二元一次方程组复习课教学设计

合集下载

《二元一次方程组及其应用专题复习》公开课教学设计

《二元一次方程组及其应用专题复习》公开课教学设计

《二元一次方程组及其应用专题复习》公开课教学设计授课主题:二元一次方程组及其应用专题复习一、教材的地位和作用:本节课是在复习一元一次方程及其应用的基础上,对二元一次方程组及其应用的复习,进一步体会消元的数学思想,以及化未知为已知,化复杂问题为简单问题的化归思想,体会二元一次方程组与现实生活之间的联系的一般的圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用.同时,圆周角性质也是说明线段相等,角相等的重要依据之一.二、学情分析:九年级下学期的学生有一定的知识结构体系和解决问题的能力。

所以在教学中除了让学生灵活应用代入法和消元法解二元一次方程组之外,还应建立数学与生活的联系,引导学生用数学的眼光思考问题、解决问题。

三、教学目标:1、知识与技能:会用代入消元法和加减消元法解简单的二元一次方程组,并能根据方程组的特点,灵活选用适当的解法。

2、过程与方法:探求二元一次方程组的解法,体会消元的数学思想。

3、情感、态度、价值观:渗透转化的辩证观点,培养学生利用数学知识解决实际生活问题的实践能力。

四、教学重点与难点:1、重点:掌握消元思想,熟练地解二元一次方程组.会用二元一次方程组解决一些简单的实际问题.2、难点:是图象法解二元一次方程组,数形结合思想.五、教学过程:(一)知识回顾:1. 含有2个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2. 由两个或两个以上的二元一次方程所组成的方程组叫做二元一次方程组.3.适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.4.二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

5.解二元一次方程组的基本思想是消元法,即把二元变成一元,方法有代入消元法和加减消元法.6. 列二元一次方程组解应用题的一般步骤为:一审,二找等量关系,三设未知数,四列二元一次方程组,五解,六答.(二)重点展现:例1:解下例方程组:(1) (2)(1)解:由①得, =1- ③将其中一个未知数用另外一个未知数表示;将③代入②得,3 +2(1- )=5将变形后的方程代入另一个方程;解得, =3解一元一次方程求出其中一个未知数的值;把 =3代入方程③得, =1-3=-2把求出的未知数的值代入变形后的方程,求出另一个未知数的值原方程组的解为(2)解:由①2得,4 +6 =16 ③变形方程,使得某个未知数的系数相等或互为相反数;由②-③得,11 =22消掉其中的一个未知数,得到一元一次方程;解得, =2解一元一次方程求出其中一个未知数的值;把 =2代入方程①得, =1把求出的未知数的值代入变形后的方程,求出另一个未知数的值原方程组的解为(三)巩固应用:例1、已知以、为未知数的方程组的方程组与的解相同,试求、的值。

二元一次方程组教学设计

二元一次方程组教学设计

二元一次方程组教学设计篇1:二元一次方程组教学设计教学目标1、认识二元一次方程和二元一次方程组.2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。

二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。

视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。

归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解.思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?带着问题让学生观看洋葱数学视频二元一次方程组的解视频内容设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

《二元一次方程组》复习课教案

《二元一次方程组》复习课教案

《二元一次方程组》复习课教案《《二元一次方程组》复习课教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标1、理解二元一次方程,二元一次方程组,二元一次方程组的解概念,会检验给出的一对数是否为某个已知方程或方程组的解。

2、能灵活地,正确地运用代入消元法,加减消元法解二元一次方程组。

3、通过解二元一次方程组,掌握把“二元”转化为“一元”的消元法,体会数学中的“消元”和“转化”的思想。

教学重点二元一次方程组的解法。

教学难点将二元一次方程组的一个未知数的系数化成相同(或互为相反数).教学设计一、知识梳理:1、二元一次方程,二元一次方程组的概念;2、用一个未知数的代数式表示另一个未知数;3、二元一次方程组及其解的概念;4、代入消元法,加减消元法的概念及应用;5、方程组的同解问题的应用。

二、例题讲解:1、已知方程,(1)若用的代数式表示应为_________________;(2)当x=-1时方程的解为;(3)任意写出方程的两个解:。

2、二元一次方程组a2ax+3y=13的解也是二元一次方程5x-3y=1的解,求a的值.3、若x=-1y=2是方程组ax-y=1x+6y=7的解,则a=________,b=_________。

4、下列说法中正确的是……………………………………………………()(A)x=3,y=2是方程3x-4y=1的一组解.(B)方程3x-4y=1有无数组解,即x,y可以取任何数值.(C)方程3x-4y=1只有两组解,两组解是:121、x=-1y=-1。

(D)方程3x-4y=1可能无解.5、解下列方程组:(1)(2)6、已知是方程组的解,求、的值。

练习:1、方程组5x+4y=77x+3y=15的解是______________。

x=3y=-22、两数和是16,两数差是2,则这两数的积是_____________。

(9,7)3、若2x-3y=5,则6-4x+6y=_____________;4、解关于x、y的方程组。

(精心整理)二元一次方程组复习学案(经典全面)

(精心整理)二元一次方程组复习学案(经典全面)

二元一次方程组复习学案一、等式、方程 1.等式性质[等式两边加(或减)同一个数或同一个整式,所得结果仍是等式; 等式两边乘(或除以)同一个数(除数不能是0),所得结果仍是等式. 2.方程(1)含有未知数的等式叫做方程.(2)方程的解:使方程左右两边的值相等的未知数的值叫做方程的解. (3)解方程:求方程解的过程叫做解方程. 二、一元一次方程1.只含有______未知数,并且未知数的最高次数都是____,系数不等于零的______方程叫做一元一次方程,其标准形式为__________,其解为x =______.2.解一元一次方程的一般步骤:(1)去分母;(2)________;(3)移项;(4)____________;(5)未知数的系数化为1.三、二元一次方程组的有关概念 1.二元一次方程(1)概念:含有______未知数,并且未知数的项的次数都是____,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c(a≠0,b≠0).(3)使二元一次方程两边的值______的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集. 2.二元一次方程组(1)概念:具有相同未知数的______二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解.四、二元一次方程组的解法解二元一次方程组的基本思想是______,即化二元一次方程组为一元一次方程,主要方__________消元法. 1.用代入消元法---不要漏掉括号(1)从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示出y (或x ),即变成y =ax +b (或x =ay +b )的形式; (2)将y =ax +b (或x =ay +b )代入另一个方程,消去y (或x ),得到关于x (或y )的一元一次方程; (3)解这个一元一次方程,求出x (或y )的值;y =ax +b (或x =ay +b )中,求y (或x )的值. 2.用加减消元法---不要漏乘(1)在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.考点一 :二元一次方程概念 与解法例1.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m -n= .例2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗?总结分析:灵活学会“方程解”概念解题. 【巩固】已知方程组⎩⎨⎧-=--=+4652by ax y x 和方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2017)2(b a +的值.【变式】已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+f by ex c by ax 的解为⎩⎨⎧==13y x ,你能求得关于x ,y的二元一次方程组⎩⎨⎧=++-=++-f y x b y x e cy x b y x a )()()()(的解吗?★剖析总结★:灵活学会“方程解”概念解题,利用解相同,可以将方程重新组合,换位联立;在解题过程中,常常运用类比的思想【巩固2】.考点二:解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组);6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)行程问题:(2)工程问题;(3)销售中的盈亏问题;(4)储蓄问题;(5)产品配套问题;(6)增长率问题;(7)和差倍分问题;(8)数字问题; (9)浓度问题; (10)几何问题; (11)年龄问题;(12)优化方案问题.一、行程问题(1)三个基本量的关系:路程s=速度v×时间t时间t=路程s÷速度V速度V=路程s÷时间t(2)三大类型:①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距,③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速= 2水速;顺速+ 逆速= 2船速顺水的路程= 逆水的路程甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

八年级数学上册《认识二元一次方程组》教案、教学设计

八年级数学上册《认识二元一次方程组》教案、教学设计
2.培养学生的团队合作精神,让学生在合作交流中互相学习、共同进步。
3.使学生认识到数学知识在解决实际问题中的重要作用,增强学生的应用意识。
在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发学生的学习兴趣。以下是具体的教学设计:
1.导入:通过生活中的实际问题,引导学生发现并认识二元一次方程组。
(1)过程性评价:关注学生在课堂上的参与程度、合作交流能力、问题解决能力等;
(2)总结性评价:通过课后作业、测试等方式,评价学生对二元一次方程组知识的掌握程度;
(3)个性化评价:根据学生的个体差异,给予有针对性的评价和建议,激发学生的学习动力。
4.教学反馈:
(1)及时了解学生的学习情况,针对学生存在的问题进行针对性的辅导;
八年级的学生已经具备了一定的数学基础,掌握了线性方程的相关知识,但对于二元一次方程组的认识还不够深入。在此阶段,学生的抽象逻辑思维能力逐渐增强,但仍然需要通过具体实例来理解和掌握抽象的数学概念。此外,学生在解决实际问题时,可能存在将问题转化为数学模型的困难,需要教师在教学过程中给予适当的引导和帮助。
3.鼓励学生主动提问,积极参与课堂讨论,提高自身数学素养。
五、作业布置
为了巩固学生对二元一次方程组知识的掌握,提高学生的解题能力和应用意识,特布置以下作业:
1.基础练习题:完成课本P56页第1-6题,要求学生熟练掌握二元一次方程组的定义、一般形式及其解法。
2.实践应用题:根据课堂所学的代入法、消元法,解决以下实际问题:
(1)小红和小李同时从同一地点出发,小红以每小时5公里的速度向北走,小李以每小时4公里的速度向东走,问两小时后,两人相距多远?
2.教师提问:让学生尝试用之前学过的知识解决这个问题,并引导学生发现问题的难点,即需要同时考虑两个未知数。

初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)

初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)

初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)元一次方程教学设计篇一一、教材分析1、教材的地位和作用函数、方程和不等式都是人们刻画现实世界的重要数学模型。

用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。

本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。

以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、教学过程(一)感知身边数学学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。

结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。

二元一次方程组复习课教学设计

二元一次方程组复习课教学设计

二元一次方程组复习课教学设计第一篇:二元一次方程组复习课教学设计二元一次方程组复习课教学设计11、了解二元一次方程(组)的相关概念,会解简单的二元一次方程组。

2、了解解二元一次方程组的“消元”思想,体会“化归思想”。

3、体会一次函数与二元一次方程(组)的关系。

4、能列出二元一次方程组解决简单的问题,并能检验解得合理性。

5、体会方程的“模型思想”,养成良好的数学应用意识。

教学过程:一、目标解读,知识梳理师:同学们,今天这节课,我们一起来复习研究二元一次方程组及其解法这一章的内容。

昨天我请大家把二元一次方程组这部分知识进行归类、整理。

同学们完成的都很认真,各具特色,尤其是嘉兰和王赛同学的梳理很有代表性。

首先请这两位同学从不同角度出发展示一下她们的成果。

两位同学从不同的角度对本章知识进行了归类整理,都很不错。

但比较而言,王赛同学的梳理把握住了这章知识的整体结构,她对每一种情况还举例给予了说明,理解得更加深刻。

两位同学的都不错!大家以后再进行整理总结时要向她们学习。

这里,我也对这一章的知识进行了归纳整理,现在大家可以看一看。

(用多媒体展示)二、错例辨析,反思内化三、合作探究,形成技能师:现在我们来看下面的一个例子:解方程组:大家先自己求解,要求尽量用多种解法,得出解答后先在学习小组内交流,比较那种解法好,然后各组推出最好的解法在全班交流。

评:利用小组学习的形式,给每个学生提供更多合作交流的机会,使面向全体得到了真正的落实。

(学生解题,小组内交流、讨论,教师巡视、指导)师:我看大家都已得出了该题的解答,有些组还得出了老师都还未想到得好解法,现在请各组展示你们的优秀成果。

在展示时要求要与别人的解法不相同。

生3(一组):我们是先用去分母把方程组化简整理后用加减消元法求得解答的。

生4(三组):我们把化简整理后用的是代入消元法求得解答的;生5(四组):我们用的是换元法。

令x+y=m, x-y=n, 然后求解;生6(二组):我们没有直接换元,而是把和看成一个整体,通过心算就可得到,=2。

二元一次方程组复习课教案

二元一次方程组复习课教案

—二元一次方程组8.1复习课(1)教学设计教学目标1.数学知识与技能(1)能辨别二元一次方程(组).(2)会根据二元一次方程(组)的定义,求字母(式子)的值.(3)会根据二元一次方程(组)的解,求字母(式子)的值.2.数学思考学生在整个数学活动中积极思考,解决问题3.解决问题(1)根据二元一次方程(组)的定义及其解的含义,求字母(式子)的值(2)二元一次方程组错解问题4.情感与态度学生在参与数学活动和探究过程中,体会转换思想和分类讨论思想在数学活动中的应用,获得成功体验。

教学重点求字母系数(式子)的值教学难点二元一次方程组中的错解问题.—教学过程复习提问,引入新课1 .二元一次方程(组)的定义及其解的含义2 .思考:下列方程组中哪些是二元一次方程组x + 4 y = 5 f a + b = 5〈 4(1) x = 4⑵ b — c = 41If =二8f x = 4I 2 ⑷[y = 5(5)]二= 7[(二)讲授新课典型例题——求字母系数的值题型一 二元一次方程(组)的定义的应用 1 .根据二元一次方程的定义求字母的值.(i )若方程(m —3)x -(n + 5)y = 1是关于x , y 的二元一次方 程,则m 的取值范围是 ,n 的取值范围是 。

(2)若方程3x a - +( a - 2) y = 1是关于x , y 的二元一次方程,则a=。

(3)若方程3x +4y = my +10是关于x ,y 的二元一次方程,则m 的取值 范围是 。

解题秘诀:(1)利用含有未知数的项的系数都不为0求解;(2)紧 扣二元一次方程的定义求解;(3)先移项、合并同类项,再根据含 有未知数的项的系数都不为0求解。

2 .根据二元一次方程组的定义求式子的值.x + 3 y = 6 I(3)[xy = 8(6)2x + y3x - y—若方程组f(a-1)y =4 是关于x,y的二元一次方程组,则a b的值等I x a + (b - 3)xy = 1于 ___ .解题秘诀:二元一次方程组必须满足下列条件:(1)两个方程都是整式方程;(2)两个方程都是一次方程;(3 )方程组中一共含有两个未知数。

二元一次方程组复习教案

二元一次方程组复习教案

二元一次方程组一、复习目标:1、进一步理解并掌握二元一次方程和二元一次方程组的概念;2、能选择运用适当的方法解二元一次方程组;3、能够运用二元一次方程组解决一些简单实际问题的能力;4、进一步感受现实世界中有关数量关系的数学模型。

二、重点和难点:1、重点:(1)熟练掌握运用消元法解二元一次方程;(2)熟练掌握列二元一次方程组解应用题的方法。

2、难点:(1)消元法的选择运用;(2)培养学生合理、有序地分析问题的能力三、教材内容及其结构本章主要内容有: 1、二元一次方程、二元一次方程组的概念;2、二元一次方程组的解法;3、二元一次方程组的应用;4、进一步体验玻利亚的问题解决的四个步骤。

复习内容的逻辑结构:四、注意方面:1、消元转化思想()()法2、建模思想根据具体问题中的数量关系,建立数学模型。

列出方程(组),让学生体会方程立刻到现实世界3、对结果的检查:根据问题的实际意义,检验结果的合理性。

4、进一步渗透问题解决的四个步骤。

5、避免繁、难、偏、怪。

五、复习要点:1、什么样的方程是二元一次方程:(1)2x-3y=5 (2) xy=3 (3) x+y=0(4) x2+x=1 (5) 3x-y=2z (6)(1/3)x+(1/2)y=12、二元一次方程组与二元一次方程之间有何联系与区别,它的解有何特点?3、为何解二元一次方程组?其基本思路是(消元);具体方法有:(代入法)和(加减法)。

4、如何运用二元一次方程组解决某些实际问题。

5、进一步感受数学模型在现实世界中的具体运用。

六、典型例题解析:例1、对于下列两个方程组,你以为选用哪一种方法解比较简单?并把它解出来?(1) y=2x3x-2y =2(2)3x+2y=105x-2y=6例2、当a 为何值时方程组3x-5y=2a 的解互为相反数2x+7y=a-18例3、甲、乙两人环绕周长是400米的环形轨道散步,如果两人由同一地点背向而行。

那么经过2分钟两人第一次相遇;如果两人从同一地点同向而行,那么经过20分钟第一次想遇,如果甲的速度比乙快,求两人散步的速度各是多少?解:设甲的速度是 x 米/分,乙的速度是y米/分2(x+y)=400 解得 x=110 符合题意。

人教版七年级下数学第8章二元一次方程组复习课教学设计

人教版七年级下数学第8章二元一次方程组复习课教学设计
二、学情分析
在七年级下学期,学生已经掌握了二元一次方程的基本概念和解法,具备了一定的逻辑思维能力和运算技巧。然而,由于二元一次方程组涉及多个未知数和方程,学生在解决实际问题时可能会感到困惑,对解题方法的选择和运用存在一定难度。此外,学生在小组合作、交流讨论等方面的能力有待提高。针对这些情况,教师在教学过程中应注重以下几点:
2.消元法:讲解消元法的原理,通过对比分析,使学生理解消元法与代入法的联系和区别。同时,强调在消元过程中,如何将复杂的方程组简化为更易解决的形式。
(三)学生小组讨论,500字
将学生分成小组,针对一些典型的二元一次方程组问题进行讨论。每个小组需要共同完成以下任务:
1.运用代入法或消元法求解给定的方程组。
(二)讲授新知,500字
在讲授新知环节,首先详细讲解二元一次方程组的定义和性质。通过具体的例子,让学生明白方程组中每个方程的含义以及如何从实际问题中一个简单的方程组为例,演示代入法的具体步骤。强调在代入过程中注意保持等式的平衡,并提醒学生注意运算的准确性。
(五)总结归纳,500字
在课程即将结束时,引导学生对本节课所学内容进行总结归纳。主要包括以下几点:
1.二元一次方程组的定义和性质。
2.代入法和消元法的原理及步骤。
3.实际问题中如何抽象出方程组。
4.小组讨论中总结的解题技巧和注意事项。
五、作业布置
为了巩固学生对二元一次方程组知识点的掌握,激发学生的学习兴趣,同时培养学生的独立思考能力和实际问题解决能力,特布置以下作业:
人教版七年级下数学第8章二元一次方程组复习课教学设计
一、教学目标
(一)知识与技能
1.理解并掌握二元一次方程组的定义,能够识别并列出二元一次方程组。
2.学会使用代入法、消元法等方法求解二元一次方程组,并能熟练进行运算。

二元一次方程教学设计

二元一次方程教学设计

二元一次方程教学设计作业内容二元一次方程(组)教学设计教学目标:1、认识二元一次方程和二元一次方程组;2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.教学重难点:1.理解二元一次方程组及其解得含义;2.能区分二元一次方程的解和二元一次方程组的解;教学过程:1.提问:什么叫做一元一次方程?只含有一个未知数并且未知数的次数是1的整式方程叫做一元一次方程。

2.练习:(判断哪些式子是一元一次方程?)3x=6 4x+55x-3=2xy=0 2x+y=10 5 x+2y=183.观察:2x+y=10 5x+2y=18这两个式子从未知数和未知数的次数有怎样的特征?4.引出二元一次方程的概念每个方程都含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.二、讲授新课1.用多种方法解决下题:去年我们学校组织了初中部篮球比赛,规定每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.705班在10场比赛中得到16分,那么705班胜负场数分别是多少?(只列式,不计算)方法1:解:设705班赢了x场,则输了(10-x)场;2x+(10-x)=16方法2:解:设705班赢了x场,输了y场;x+y=102x+y=162.此时的x和y要同时满足上面两个方程,所以我们把这两个方程合在一起就组成了方程组。

3.观察:方程组有几个未知数?未知数的项的次数是多少?二元一次方程组的概念:像这样方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.注意:方程组总共有两个未知数而不是每个方程都要有两个未知数。

三、探究二元一次方程(组)的解满足方程x+y=10,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.满足方程2x+y=16,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.总结:一般地,使二元一次方程两边的值相等的未知数的值,叫做二元一次方程的解.观察:上表中哪对x、y的值既满足x+y=10 又满足2x+y=16?我们还发现,上表中当x=6,y=4时既满足方程x+y=10又满足方程2x+y=16. 即x=6,y=4 是这两个方程公共解.讨论:不结合本道题的实际情况,还有哪些值满足上述两个方程?总结:二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

人教版第8章二元一次方程组复习课教学设计

人教版第8章二元一次方程组复习课教学设计

二元一次方程组及解法复习课教案教学目标知识与技能掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

过程与方法能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组。

情感、态度与价值观培养学生分析问题,解决问题的能力,体验学习数学的快乐。

重点:掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

难点:选择合适的方法解方程组;并能把相应问题转化为解方程组。

教学手段多媒体,小组评比。

教学过程(一)导入新课创设情境引出问题六一儿童节要到了,小强在儿童节前用12.4元钱,恰好买了单价为0.8元和1.2元的两种贺卡。

试问:两种贺卡各能买几张?(二元一次方程组解答)设计意图:调动学生学习的积极性,体会数学来源于生活。

(二)知识梳理以小组为单位讨论二元一次方程组已经学了哪些知识?1、什么是二元一次方程?什么是二元一次方程的解?2、什么是二元一次方程组?什么是二元一次方程组的解?3、解二元一次方程组的基本思想是什么?消元的方法有哪些?设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础。

(三)基础训练例1. m , n 为何值时,是同类项。

问题:解二元一次方程组的基本思路是什么?用代入法和加减法解方程的主要步骤是什么?教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。

设计意图:基础知识达标训练。

(四)能力提升1、已知(3m+2n-16)2与|3m-n-1|互为相反数求:m+n的值2、已知方程组ax+5y=15 ①4x-by=-2 ②由于甲看错了字母a得到方程组的解为 x=-3 y=-1;乙看错了字母b得到方程组的为 x=5 y=4,若按正确的a、b计算,求原方程组的正确解。

3、已知方程组和有相同的解,求a,b的值。

教学手段与方法:毎小组选代表讲解为小组加分,充分调动学生的积极性。

学生讲解不到位的老师补充。

设计意图:对二元一次方程组解法的灵活应用。

人教版七年级数学下册第八章《二元一次方程组》复习课 教案教学设计

人教版七年级数学下册第八章《二元一次方程组》复习课 教案教学设计

七年级(下)二元一次方程组复习课课型:复习课教学目标: 1.掌握二元一次方程的基本概念以及会识别二元一次方程组;2.会用代入法和消元法解二元一次方程组;3.会用方程组来解决实际问题。

教学重点:二元一次方程组的解法。

教学难点:二元一次方程组的应用。

一、学前准备(一)复习指导 主干知识梳理【知识要点】1.基本概念二元一次方程:方程中含有两个未知数,并且所含未知数的项的次数都是1.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程. 二元一次方程的一个解:适合一个二元一次方程的一组未知数的值. 二元一次方程组的解:二元一次方程组中各个方程的公共解.2.二元一次方程组的解法:(1)代入消元法(简称“代入法” ):代入法的主要步骤:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元二次方程.(2)加减消元法(简称“加减法” ):加减法的主要步骤:通过两式相加(减)消去其中一个未知数,让二元一次方程组为一元一次方程求解.3.二元一次方程组的应用:利用二元一次方程组解决实际问题的过程:二元一次方程组 二元一次方程组和它的解 二元一次方程组的解法 二元一次方程组的应用 代入消元法 加减消元法实际问题 设求知数、列方程组数学问题 (二元一次方程组) 转化 解方程加减法代入法列方程组解应用题的步骤:(1)设出未知数;(2)找出相等关系;(3)根据相等关系列方程组;(4)解方程组;(5)作答.二、探究活动(一)独立思考·解决问题1.方程x+y=5的解有 ( )A .1个B .2个C .3个D .无数个2.下列方程组中,不是二元一次方程组的是( )A .112x y =⎧⎨-=⎩,B .13x y x y +=⎧⎨-=⎩,C .2104x y xy +=⎧⎨=⎩,D .21x y x y =⎧⎨-=⎩, 3.方程5x+4y=17的一个解是( )A .13x y =⎧⎨=⎩, B .21x y =⎧⎨=⎩, C .32x y =⎧⎨=⎩, D .41x y =⎧⎨=⎩, 4.方程组⎩⎨⎧=+=+)()(210215y x y x ,由②—①得( ) A .3x=10 B .x=5 C .3x=-5 D .x=-55.若关于x 、y 的方程2211a b a b x y -++-=是二元一次方程,那么a 、b 的值分别是( )A .1、0 B .0、-1 C .2、1 D .2、-36.一个两位数,它的十位数字与个位数字之和为5,符合条件的两位数有( )A .4个B .5个C .6个D .7个7.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .()4921x y y x -=⎧⎪⎨=+⎪⎩,B .()4921x y y x +=⎧⎪⎨=+⎪⎩,C .()4921x y y x -=⎧⎪⎨=-⎪⎩,D .()4921x y y x +=⎧⎪⎨=-⎪⎩, 8.在方程2x -y=1中,若x=-4,则y=______;若y=-3,则x=______.9.已知12x y =⎧⎨=⎩,是方程a x -3y=4的一个解,则a =_________. 10.在y=kx+b 中,当x=1时,y=4:当x=2时,y=10,则k=______,b=________.(二)师生探究·合作交流1.解下列方程组:⎩⎨⎧=--=+3231954b a b a 2.已知二元一次方程:(1)x+y=4;(2)2x -y=2;(3)x -2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这方程组的解.3.牛说:我从你背上拿来一个,我的包裹数就是你的两倍。

数学人教版七年级下册第八章 二元一次方程组》复习教案

数学人教版七年级下册第八章 二元一次方程组》复习教案

第八章二元一次方程组复习一:有关概念1.二元一次方程:通过化简后,只有两个未知数,并且所含未知数的项的次数都是1,系数都不是0的整式方程,叫做二元一次方程.2.二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.二元一次方程组:由两个一次方程组成,共有两个未知数的方程组,叫做二元一次方程组.4.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.课堂练习1-45.方程组的解法:基本思想或思路——消元常用方法————代入法和加减法根据方程未知数的系数特征确定用哪一种解法.... ... ...用代入法解二元一次方程组的步骤:(1).求表达式:从方程组中选一个系数比较简单的方程,将此方程中的一个未知数,如y,用含x的代数式表示;(2).把这个含x的代数式代入另一个方程中,消去y,得到一个关于x的一元一次方程;(3).解一元一次方程,求出x的值;(4).再把求出的x的值代入变形后的方程,求出y的值.课堂训练1用加减法解二元一次方程组的步骤:(1).利用等式性质把一个或两个方程的两边都乘以适当的数,变换两个方程的某一个未知数的系数,使其绝对值相等;(2).把变换系数后的两个方程的两边分别相加或相减,消去一个未知数,得一元一次方程;(3).解这个一元一次方程,求得一个未知数的值;(4).把所求的这个未知的值代入方程组中较为简便的一个方程,求出另一个未知数,从而得到方程的解.课堂训练1-4... ... ...6.列二元一次方程解决实际问题的一般步骤:审:设:列:解:检验:答:课堂训练:1.(内江·中考)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需资金7000元;若购进电脑机箱2台和液晶显示器5台,共需资金4 120元.则每台电脑机箱和液晶显示器的进价各多少元?行程问题:1.相遇问题:甲的路程+乙的路程=总的路程(环形跑道):甲的路程+乙的路程=一圈长2.追及问题:快者的路程-慢者的路程=原来相距路程(环形跑道):快者的路程-慢者的路程=一圈长3.顺逆问题:顺速=静速+水(风)速逆速=静速-水(风)速4.销售问题:标价×折扣=售价售价-进价=利润利润率=利润/进价=售价-进价/进价课后训练:1.某学校现有甲种材料35㎏,乙种材料29㎏,制作A.B两种型号的工艺品,用料情况如下表:(1)利用这些材料能制作A.B两种工艺品各多少件?(2)若每公斤甲.乙种材料分别为8元和10元,问制作A.B两种型号的工艺品各需材料多少钱?总量不变问题2.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元.问:比不打折少花多少钱?3.某中学组织初一学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出了一辆车,且其余客车恰好坐满.已知45座客车日租金为每辆220元,60座客车日租金为每辆300元,试问:(1)初一年级的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租用更合算?。

《二元一次方程组》复习课教案设计

《二元一次方程组》复习课教案设计

《二元一次方程组》复习课教案设计教学目标:1使学生准确理解二元一次方程组、二元一次方程组及其解得概念,并熟练的运用代入法、加减法解方程组,梳理并完善知识构建。

2 .复习、巩固解二元一次方程组的基本思想一一消元。

3 .通过解决实际问题,提高建模意识和分析问题的能力。

重点:1 .掌握二元一次方程组的两种解法一一代入消元法、加减消元法。

难点:使学生将平时所学的知识系统化,并在运用中举一反三融汇贯通。

教学设计:一、课前预习在本节课之前要求学生做好预习任务并画出本章的知识结构图。

二、授课讲解(一)、复习提问:本章都学习了哪些内容,请一名同学帮老师回顾一下?接下来找1-2名同学加以补充,最后老师根据提问同学回答情况进行补充说明,并强调本章的重点内容。

(二)、基础练习:1下列方程中,是二元一次方程的有(A)(1)2x+3y;(2)2%+3(y+4)=O;(3)2x+3y+4z=0;(4)2x+3xy=0;(5)2x+3y=6+3y.A.1个B.2个C.3个D.4个2 .下列是二元一次方程组的是(B)x+y=7 5x2—产―2J3y+z=4 3y+x=44 3二元一次方程组的解是(B)2x-y=15 .若方程2χ根T+y2Λt+∕n=;是二元一次方程,则mn=.16 .在方程3x-ay=8中,如果{々;F是它的一个解,则a的值为_1—.7 .已知方程x-2y=8,用含X的式子表示y,则丫=_m_.用含y的式子表示X,则X=8+2y7,用加减法解下列方程组:方程组{f[F=%由(1)与(2)相减2x+3y=2(2)直接消去X.方程组qχ+y=wqι由(1)与⑵相加可直接 --------- 6x-5y=12(2)消去Y.(三)、解二元一次方程组:1用代入法解方程组:二=T%解:由(1)得y=4x—7 (3)将(3)代入(2)式得3x+4(4x-7)=10解得x=2将x=2代入到(3)式得y=1则原方程组的解为y-12.用加减法解方程组:⅛x-2^=5∙,∙,∙(2)解:(1)+(2)得4x=8解得×=2将x=2代入⑴式得y=∣X二2则原方程组的解为{、,_1(四)、二元一次方程组的应用:1入世后,国内各汽车企业展开价格大战,汽车价格大幅下降,有些型号的汽车供不应求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组复习课
教学目标:
1.知识与技能:
(1)通过建立二元一次方程模型,全面系统复习二元一次方程组的相关概念。

(2)通过经历用“代入消元法”“加减消元法”解二元一次方程组的过程,归纳两种方法求解的差别与联系,体会“消元”“化归”的数学思想。

(3)通过变换情境和问题呈现方式,探索与研究问题本质,体验列二元一次方程组解决实际问题的过程,感受“建模”思想的运用。

2.过程与方法:
在知识的解决和探究中发展学生的思维能力,提高分析表达和归纳总结的能力。

3.情感态度与价值观:
通过探究学习,培养学生独立思考良好习惯和交流合作的团队意识。

通过解决问题使学生再次感受数学与生活的紧密联系,提高数学学习的兴趣。

教学重点:
归纳运用两种“消元”法解二元一次方程组的差别与联系,列二元一次方程组解决实际问题。

教学难点:
在探究解决问题过程中,对“消元”“化归”的理解及“建模”思想的认识。

教学方法:启发探究讨论法。

学法:自主学习、自主交流、合作探究、交流展示。

教学手段:利用多媒体(录制音频,PPT)辅助教学。

教学过程设计:
(六)板书设计
二元一次方程组复习
代入消元法例题:方法一
二运一次方程组一元一次方程
加减消元法方法二实际问题找等量关系解决问题
文字描述列表示意图。

相关文档
最新文档