(8’)(与开始的产物(8)序列互补的);
环介导等温扩增技术及其在病原微生物检测中的应用
环介导等温扩增技术及其在病原微生物检测中的应用循环介导温扩增技术(Cycling Primer Extension, CPE)是一种高效的分子生物学技术,主要用于基因、控制序列、表达调控物质和相关蛋白质之间的相互作用分析。
它常被应用于病原性微生物检测以及病毒基因分子变异分析等方面。
一、循环介导温扩增技术的原理循环介导温扩增技术是一种改良的PCR技术,它能将DNA模板扩增成上百万亿倍左右的数量,以满足分子生物学研究的需要。
该技术的基本原理是将待检测模板上特异性引物结合,并施加高温、低温及中间温度等三种温度环境,在低温下用引物扩增模板,并在特定温度中支配引物限制片段扩增,最后在v高温环境中扩增产物释放,从而通过三种温度环境积累构建双螺旋样的DNA桥梁而达到扩增的目的。
二、循环介导温扩增技术的优势(1)快速、灵敏:循环介导温扩增技术利用低温度和高温度振荡循环,大大提高了扩增速度,并且增强了信号效率,可以充分利用模板,进而提高检测灵敏度。
(2)省时省钱:循环介导温扩增技术使用到的耗材比PCR来得少,扩增速度更快,是一种省时省钱的技术。
(3)容易操作:CPE程序简单,操作过程相对PCR要简单,与实验室常规仪器一般可以完成,且实验室中的反应条件也相对简单,不存在PCR实验中的活性危险,也不存在贴壁细菌和操作技术考验棘手的问题。
三、循环介导温扩增技术在病原微生物检测中的应用(1)病毒检测:CPE技术可以快速灵敏地检测SARS-CoV-2病毒,从而帮助监测新型冠状病毒的传播趋势。
(2)细菌检测:CPE技术可以检测各种细菌产生的毒力因子,如真菌毒素和E. Coli有毒因子。
(3)NDM-1耐药基因及AMR的表型检测:NDM-1耐药基因和AMR 抗药菌的表型检测,可以快速确定环境中微生物的耐药基因断裂和AMR抗药菌表型,为后续的抗药策略的分析提供了依据。
四、总结循环介导温扩增技术灵活、方便,既可以用于病毒检测,也可以用于细菌检测,此外,它还可以用于耐药基因及抗药性表型的检测。
LAMP技术原理和引物设计
LAMP技术原理和引物设计LAMP技术(Loop-mediated isothermal amplification),中文称为环介导等温扩增技术,是一种于2000年由Eiken Chemical Co. Ltd.日本公司开发的基于异十四链聚合酶反应(Bst聚合酶)的异源DNA快速扩增技术。
LAMP技术通过引物设计和反应条件的优化,实现在等温条件下对目标DNA的高效扩增。
下面将分别介绍LAMP技术的原理和引物设计。
LAMP技术的核心原理是通过酶的协同作用,在等温条件下进行DNA的扩增。
它利用一种特殊的DNA聚合酶(Bst聚合酶),能够在不需要高温退火的情况下,具有高度特异性和高效率地进行DNA合成。
LAMP技术本身具有极高的扩增速度,优势在于其在等温下,不需要复杂的设备和严格的实验条件,可以简化扩增过程。
同时采用特殊设计的引物组合,能够提高扩增特异性。
1.初始化反应:将反应体系中的DNA片段与引物(包括2个外端引物和2个补体引物)结合;2. 引物扩增:引物与Bst聚合酶作用,反应体系中的DNA得到扩增;3.聚合物合成:一种特殊的引物结合到目标DNA的5'末端,通过内端引物和内部位点进行扩增;4.循环放大:扩增产物作为新的模板参与反应,进行连续循环扩增。
通过这种等温扩增的方法,LAMP技术可以在短时间内获得大量的目标DNA,且具有很高的扩增特异性和灵敏度,可以用于分子生物学、诊断医学和病原检测等领域。
引物设计:引物设计是LAMP技术成功应用的重要因素之一、LAMP技术使用了4个单链引物,包括2个外端引物(forward outer primer,F3和reverse outer primer,B3)和2个内端引物(forward inner primer,FIP和reverse inner primer,BIP)。
外端引物负责扩增DNA的初始段,内端引物负责扩增DNA的中间段。
在引物设计中,需要注意以下几个方面:1.引物的特异性:要求引物能够有高度特异地结合到目标DNA的区域,确保扩增的目标是准确的;2.引物的长度和碱基组成:引物的长度通常为20-24个碱基,碱基组成要尽量避免重复序列和形成组内结构,以保证扩增效率和特异性;3.引物的位置和方向:合理选择引物的位置和方向,以确保扩增产物的特异性和有效性;4.引物的浓度:引物的浓度需要进行优化,以获得最佳的扩增效果。
环介导等温扩增技术原理
环介导等温扩增技术原理引言随着生物技术的快速发展,分子生物学中的核酸扩增技术逐渐成为研究的重要工具之一。
而环介导等温扩增技术作为一种新的核酸扩增方法,具有快速、简便、高效等优点,在生物医学研究、临床诊断、食品安全等领域发挥着重要的作用。
等温扩增技术的背景传统的PCR(聚合酶链式反应)技术是通过循环升温、降温的方法来完成DNA扩增过程。
然而,该技术要求精确的温度控制,对设备和试剂的稳定性要求很高。
此外,传统PCR扩增过程中存在高温引起的扩增产物降解等问题。
因此,研究人员不断寻求一种更为简便、高效的核酸扩增方法。
等温扩增技术由此应运而生。
等温扩增技术的原理等温扩增是指在恒定的温度下,通过酶的作用,在核酸模板的辅助下,使扩增产物逐渐积累的过程。
其中,环介导等温扩增技术作为一种新兴的等温扩增方法,与其他方法相比具有更高的特异性和敏感性。
环介导等温扩增技术的反应体系环介导等温扩增技术通常包括三个主要组分:核酸模板、引物和酶。
核酸模板核酸模板是等温扩增的起始物质,可以是DNA或RNA。
在反应过程中,核酸模板会经历多次复制,从而实现扩增。
引物引物是用来引导扩增反应的小片段核酸序列。
在环介导等温扩增技术中,引物会与核酸模板序列互补结合,作为复制的起始点。
酶环介导等温扩增技术中主要使用的酶是DNA环介导聚合酶(Bst DNA polymerase)。
该酶具有良好的耐热性,可以在高温条件下活性稳定,并且具有DNA依赖性DNA聚合酶和脱氧核苷酸酶活性。
环介导等温扩增技术的具体过程环介导等温扩增技术主要通过以下几个步骤完成扩增过程:1. 首先,将反应体系中的DNA模板加热至解链温度,使DNA模板解链成两条单链。
2. 然后,引物与DNA模板序列互补结合,形成引物-模板复合物。
3. 酶(Bst DNA polymerase)结合在引物-模板复合物上,并且开始在DNA模板的3’端进行DNA合成。
该酶具有脱氧核苷酸酶活性,可以在DNA合成过程中消除RNA、DNA杂质。
环介导等温扩增技术检测小苍兰花叶病毒
环介导等温扩增技术检测小苍兰花叶病毒小苍兰花叶病毒是一种重要的植物病毒,对小苍兰的生长发育和繁殖均有影响。
因此,准确、快速地检测小苍兰花叶病毒对于保护和促进小苍兰产业的发展非常重要。
本文介绍了一种基于环介导等温扩增技术的小苍兰花叶病毒检测方法。
该方法具有快速、易操作、灵敏度高、特异性好等优点,适用于小苍兰花叶病毒的快速检测和监测。
一、环介导等温扩增技术的原理环介导等温扩增技术是一种新兴的核酸扩增技术,其基本原理是利用引物和环介导酶作用引起DNA或RNA链的等温扩增。
环介导酶是一种新型的酶,可以结合单链DNA或RNA末端,使其形成一个三维的环结构,从而在链的延长方向上持续不断地合成新的DNA或RNA链。
与PCR技术相比,环介导等温扩增技术无需进行多次温度变化,温度保持在65℃左右即可完成扩增反应,因此操作简便,适用于快速、大规模的核酸扩增。
1、建立环介导等温扩增体系本研究利用Oas-RdRp引物和环介导酶的结合作用进行小苍兰花叶病毒的扩增检测。
扩增体系中包括:环介导酶、Oas-RdRp引物、dTTP、dCTP、dGTP、dATP、MgCl2、荧光素分子探针、荧光素释放剂、样品DNA。
具体反应体系如下:环介导酶 25 UOas-RdRp引物0.8 μmol/LdTTP 0.4 mmol/LdCTP 0.4 mmol/LdGTP 0.4 mmol/LdATP 0.4 mmol/LMgCl2 8 mmol/L荧光素分子探针0.1 μmol/L荧光素释放剂0.5 μmol/L样品DNA 1 μL2、优化反应条件反应过程中,可以通过优化反应时间、温度、引物浓度、样品DNA浓度等参数来提高扩增效率和特异性。
本研究通过对反应时间和温度的优化,确定最优反应条件为65℃下反应40 min。
为了验证环介导等温扩增方法的准确性和特异性,本研究还建立了PCR方法检测扩增产物。
PCR反应体系中包括:Taq DNA聚合酶、Oas-RdRp引物、dNTP混合溶液、MgCl2、Taq 缓冲液、ddH2O、扩增产物。
环介导等温扩增反应
环介导等温扩增反应1介绍环介导等温扩增反应(LAMP)是一种新型的低成本、快速、灵敏、特异性高的新型荧光基因检测方法,主要利用特殊的六聚体反应原理,通过接头序列的环介导多次重复扩增来识别特定病原体,以实现快速检测。
比起传统核酸扩增方法,LAMP扩增效率高,检测时间较短,能很好地达到核酸分离、扩增和检测一体化的目的,可应用于机体内感染物检测、病原体鉴定、功能基因分析等技术领域。
2结构特点环介导等温扩增反应(LAMP)由三大部分组成:接头序列,四个必备的基因组成要素,聚合酶。
接头序列由两个定位的外部接头和一个内部循环接头组成。
接头序列的功能是对靶特异性序列进行特异性扩增,是任何LAMP反应的核心。
组成LAMP反应的四个必备要素是引物、DNA合成酶、DNA侧链切除酶和聚合酶,它们有助于靶序列的特异性扩增和发光酶聚集反应过程的检测靶序列的相关事件。
3流程(1)样本预处理:采集原始样本后,用对应的提取技术,如病毒样本提取、抗原抽提、质粒提取等,可以将原始样本中的病原体等分离出来。
(2)LAMP反应:环介导等温扩增反应本质上是一种复合扩增,是一个双螺旋体环接头或其他环接头扩增反应。
从接头序列开始,六聚体引物将两个定位的外部接头以及一个内部循环接头交叉复合,以开始LAMP反应,使接头序列部分引物的复合变温循环扩增基因靶序列。
(3)荧光检测:在LAMP反应进行开始之后,由于聚合酶的促使,芯片中的靶序列会受到特异性扩增,特定病原体会形成多次重复扩增,这样会形成一种荧光信号,通过实时定量PCR仪读取荧光信号,可以定性感染物的存在。
4优点(1)一步扩增:LAMP扩增反应只需在一种反应环境下采用一次反应来实现,反应时间短,也不需要繁琐的步骤,更加有效的利用时间。
(2)高灵敏度:LAMP反应是基于特殊的多次重复扩增技术,这种扩增是一种显著快速的扩增,使其在检测感染样本量最低时依然可以辨认出靶信号。
(3)高特异性:LAMP反应可以进行靶特异性扩增,可以快速鉴定特定病原体,并且在反应体系中很难有其他物质反应,这使得试剂易于操作,可以有效避免其他基因及环境菌对实验的干扰。
lamp环介导等温扩增技术
lamp环介导等温扩增技术LAMP环介导等温扩增技术是一种用于检测DNA或RNA的方法,具有快速、高度敏感和特异性等优点。
下面我们来详细介绍一下这种技术的原理和应用。
一、原理LAMP技术是一种环介导等温扩增方法,与PCR不同的是,LAMP不需要高精度的温度控制和特异性引物,只需要4-6个引物就可扩增目标序列。
LAMP反应的基本步骤为:首先,在等温条件下,外部引物(F3和B3)和内部引物(FIP和BIP)结合在DNA目标序列上,形成一个环形结构;然后,在BIP的3'端内部引物(LF和LB)的作用下,DNA目标序列不断的进行扩增,最终形成一个由数以百万计的拷贝构成的扩增产物。
在反应中,LF和LB作为内部补体引物,增强了反应的特异性和扩增效率。
二、优点1、高度敏感:在LAMP扩增反应中,由于不需要复杂的环境条件和反应体系,扩增过程高效,形成的扩增产物数量极多,可以检测到非常微弱的目标DNA或RNA信号。
2、特异性强:LAMP反应需要多个引物结合于目标序列,而且引物是从多个区域的序列中选择设计的,所以扩增的产物只会与目标序列高度特异结合,不会出现交叉反应的问题。
3、环境友好:LAMP扩增只需要一个热水浴,不需要PCR反应所需的高精密温控仪器,同时反应体系中不含有有毒有害的物质,对环境及实验者均无危害。
三、应用LAMP技术已广泛应用于临床医学、食品安全、环境检测和生物技术等领域。
1、临床医学:LAMP技术可以高效、快速、准确地检测病原微生物、基因突变和药物耐药性等,对于疾病的快速诊断和精准治疗提供了有力支持。
2、食品安全:LAMP技术可以检测微生物、病毒和其他有害物质,对于食品安全监管起到了重要作用。
3、环境检测:LAMP技术可以应用于环境污染的检测、植物病害的检测以及水质检测。
4、生物技术:LAMP技术可以用于基因组学、遗传学和分子病理学等领域的基础科研。
总之,LAMP技术作为一种新兴的DNA或RNA检测技术,具有快速、高效、经济和特异性强等优点,已成为分子生物学和生命科学领域的焦点研究。
rt-lamp 原理
rt-lamp 原理
RT-LAMP(逆转录-环介导等温扩增技术)是一种用于核酸检测的分子生物学技术,其原理如下:
1. 逆转录,首先,RNA(或者是一些DNA病毒)被逆转录酶转录成互补的DNA,这一步骤使得RNA也能够被扩增。
2. 环介导,RT-LAMP技术使用4-6个特异性引物来识别目标DNA或RNA序列。
这些引物包括两对外部引物和两对内部引物。
通过逆转录酶和DNA聚合酶的作用,引物将目标序列进行扩增。
3. 等温扩增,RT-LAMP在恒温条件下进行,无需复杂的温度变化步骤。
内部引物的结构使得DNA链能够在等温条件下进行扩增。
总的来说,RT-LAMP技术通过逆转录、环介导和等温扩增的方式,能够在简单的恒温条件下快速扩增核酸样本,从而实现对目标DNA或RNA序列的检测。
这种技术在病毒检测、基因表达分析等领域具有广泛的应用前景。
希望这个回答能够满足你的需求。
lamp扩增原理
lamp扩增原理LAMP扩增原理LAMP是一种用于DNA扩增的方法,它的全称是Loop-mediated isothermal amplification,即环介导等温扩增。
与PCR(聚合酶链式反应)相比,LAMP具有更高的扩增效率和更好的特异性,因为它只需要一个酶(Bst DNA polymerase)和四个特异性的引物来进行扩增。
本文将介绍LAMP的扩增原理及其基本步骤。
一、LAMP的扩增原理LAMP的扩增原理是通过“环式扩增”来实现的,其基本过程可以分为两个阶段:第一阶段是DNA的线性扩增,第二阶段是DNA的环式扩增。
LAMP的基本原理如下:1. 首先,一组称为F3和B3的特异引物与DNA靶标结合,形成一个F3/B3复合物。
该复合物在特定的温度下,通过Bst DNA polymerase的催化作用,进行线性扩增。
在该过程中,F3引物与B3引物结合的区域就会形成一个双链DNA结构,该结构具有一个单股环形DNA的结构,称为“DNA花环”。
2. 在第一阶段完成后,第二组引物(FIP和BIP)与F3/B3复合物结合,即形成FIP/F3/B3/BIP的四元复合物。
在特定的温度下,FIP 引物与BIP引物结合的区域就会形成一个新的DNA花环结构,这个花环嵌套在第一阶段的DNA花环中。
这个过程被称为“环式扩增”,在这个过程中,产生大量的DNA产物。
3. 在LAMP反应结束时,可以通过如凝胶电泳、荧光探针或颜色指示剂等多种方法来检测扩增产物。
二、LAMP的基本步骤LAMP的基本步骤包括:制备反应体系、扩增反应、检测扩增产物等。
1. 制备反应体系LAMP反应需要一个含有DNA靶标、Bst DNA polymerase、四组引物(F3、B3、FIP、BIP)和一些缓冲剂的反应体系。
反应体系的配制需要考虑到反应的温度、pH值等因素。
2. 扩增反应将反应体系加热到适当的温度,通常为60-65℃,进行扩增反应。
反应时间通常为1-2小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RCA 单引物等温扩增 SPIA 依赖解旋酶的等温扩增技术 HAD 链替代扩增 SDA 交叉引物扩增技术 CPA 核酸依赖性扩增检测技术 NASBA Qβ复制酶反应
NASBA SPIA HDA SDA
温度 ℃ 引物 42 需要2条
42 37/65 37/65 1条 需要2条 不需要
60—65℃是双链DNA复性及延伸的中间温度,
DNA在65℃左右处于动态平衡状态。利用引物 合成的DNA链取代模板互补链。
①扩增目的片段时依赖的是一种具有链置换特
性的Bst DNA聚合酶 ②需四条能够识别靶序列六个特异区域的引物 ③LAMP法并不需要对双链DNA进行预变性及 进行温度循环。
环介导等温扩增(Loop-mediated
isothermal amplification ,简称LAMP)是利用4个特殊设计 的引物和具有链置换活性的Bst DNA聚合酶,在 恒温条件下特异、高效、快速地扩增DNA的新 技术。 LAMP技术以其特异性强、灵敏度高、快速、 准确和操作简便等优点在核酸的科学研究、疾 病的诊断和转基因食品检测等领域得到了日益 广泛的应用。
环介导等温扩增技术原理
烟雨莫问
等温扩增技术简介 等温扩增技术的应用前景 几种等温扩增技术比较 环介导的等温扩增技术原理 环介导的等温扩增演示 环介导的等温扩增检测
等温扩增技术(Isothermal Amplification
Technology)是核酸体外扩增技术,其反应过程 始终维持在恒定的温度下,通过添加不同活性 的酶和各自特异性引物(或不加)来达到快速 核酸扩增的目的。
模板 RNA
RNA DNA DNA
其他 反转录酶,RNA酶 H,T7RNA聚合酶 反转录酶,T7RNA 聚合酶
解旋酶,扩增片段 小
LAMP
RCA Qβ
63
37-65 37
4条
需要 不需要
DNADNΒιβλιοθήκη RNADNA聚合酶
LAMP克服了传统PCR反应需要通过反复热变性获得单链模 板的缺点,避免了反复升降温的过程,实现了恒温条件下的 连续快速扩增,具有更高的灵敏度和扩增效率。 操作简单:只需一个水浴锅 快速高效:不需要预先的双链DNA热变性.避免了温度循环 而造成 的时间损失 特异性强:针对靶序列6个区域设计的4种特异性引物。6个区 域中任何区域与引物不匹配均不能进行核酸扩增。故其特异 性极高。 高灵敏度,对于病毒扩增模板可达几个拷贝,比PCR高出数 量级的差异。 缺点:由于LAMP扩增是链置换合成,靶序列长度最好在 300 bp以内。>500 bp则较难扩增。故不能进行长链DNA的 扩增。灵敏度高易造成假阳性结果。
形 成
LAMP
基 础 结 构
Effect of reaction time on the LAMP nes1,D NA marker(DL2000) with2000,1000,750 ,500,250 and 100bP:lanes2一 5,LAMP amPlification Produets for 15 min,30min,45min,6 0min,respectively:l ane6,without DNA template in the reaction. 乔岩梅. 炭疽芽孢杆菌特征基因恒温扩增检测方法的研究[D]. 中国科学院研究生院(武汉病毒研究所) 2007
反应结束后对扩增产物的检测常使用焦磷酸酶沉淀检测 (浊度检测)、荧光检测、凝胶电泳检测等。 焦磷酸酶沉淀的检测(浊度检测):在LAMP反应过程中, dNTP析出的焦磷酸根离子与反应溶液中的Mg2+结合,产 生副产物焦磷酸酶白色沉淀,研究者发现LAMP反应中焦 磷酸镁沉淀的形成与所产生的DNA量之间的关系,发现两 者生成量之间呈线性关系,并且焦磷酸镁沉淀在400 nm处 有吸收峰,从而进行LAMP的定量检测。 荧光检测:LAMP有极高的扩增效率,可在一小时内将靶 序列扩增至109~l010倍,所以当反应液中加入核酸染料 SYBR Green I后,在紫外灯或日光下通过肉眼即可进行判 定,如果含有扩增产物,反应混合物变绿;反之,则保持 SYBR Green I的橙色不变。
针对靶基因的六个不同的区域,基于靶基因3’ 端的F3c、F2c 和Flc区以及5’ 端的Bl、B2和B3区等6个不同的位点设计4种 引物。 LAMP反应的开始阶段四条引物都被使用,但在循环阶段则 只有内引物被使用。 FIP(Forward Inner Primer):上游内部引物,由F2区和F1C 区域组成,F2区与靶基因3’端的F2c区域互补,F1C区与靶基 因5’端的Flc区域序列相同。 F3引物:上游外部引物(Forward Outer Primer),由F3区组成, 并与靶基因的F3c区域互补。 BIP引物:下游内部引物(Backward Inner Primer ),由B1C和 B2区域组成,B2区与靶基因3’端的B2c区域互补,B1C域与 靶基因5’端的Blc区域序列相同。 B3引物:下游外部引物(Backward Outer Primer ),由B3区 域组成,和靶基因的B3c区域互补。
引物BIP的B2与模板链B2c区互补配对,合成以BIP为起始的新链, 并与模板链互补形成DNA双链。同时,F端的环状结构将被打开, 外引物B3与模板上B3c杂交后,以其3’末端为起点也开始合成新链, 并使以BIP为起始的DNA单链从模板链上脱离下来,形成以FIP和 BIP为两端的单链。因为B1C与B1互补,F1C与F1互补,两端自然 发生碱基配对,这条游离于液体中的DNA单链分别在F和B末端形成 两个茎环状结构,于是整条链呈现哑铃状结构,此结构即为LAMP 的基础结构。
与PCR技术相比核酸等温扩增对仪器的要
求大大简化,反应时间大大缩短,更能满足 快速简便的需求。
特异性高 分析速度快 成本低 突变率低 不需要升温降温过程,一台的加热器即可操作 检测核酸成分比检测微生物本身危险性小 方便诊断
环介导核酸等温扩增技术(LAMP) 滚环扩增技术
LAMP反应引物与对应模板区域
内引物FIP的F2与其模板的互补序列F2c结合,在Bst DNA聚合酶作用下,从F2的3’末端开始启动DNA合成, 合成一条以FIP为新的DNA单链并与模板链结合形成新 的双链DNA。
以F3为起始合成的新链与模板链形成双链。而原合成的以FIP 为起始的DNA单链被置换而脱离产生一单链DNA,其在5’末端 F1c和F1区发生自我碱基配对,形成茎环状结构。