王进明 初等数论 习题解答

合集下载

初等数论王进明答案

初等数论王进明答案

初等数论王进明答案【篇一:王进明__初等数论_习题解答】s=txt>1.已知两整数相除,得商12,余数26,又知被除数、除数、商及余数之和为454.求被除数.解:a?12b?26,a?b?12?26?454,12b?26?b?12?26?454,(12?1)b?454?12?26?26?390,b=30, 被除数a=12b+26=360+26=386.这题的后面部分是小学数学的典型问题之一——“和倍” 问题。

2.证明:(1) 当n∈z且n?9q?r(0?r?9)时,r只可能是0,1,8;证:把n按被9除的余数分类,即:若n=3k, k∈z,则n?27k, r=0;若n=3k +1, k∈z,则n?(3k)?3(3k)?3(3k)?1?9k(3k?3k?1)?1,r=1;若n=3k-1, k∈z,则n?(3k)?3(3k)?3(3k)?1?9(3k?3k?k?1)?8,r=8. 332323322333n3n2n??的值是整数。

(2) 当 n∈z时,326n3n2n2n3?3n2?n32??=证因为,只需证明分子2n?3n?n是6的倍数。

32662n3?3n2?n?n(2n2?3n?1)?(n?1)n(2n?1)?(n?1)n(n?2?n?1)=n(n?1)(n?2)?(n?1)n(n?1).由k! 必整除k个连续整数知:6 |n(n?1)(n?2),6 |(n?1)n(n?1).或证:2!|(n?1)n, (n?1)n必为偶数.故只需证3|(n?1)n(2n?1).若3|n, 显然3|(n?1)n(2n?1);若n为3k +1, k∈z,则n-1是3的倍数,得知(n?1)n(2n?1)为3的倍数;若n为3k-1, k∈z,则2n-1=2(3k-1)-1=6k-3, 2n-1是3的倍数.综上所述,(n?1)n(2n?1)必是6的倍数,故命题得证。

(3) 若n为非负整数,则133|(11n+2+122n+1).(4)当m,n,l∈n+时,(m?n?l)!的值总是整数 m!n!l!(n?l?1)(n?l)(n?l?1)(l?1)?l! 证明:(m?n?l)!=(m?n?l)(m?n?l?1)由k!必整除k个连续整数知:m!|(m?n?l)(m?n?l?1)n! |(n?l)(n?l?1)(n?l?1), (l?1),从而由和的整除性即证得命题。

《初等数论》习题解答

《初等数论》习题解答

《初等数论》习题集第1章第 1 节1. 证明定理1。

2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。

3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。

4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。

5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。

第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。

2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。

3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。

4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。

5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。

第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。

2. 证明定理2的推论1, 推论2和推论3。

3. 证明定理4的推论1和推论3。

4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。

5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。

6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。

第 4 节1. 证明定理1。

2. 证明定理3的推论。

3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。

4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。

5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。

初等数论第二次作业参考答案

初等数论第二次作业参考答案

初等数论第二次作业参考答案
填空题
1.9除28的商是 3 。

2.11除23的余数是 1 。

3.6的正因数是 1,2,3,6 。

4.{4.5}= 0.5 。

5.[8.3] +[-8.3] = -1 。

6.30的最小质因数是 2 。

7.在所有质数中,是偶数的是 2 。

8.在所有质数中,最小的奇质数是 3 。

9.大于4小于16的素数有___5,7,1,1,13__ ____。

10.不定方程c by ax =+有整数解的充分必要条件是 (a ,b )|c 。

11.模5的最小非负完全剩余系是 0,1,2,3,4 。

12.模4的绝对最小完全剩余系是 -1,0,1,2 。

13.5555的个位数是 5 。

14.77的个位数是_______ 3 ________。

15.316的十进位表示中的个位数字是 1 。

16.66的个位数是 6 。

17.710被11除的余数是 1 。

18.(1516,600)= 4 。

19.6的所有正因数的和是 12 _。

20.24与60的最大公因数是 12 。

21.35的最小质因数是 5 。

22.46的个位数是 6 。

23.8的所有正因数的和是 15 _。

24.18的标准分解式为 23218⨯= 。

25.20的欧拉函数值)20(ϕ= 8 。

初等数论习题集参考答案

初等数论习题集参考答案

习题参考答案第一章习题一1. (ⅰ) 由a∣b知b = aq,于是b = (-a)(-q),-b = a(-q)及-b = (-a)q,即-a∣b,a∣-b及-a∣-b。

反之,由-a∣b,a∣-b及-a∣-b也可得a∣b;(ⅱ) 由a∣b,b∣c知b = aq1,c = bq2,于是c = a(q1q2),即a∣c;(ⅲ) 由b∣a i知a i= bq i,于是a1x1+a2x2+ +a k x k = b(q1x1+q2x2+ +q k x k),即b∣a1x1+a2x2+ +a k x k;(ⅳ) 由b∣a知a = bq,于是ac = bcq,即bc∣ac;(ⅴ) 由b∣a知a = bq,于是|a| = |b||q|,再由a ≠ 0得|q| ≥ 1,从而|a| ≥ |b|,后半结论由前半结论可得。

2. 由恒等式mq+np = (mn+pq) - (m-p)(n-q)及条件m-p∣mn+pq可知m-p∣mq+np。

3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a+ 1, , a+ 9, a+ 19的数字和为s, s+ 1, , s+ 9, s+ 10,其中必有一个能被11整除。

4. 设不然,n1 = n2n3,n2≥p,n3≥p,于是n = pn2n3≥p3,即p≤3n,矛盾。

5. 存在无穷多个正整数k,使得2k+ 1是合数,对于这样的k,(k+ 1)2不能表示为a2+p的形式,事实上,若(k+ 1)2 = a2+p,则(k+ 1 -a)( k+ 1 +a) = p,得k+ 1 -a = 1,k+ 1 +a = p,即p = 2k+ 1,此与p 为素数矛盾。

第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。

2.写a = 3q1+r1,b = 3q2+r2,r1, r2 = 0, 1或2,由3∣a2+b2 = 3Q+r12+r22知r1 = r2 = 0,即3∣a且3∣b。

《初等数论》各章习题参考解答

《初等数论》各章习题参考解答

3
1
48

在100! 的分解式中的指数
2
100!
100 2
100 4
100 8
100 16
100 64
50
25
12
6
1
94

100! 294 348 k 447 348 k 1247 3k,k, 6 1。
故 nmax 47 , M min 3k , k, 6 1。
k
+
1 位正整数,记其最左边
那一位数字为 a Î {2,5},则 xk' + 1 = a´ 10k + xk' ,其中 xk' 是由 2 和 5 组成的十进制 k 位
正整数,由 2k+ 1
若 k = 轾犏臌3 n = 8 ,则 3创5 7篡8 n 840 n ,从而 k = 轾犏臌3 n 吵轾犏臌3 840 9 > 8 ,矛盾!
若 k = 7 ,则 3创4 5篡7 n 420 n ,但 n < 840 ,所以最大的正整数 n = 420 。
6.证明:当 n = 1 时,存在唯一的 x1 = 2 ,则有 21 x1 ;当 n = 2 时,存在唯一的 x2 = 52 ,有 22 x2 ;当 n = 3 时,存在唯一的 x3 = 552 ,有 23 x3 。
n 炒2a
3b 创5g
7 11
77创
k 2
k 3
k 5
77 30
k 3。
由 k ³ 11 ,可得 k ³
11 12
(k
+
1),从而
n>
77 30
壮k 3
77 30
113 123

(完整版)初等数论第2版习题答案

(完整版)初等数论第2版习题答案

第一章 §11 证明:n a a a ,,21 都是m 的倍数。

∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈∀,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rby ax by ax ++∴/00 下证8P 第二题by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+4 证:作序列 ,23,,2,0,2,,23,b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使b q a b q 212+<≤成立 )(i 当q 为偶数时,若.0>b 则令b qa bs a t q s 2,2-=-==,则有22220b t b qb q a b q a t bs a <∴<-=-==-≤若0<b 则令b qa bs a t q s 2,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 21,21+-=-=+=,则有 2021212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 0<b ,则令b q a bs a t q s 21,21++=-=+-= 则同样有 2b t ≤综上 存在性得证 下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11 而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾 故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b为整数 2,2),2(2212311b t b t b b b b b ≤=-+⋅=+⋅=⋅ 2,2,222211bt b t t bs t bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1) 令S=n14131211+++++,取M=p k 75321⋅⋅⋅-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。

(完整版)初等数论练习题二(含答案)

(完整版)初等数论练习题二(含答案)

(完整版)初等数论练习题二(含答案)《初等数论》期末练习一、单项选择题1 如果 ba , a b ,则().A a b Bab2、如果 3n , 5n ,贝U 15 (A 整除B 不整除 C3、在整数中正素数的个数().A 有1个B 有限多C 无限多D 不一定4、如果a b (modm ) ,c 是任意整数贝UA ac bc(modm)B a bC ac bc(mod m) Dab5、如果(),则不定方程ax by c 有解.A (a,b) cB c(a, b)C a cD (a, b)a6、整数5874192能被()整除.A 3B 3 与 9C 9D 3 或 97、如果 2n , 15n ,贝U 30( ) n . A 整除 B 不整除 C 等于 D 不一定& 大于10且小于30的素数有(). A 4个 B 5个 C 6个 D 7个9、模5的最小非负兀全剩余系是( ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 10、整数637693能被()整除. A 3 B 5C 7D 9二、填空题1、素数写成两个平方数和的方法是(). 2、同余式ax b O (modm )有解的充分必要条件是().8、如果同余式ax b O (modm )有解,则解的个数(). 9、在176与545之间有()是13的倍数.10、如果 ab 0 则[a,b ](a,b )=(). Cab Dab )n . 等于 D 不一定 3、如果a,b 是两个正整数,则不大于 4、如果p 是素数,a 是任意一个整数 5、 a,b 的公倍数是它们最小公倍数的6、如果a,b 是两个正整数,则存在a 而为b 的倍数的正整数的个数为().,则a 被p 整除或者().(). )整数 q, r ,使 a bq r, 0 r b. y 2有().11、如果(a,b) 1,那么(ab,a b)=().二、计算题1、求[136,221,391]=?2、求解不定方程9x 21y 144.3、解同余式12x 15 0(mod45).4294、求——,其中563是素数.(8分)5635、求[24871,3468]=?6、求解不定方程6x 17y 18.7、解同余式111x 75(mod321).8、求17的平方剩余与平方非剩余.四、证明题1、证明对于任意整数2n nn,数3 23—是整数.62、证明相邻两个整数的立方之差不能被5整除.3、证明形如4n 1的整数不能写成两个平方数的和4、如果整数a的个位数是5,则该数是5的倍数.5、证明相邻两个偶数的乘积是8的倍数.初等数论期末练习一答案、单项选择题1、D.2、A3、C4、A5、A6、B7、A8、C9、D 10、C二、填空题1、素数写成两个平方数和的方法是(唯一的)2、同余式ax b 0(modm)有解的充分必要条件是 ((a,m)b ).3、如果a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ([-]). b4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、 a,b 的公倍数是它们最小公倍数的(倍数).6、如果a,b 是两个正整数,则存在(唯一)整数q, r ,使a bq r, 0 rb.7、设p 是素数,则不定方程p x 2 y 2有(唯一解 ).8、如果同余式ax b 0(mod m)有解,则解的个数((a, m)).9、在176与545之间有(28 )是13的倍数.10、如果 ab 0 则[a,b](a,b)=( ab ).11、如果(a,b) 1,那么(ab, a b)=(1). 三、计算题1、求[136,221,391]=? ( 8 分)解[136,221,391]=[[136,221],391]=[1768,391] 1768 391 17=104 391 =40664.解:因为(9,21)=3, 3144,所以有解;化简得3x 7y 48 ;考虑 3x 7y 1,有 x 2, y 1,所以原方程的特解为 x 96, y 48,因此,所求的解是 x 96 7t, y 48 3t,t Z 。

《初等数论》各章习题参考解答

《初等数论》各章习题参考解答

《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。

2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。

故 max 47n =,min 3M k =,(),61k =。

故 当M 最小值是3的倍数,但不是2的倍数。

3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。

由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。

若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。

所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。

综上所述,所求正整数对()()(),4,111,1x n =、。

4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。

初等数论答案01

初等数论答案01

第一章整除理论整除性理论是初等数论的基础。

本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。

第一节数的整除性定义1设a,b是整数,b≠ 0,如果存在整数c,使得a = bc成立,则称a被b整除,a是b的倍数,b是a的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被b 整除,记为b|/a。

显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。

被2整除的整数称为偶数,不被2整除的整数称为奇数。

定理1下面的结论成立:(ⅰ) a∣b⇔±a∣±b;(ⅱ) a∣b,b∣c⇒a∣c;(ⅲ) b∣a i,i = 1, 2, , k⇒b∣a1x1+a2x2+ +a k x k,此处x i(i = 1, 2, , k)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒ |b| ≤ |a|;b∣a且|a| < |b| ⇒a = 0。

证明留作习题。

定义2若整数a≠ 0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。

以后在本书中若无特别说明,素数总是指正素数。

定理2任何大于1的整数a都至少有一个素约数。

证明若a是素数,则定理是显然的。

若a 不是素数,那么它有两个以上的正的非平凡约数,设它们是d 1, d 2, , d k 。

不妨设d 1是其中最小的。

若d 1不是素数,则存在e 1 > 1,e 2 > 1,使得d 1 = e 1e 2,因此,e 1和e 2也是a 的正的非平凡约数。

这与d 1的最小性矛盾。

所以d 1是素数。

证毕。

推论 任何大于1的合数a 必有一个不超过a 的素约数。

证明 使用定理2中的记号,有a = d 1d 2,其中d 1 > 1是最小的素约数,所以d 12 ≤ a 。

(完整版)初等数论练习题二(含答案)

(完整版)初等数论练习题二(含答案)

(完整版)初等数论练习题二(含答案)《初等数论》期末练习一一、单项选择题1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15()n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数().A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解.A c b a ),(B ),(b a cC c aD a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果n 2,n 15,则30()n .A 整除B 不整除C 等于D 不一定8、大于10且小于30的素数有().A 4个B 5个C 6个D 7个9、模5的最小非负完全剩余系是( ).A -2,-1,0,1,2B -5,-4,-3,-2,-1C 1,2,3,4,5D 0,1,2,3,410、整数637693能被( )整除.A 3B 5C 7D 9二、填空题1、素数写成两个平方数和的方法是().2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0.7、设p 是素数,则不定方程22y x p +=有().8、如果同余式)(mod 0m b ax ≡+有解,则解的个数( ).9、在176与545之间有( )是13的倍数.10、如果0φab ,则),](,[b a b a =( ).11、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求??563429,其中563是素数. (8分) 5、求[24871,3468]=?6、求解不定方程18176=-y x .7、解同余式)321(mod 75111≡x .8、求17的平方剩余与平方非剩余.四、证明题1、证明对于任意整数n ,数62332n n n ++是整数. 2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.4、如果整数a 的个位数是5,则该数是5的倍数.5、证明相邻两个偶数的乘积是8的倍数.初等数论期末练习一答案一、单项选择题1、D.2、A3、C4、A5、A6、B7、A8、C9、D 10、C二、填空题1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][ba ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r π≤0.7、设p 是素数,则不定方程22y x p +=有(唯一解).8、如果同余式)(mod 0m b ax ≡+有解,则解的个数( ),(m a ).9、在176与545之间有( 28 )是13的倍数.10、如果0φab ,则),](,[b a b a =( ab ).11、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136?] =[1768,391] = 173911768? =104?391=40664.2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解;化简得4873=+y x ;考虑173=+y x ,有1,2=-=y x ,所以原方程的特解为48,96=-=y x ,因此,所求的解是Z t t y t x ∈-=+-=,348,796。

《初等数论》第三版习题解答

《初等数论》第三版习题解答

《初等数论》第三版习题解答第一章整数的可除性§1整除的概念·带余除法1.证明定理3定理3若a1,a2,,an都是m得倍数,q1,q2,,qn是任意n个整数,则q1a1q2a2证明:qnan是m得倍数.a1,a2,an都是m的倍数。

pn使a1p1m,a2p2m,存在n个整数p1,p2,又q1,q2,,anpnm,qn是任意n个整数qnanq1a1q2a2q1p1mq2p2m(p1q1q2p2即q1a1q2a2qnpnmqnpn)mqnan是m的整数2.证明3|n(n1)(2n1)证明n(n1)(2n1)nn(1n)(2nn(n1)(n2)n(1n)n(又n(n1)(n2),(n1)n(n2)是连续的三个整数故3|n(n1)(n2),3|(n1)n(n1)3|n(n1)(n2)(n1)n(n1)从而可知3|n(n1)(2n1)3.若a某0by0是形如a某by(某,y是任意整数,a,b是两不全为零的整数)的数中最小整数,则(a某0by0)|(a某by).1/77证:a,b不全为0在整数集合Sa某by|某,yZ中存在正整数,因而有形如a某by的最小整数a某0by0某,yZ,由带余除法有a某by(a某0by0)qr,0ra某0by0则r(某某0q)a(yy0q)bS,由a某0by0是S中的最小整数知r0a某0by0|a某bya某0by0|a某by(某,y为任意整数)a某0by0|a,a某0by0|ba某0by0|(a,b).又有(a,b)|a,(a,b)|b(a,b)|a某0by0故a某0by0(a,b) 4.若a,b是任意二整数,且b0,证明:存在两个整数,t使得abt,|t||b|2成立,并且当b是奇数时,,t是唯一存在的.当b是偶数时结果如何?证:作序列即存在一个整数q,使2222若b0则令,tabaq2bqb,则同样有t22(ii)当q为奇数时,若b0则令q1q1,tabab,则有222/77下证唯一性当b为奇数时,设abtb1t1则tt1b(1)b而tbb,t1tt1tt1b矛盾故1,tt122b为整数2当b为偶数时,,t不唯一,举例如下:此时3bbbbbb1b2(),t1,t122222§2最大公因数与辗转相除法1.证明推论4.1推论4.1a,b的公因数与(a,b)的因数相同.证:设d是a,b的任一公因数,d|a,d|b由带余除法abq1r1,br1q2r2,rnqn1,0rn1rnrn1(a,b)rnd|abq1r1,d|br1q2r2,┄,d|rn2rn1qnrn(a,b),即d是(a,b)的因数。

初等数论作业答案

初等数论作业答案

初等数论1:[单选题]已知361a是一个4位数(其中a是个位数),它能被5整除,也能被3整除,则a的值是()。

A:0B:2C:5D:9参考答案:C2:[单选题]下面的()是模4的一个简化剩余系。

A:4,17B:1,15C:3,23D:13,6参考答案:B3:[单选题]小于20的正素数的个数是()。

A:11B:10C:9D:8参考答案:D 4:[单选题]下面的数是3的倍数的数是()。

A:19B:119C:1119D:11119参考答案:C5:[单选题]-4除-39的余数是()。

A:3B:2C:1D:0参考答案:C6:[单选题]一个正整数n的各位上的数字是0或1,并且n能被2和3整除,则最小的n 是()。

A:1110B:1101C:1011D:1001参考答案:A7:[单选题][[4.5]+[3.7]]等于()。

A:3B:4C:7D:8参考答案:C8:[单选题]{{1.8}+{2.9}}等于()。

A:0.4B:0.5C:0.6D:0.7参考答案:D 9:[单选题]100与44的最小公倍数是()。

A:4400B:2200C:1100D:440参考答案:C10:[单选题]使3的n次方对模7同余于1的最小的正整数n等于()。

A:6B:2C:3D:13参考答案:A11:[单选题]设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。

A:0B:1C:2D:3参考答案:A12:[单选题]下面的()是不定方程3x + 7y = 20的一个整数解。

A:x=0,y=3B:x=2,y=1C:x=4,y=2D:x=2,y=2参考答案:D13:[单选题]下面的()是模4的一个完全剩余系。

A:9,17,-5,-1B:25,27,13,-1C:0,1,6,7D:1,-1,2,-2参考答案:C14:[单选题]下面的()是模12的一个简化剩余系。

A:0,1,5,11B:25,27,13,-1C:1,5,7,11D:1,-1,2,-2参考答案:C15:[单选题]若a,b均为偶数,则a + b为()。

《初等数论》版习题解答

《初等数论》版习题解答

《初等数论》版习题解答第⼀章整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。

∴存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===⼜12,,,n q q q 是任意n 个整数1122n nq a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明(1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+ ⼜(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从⽽可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最⼩整数,则00()|()ax by ax by ++.证:,a b 不全为0,x y Z ?∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最⼩整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ ⼜有(,)|a b a ,(,)|a b b 00(,)|a b ax by ∴+故00(,)ax by a b +=4.若a ,b 是任意⼆整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成⽴,并且当b 是奇数时,s ,t 是唯⼀存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b ---则a 必在此序列的某两项之间即存在⼀个整数q ,使122q q b a b +≤<成⽴ ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有1102222b b q q t a bs a b a b t ++-≤=-=-=-<∴≤ 若 0b <,则令11,22q q s t a bs a b ++=-下证唯⼀性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> ⽽111,22b bt t t t t t b ≤≤∴-≤+≤ ⽭盾故11,s s t t == 当b 为偶数时,,s t 不唯⼀,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ?=?+=?+-=≤§2 最⼤公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同.证:设d '是a ,b 的任⼀公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。

初等数学研究第一章到第十三章全部答案

初等数学研究第一章到第十三章全部答案

解: (1)Q ? ? 1 ≥ 0 ? x ? x ≠0 ? 5 ? x≠ ? 4 ? , ∴? x ≤ 8 ?x ≠0 ? ? 5 4 5 4 5 ? x≠ ? 4 ? ,∴ ? ?8 ≤ x ≤ 8 ? x≠0 ? ? ∴函数定义域为:[?8,0) U (0, ) U ( ,8] . ?3 x ? 2 > 0 ? (2)Q ? 2 x ? 1 > 0 ?2 x ? 1 ≠ 1. ? 2 3 2 ? x> ? 3 ? 1 ? ∴?x > 2 ? ? x ≠1 ? ? ∴函数的定义域为: ( ,1) U (1, +∞). ?log 0.5 (log 2 x 2 + 1) ≥ 0 ? (3)Q ? log 2 x 2 + 1 > 0 ? x2 > 0 ? ? 0 < log 2 x 2 + 1 ≤ 1 ? ∴ ?log 2 x 2 > ?1 ?x≠0 ? ?2-1 ≤ x 2 ≤ 1 ? ∴ ? x 2 > 2?1 ?x ≠ 0 ? ? 2 2 ≤ x ≤ 1 或 ?1 ≤ x ≤ ? ? 2 ? 2 ? 2 2 或 x<? ? x> ∴? 2 2 ? ? x≠0 ? ? ? 2 2 函数定义域为:[(?1, ? )U( ,1)] . 2 2 ?lg(9 ? 3x ) ≠ 0 ? Q (4) ? 9 ? 3x > 0 ?7 ? x ? 2 ≥ 0 ? ? x ≠ log 3 8 ? ∴? x < 2 ??5 ≤ x ≤ 9 ? ? 9 ? 3x ≠ 1 ? ∴ ? 3x < 9 ? x?2 ≤ 7 ? ? 3x ≠ 8 ? ∴ ? 3x < 32 ??7 ≤ x ? 2 ≤ 7 ? ∴ log 3 8 < x < 2 或 ?5 ≤ x < log 3 8 ∴函数定义域为:[(?5,log 3 8) U (log 3 8, 2)]. (5)Q1 ? ( ) 2 x?1 ≥ 0. 1 3 ∴ ( )2 x?1 ≤ 1. ∴ 2 x ? 1 ≥ 0. ? log x ≥ 0 ? (6)Q ? x > 0 ?5 ? 2 x > 0 ? 1 3 ∴1 ≤ x < log 5 2 1 1 ∴函数定义域为[ , +∞] 2 2 x ≥1 ? ? x ≥1 ? ? ∴? x > 0 ∴? x > 0 5 ? ?2 x < 5 ? x< ? 2 ∴x ≥ 5 ∴ 函数定义域为:[1, ) . 2 (7)Q ?1 ≤ 2 x 2 ? x ≤ 1 ? 2 x 2 ? x ? 1 ≤ 0LL ① ∴? 2 ?2 x ? x + 1 ≥ 0LL ② 1 ? ?由① ? ≤ x ≤ 1 ∴? 2 ?由②x ∈ R ? ∴函数的定义域为:[1, ) . ??1 ≤x?1≤1 (8)Q ? ? 5x ? 1 > 0 1 5 ?0 ≤ x ≤ 2 1 ? ∴? ∴ <x≤2 1 5 x> ? 5 ? 5 2 ∴函数 的定义域为: ( ,2]. (9)Q ? ?sin x ? 1 ≥ 0 π ∴ sin x = 1 ∴ x = + 2kπ .k ∈ Ζ. 2 ?1 ? sin x ≥ 0 ∴函数的定义域为: ? x x = ? ? π ? + 2 kπ , k ∈ Ζ ? . 2? (10)Q cos3 x > 0 ∴ 2kπ ? π 2 < 3x < π 2 + 2 kπ . ∴ 2 kπ π n 2 kπ ? x< + , k ∈ Ζ. 3 6 6 3 ∴函数的定义域为: ? x ? 2 kπ π 2 kπ π ? ? <x< + , k ∈ Ζ.? 636?3? 5、 (1)已知函数 f(x)的定义域是[1,4],求 f ( 1 ) 的定义域。 x2 (2)已知函数 f(x)的定义域是[-2,2],求 f ( x ) 的定义域。 (3) 已知函数 f(x)的定义域是 ( ,3) , f (lg x) 的定义域。 解: (1)Q1 ≤ 1 2 1 ≤4 x2 ? 2 1 ?x ≥ ∴? 4 2 ? x ≤1 ? 1 1 ? ?x ≥ x 或 ≤ ? ∴? 2 2 ? ?1 ≤ x ≤ 1 ? 1 1 ∴ ≤ x ≤ 1 或 ?1 ≤ x ≤ ? 2 2 1 1 1 ∴函数 f ( 2 ) 的 定义域为[ ,1] U [?1, ? ] . x 2 2 (2)Q ?2 ≤ x ≤2 ∴0 ≤ x ≤ 4 ∴函数定义域为[0, 4] . ?1 ? < lg x < 3 (3)Q ? 2 ? x>0 ? ∴10 < x < 103 ∴函数定义域为 ( 10,103 ). 1 ?1 6 、 设 函 数 f ( x) = ( x ? 4kx + 4k + k + ) 2 (k ∈ Ζ). 求 证 k ?1 f ( x) 的定义域为

初等数论复习题答案

初等数论复习题答案

初等数论复习题答案1. 试述质数与合数的定义。

答案:质数是指大于1的自然数,除了1和它本身以外不再有其他因数的数。

合数则是指除了1和它本身之外,还有其他因数的自然数。

2. 请解释最大公约数和最小公倍数的概念。

答案:最大公约数(GCD)是指两个或多个整数共有约数中最大的一个。

最小公倍数(LCM)是指两个或多个整数的最小公共倍数。

3. 举例说明辗转相除法(欧几里得算法)的计算过程。

答案:设两个正整数为a和b(a > b),辗转相除法的过程是:用较大的数除以较小的数,得到余数r,然后用较小的数去除这个余数,再得到新的余数,如此反复,直到余数为0,最后的除数即为最大公约数。

4. 试证明费马小定理。

答案:费马小定理指出,如果p是一个质数,a是一个不被p整除的整数,则a^(p-1) ≡ 1 (mod p)。

证明过程通常涉及模运算和群论的基本概念。

5. 说明中国剩余定理的基本原理。

答案:中国剩余定理是数论中一个关于线性同余方程组的定理。

给定一组两两互质的模数和一组对应的余数,定理保证了存在一个唯一的解,这个解在模数乘积的模下是唯一的。

6. 什么是素数定理?请简要说明。

答案:素数定理描述了素数在自然数中的分布情况。

它指出,小于或等于给定数x的素数数量大约是x除以x的自然对数,即π(x) ≈ x / ln(x)。

7. 描述同余的概念及其性质。

答案:同余是指两个整数a和b,若它们除以正整数n后余数相同,则称a和b同余模n,记作a ≡ b (mod n)。

同余具有自反性、对称性和传递性等性质。

8. 简述模运算的性质。

答案:模运算的性质包括加法和乘法的封闭性、结合律、交换律、分配律以及模逆元的存在性等。

9. 试解释什么是完全数。

答案:完全数是指一个正整数,它等于其所有真因数(即除了自身以外的因数)之和。

10. 请解释什么是亲和数。

答案:亲和数是一对或一组数,其中每个数的所有真因数之和等于另一个数。

例如,220和284就是一对亲和数,因为220的真因数之和为1+2+4+5+10+11+20+22+44+55+110=284,而284的真因数之和也为220。

王进明_初等数论_习题解答

王进明_初等数论_习题解答

王进明 初等数论 习题及作业解答1.已知两整数相除,得商12,余数26,又知被除数、除数、商及余数之和为454.求被除数.解:1226,1226454,a b a b =++++=12261226454,b b ++++=(121)454122626390,b +=---=b =30, 被除数a =12b +26=360+26=386. 这题的后面部分是小学数学的典型问题之一——“和倍” 问题。

2.证明:(1) 当n ∈Z 且39(09)n q r r =+≤<时,r 只可能是0,1,8;证:把n 按被9除的余数分类,即:若n=3k, k ∈Z ,则3327n k =, r=0;若n=3k +1, k ∈Z ,则3322(3)3(3)3(3)19(331)1n k k k k k k =+++=+++,r=1; 若n=3k -1, k ∈Z ,则33232(3)3(3)3(3)19(331)8n k k k k k k =-+-=-+-+,r=8. (2) 当 n ∈Z 时,32326n n n -+的值是整数。

证 因为32326n n n -+=32236n n n -+,只需证明分子3223n n n -+是6的倍数。

32223(231)(1)(21)n n n n n n n n n -+=-+=--(1)(21)n n n n =--++=(1)(2)n n n --+(1)(1)n n n -+.由k ! 必整除k 个连续整数知:6 |(1)(2)n n n --,6 |(1)(1)n n n -+.或证:2!|(1)n n -, (1)n n -必为偶数.故只需证3|(1)(21)n n n --.若3|n, 显然3|(1)(21)n n n --;若n 为3k +1, k ∈Z ,则n -1是3的倍数,得知(1)(21)n n n --为3的倍数;若n 为3k -1, k ∈Z ,则2n -1=2(3k -1)-1=6k-3, 2n -1是3的倍数.综上所述,(1)(21)n n n --必是6的倍数,故命题得证。

(完整版)初等数论练习题二(含答案)

(完整版)初等数论练习题二(含答案)

《初等数论》期末练习一、单项选择题1 如果 ba , a b ,则().A a b Bab2、如果 3n , 5n ,贝U 15 (A 整除B 不整除 C3、 在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、 如果a b (modm ) ,c 是任意整数 贝UA ac bc(modm)B a bC ac bc(mod m) Dab5、 如果(),则不定方程ax by c 有解.A (a,b) cB c(a, b)C a cD (a, b)a6、 整数5874192能被()整除.A 3B 3 与 9C 9D 3 或 97、 如果 2n , 15n ,贝U 30( ) n . A 整除 B 不整除 C 等于 D 不一定& 大于10且小于30的素数有(). A 4个 B 5个 C 6个 D 7个9、 模5的最小非负兀全剩余系是( ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 10、 整数637693能被()整除. A 3 B 5 C 7 D 9二、填空题1、素数写成两个平方数和的方法是(). 2、 同余式ax b O (modm )有解的充分必要条件是().8、 如果同余式ax b O (modm )有解,则解的个数(). 9、 在176与545之间有()是13的倍数.10、 如果 ab 0 则[a,b ](a,b )=( ). Cab Dab )n . 等于 D 不一定 3、 如果a,b 是两个正整数,则不大于 4、 如果p 是素数,a 是任意一个整数 5、 a,b 的公倍数是它们最小公倍数的6、 如果a,b 是两个正整数,则存在a 而为b 的倍数的正整数的个数为 ().,则a 被p 整除或者().(). )整数 q, r ,使 a bq r, 0 r b. y 2有( ).11、如果(a,b) 1,那么(ab,a b)=().二、计算题1、求[136,221,391]=?2、求解不定方程9x 21y 144.3、解同余式12x 15 0(mod45).4294、求——,其中563是素数.(8分)5635、求[24871,3468]=?6、求解不定方程6x 17y 18.7、解同余式111x 75(mod321).8、求17的平方剩余与平方非剩余.四、证明题1、证明对于任意整数2n nn,数3 23—是整数.62、证明相邻两个整数的立方之差不能被5整除.3、证明形如4n 1的整数不能写成两个平方数的和4、如果整数a的个位数是5,则该数是5的倍数.5、证明相邻两个偶数的乘积是8的倍数.初等数论期末练习一答案、单项选择题1、D.2、A3、C4、A5、A6、B7、A8、C9、D 10、C二、填空题1、 素数写成两个平方数和的方法是(唯一的)2、 同余式ax b 0(modm)有解的充分必要条件是 ((a,m)b ).3、 如果a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ([-]). b4、 如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、 a,b 的公倍数是它们最小公倍数的(倍数).6、 如果a,b 是两个正整数,则存在(唯一)整数q, r ,使a bq r, 0 r b.7、 设p 是素数,则不定方程p x 2 y 2有(唯一解 ).8、 如果同余式ax b 0(mod m)有解,则解的个数((a, m)).9、 在176与545之间有(28 )是13的倍数.10、 如果 ab 0 则[a,b](a,b)=( ab ).11、 如果(a,b) 1,那么(ab, a b)=(1). 三、计算题1、求[136,221,391]=? ( 8 分) 解[136,221,391]=[[136,221],391]=[1768,391] 1768 391 17=104 391 =40664.解:因为(9,21)=3, 3144,所以有解;化简得3x 7y 48 ;考虑 3x 7y 1,有 x 2, y 1,所以原方程的特解为 x 96, y 48,因此,所求的解是 x 96 7t, y 48 3t,t Z 。

初等数论试题及答案高一

初等数论试题及答案高一

初等数论试题及答案高一初等数论试题及答案(高一)一、选择题(每题4分,共40分)1. 以下哪个数是质数?A. 4B. 9C. 13D. 16答案:C2. 两个连续的整数的乘积总是:A. 偶数B. 奇数C. 质数D. 合数答案:A3. 一个数的最小素因子是:A. 1B. 2C. 3D. 该数本身答案:B4. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:B5. 如果一个数n的各位数字之和能被3整除,那么n:A. 能被2整除B. 能被3整除C. 能被5整除D. 能被9整除答案:B6. 以下哪个数是费马数?A. 3B. 5C. 17D. 257答案:D7. 一个合数n,如果它有且仅有两个不同的素因子,那么n被称为:A. 质数B. 合数C. 半质数D. 素数答案:C8. 欧拉函数φ(n)表示的是:A. 不大于n的正整数中能被n整除的数的个数B. 不大于n的正整数中与n互质的数的个数C. 不大于n的正整数中能被n整除的素数的个数D. 不大于n的正整数中与n互质的素数的个数答案:B9. 一个数n被称为素数,如果:A. n只能被1和它本身整除B. n只能被1和它本身整除,且n大于1C. n只能被1和它本身整除,且n是偶数D. n只能被1和它本身整除,且n是奇数答案:B10. 以下哪个数是梅森素数?A. 3B. 7C. 31D. 127答案:D二、填空题(每题4分,共20分)11. 一个数n被称为合数,如果它有超过________个不同的素因子。

答案:212. 一个数n被称为平方数,如果存在一个整数m,使得n = m^________。

答案:213. 一个数n被称为立方数,如果存在一个整数m,使得n = m^________。

答案:314. 一个数n被称为素数,如果它除了1和它本身外,没有其他的________。

答案:因数15. 一个数n被称为高斯素数,如果它在________数系统中是素数。

《初等数论》习题解答

《初等数论》习题解答

《初等数论》习题集第1章第 1 节1. 证明定理1。

2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。

3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。

4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。

5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。

第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。

2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。

3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。

4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。

5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。

第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。

2. 证明定理2的推论1, 推论2和推论3。

3. 证明定理4的推论1和推论3。

4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。

5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。

6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。

第 4 节1. 证明定理1。

2. 证明定理3的推论。

3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。

4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。

5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档