2020年上海市春季高考数学试卷
2020上海市三校生高考数学试卷
高考数学试卷一、单选题1.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( )A.∅B.{}3,1,0,4--C.{}2,3D.{}0,2,32.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件3.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.124.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .9106.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .33 D .637.函数21x y x +=-的定义域为( ) A .{|21}x x x >-≠且 B .{|21}x x x ≥-≠且C .)[(21,1,)-⋃+∞D .)((21,1,)-⋃+∞8.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120° 9.tan 3π=( )A .33B .32 C .1 D 310.下列计算正确的是A.()22x y x y +=+B.()2222x y x xy y -=--C.()()2111x x x +-=-D.()2211x x -=-11.命题:00x ∃≤,20010x x -->的否定是( )A .0x ∀>,210x x --≤B .00x ∃>,20010x x -->C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤12.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 二、填空题13.某校高一、高二、高三年级的学生人数之比为4:4:3,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生数为15,则抽取的样本容量为_______14.已知球的体积为36π,则该球大圆的面积等于______.三、解答题15.已知α、β是方程24420x mx m -++=的两个实根,设()22f m a β=+(1)求函数()f m 的解析式;(2)当m 为何值时,()f m 取得最小值? 16.已知函数1()2f x x x =+-(1)用定义证明函数()f x 在(0,1]上是减函数,在[1,)+∞上是增函数;(2)当函数()lg y f x k =-有两个大于0的零点时,求实数k 的取值范围17.已知x+y=7,xy=-8,求:(1)x2+y2的值;(2)(x-y )2的值.(3)若不等式f (2x )≧m ·2x 对x ЄR 恒成立,求实数m 的取值范围。
2020年上海市高考数学试卷
2020年上海市高考数学试卷试题数:21.满分:1501.(填空题.4分)已知集合A={1.2.4}.集合B={2.4.5}.则A∩B=___ . 2.(填空题.4分)计算: lim n→∞n+13n−1 =___ .3.(填空题.4分)已知复数z=1-2i (i 为虚数单位).则|z|=___ .4.(填空题.4分)已知函数f (x )=x 3.f -1(x )是f (x )的反函数.则f -1(x )=___ .5.(填空题.4分)已知x 、y 满足 {x +y −2≥0x +2y −3≤0y ≥0 .则z=y-2x 的最大值为___ .6.(填空题.4分)已知行列式 |1a b2c d 3| =6.则 |abcd| =___ . 7.(填空题.5分)已知有四个数1.2.a.b.这四个数的中位数是3.平均数是4.则ab=___ . 8.(填空题.5分)已知数列{a n }是公差不为零的等差数列.且a 1+a 10=a 9.则a 1+a 2+⋯+a 9a 10=___ . 9.(填空题.5分)从6个人挑选4个人去值班.每人值班一天.第一天安排1个人.第二天安排1个人.第三天安排2个人.则共有___ 种安排情况.10.(填空题.5分)已知椭圆C : x 24 + y 23 =1的右焦点为F.直线l 经过椭圆右焦点F.交椭圆C 于P 、Q 两点(点P 在第二象限).若点Q 关于x 轴对称点为Q′.且满足PQ⊥FQ′.求直线l 的方程是___ .11.(填空题.5分)设a∈R .若存在定义域为R 的函数f (x )同时满足下列两个条件: (1)对任意的x 0∈R .f (x 0)的值为x 0或x 02; (2)关于x 的方程f (x )=a 无实数解. 则a 的取值范围是___ .12.(填空题.5分)已知 a 1⃗⃗⃗⃗ . a 2⃗⃗⃗⃗ . b 1⃗⃗⃗ . b 2⃗⃗⃗⃗ .…. b k ⃗⃗⃗⃗ (k∈N*)是平面内两两互不相等的向量.满足| a 1⃗⃗⃗⃗ −a 2⃗⃗⃗⃗ |=1.且| a i ⃗⃗⃗ - b j ⃗⃗⃗ |∈{1.2}(其中i=1.2.j=1.2.….k ).则k 的最大值是___ . 13.(单选题.5分)下列不等式恒成立的是( ) A.a 2+b 2≤2ab B.a 2+b 2≥-2ab C.a+b≥2 √|ab | D.a 2+b 2≤-2ab14.(单选题.5分)已知直线方程3x+4y+1=0的一个参数方程可以是( ) A. { x =1+3ty =−1−4t(t 为参数)B. {x =1−4ty =−1+3t(t 为参数)C. {x =1−3t y =−1+4t (t 为参数)D. {x =1+4t y =1−3t(t 为参数) 15.(单选题.5分)在棱长为10的正方体ABCD-A 1B 1C 1D 1中.P 为左侧面ADD 1A 1上一点.已知点P 到A 1D 1的距离为3.P 到AA 1的距离为2.则过点P 且与A 1C 平行的直线交正方体于P 、Q 两点.则Q 点所在的平面是( )A.AA 1B 1BB.BB 1C 1C 1D 1DD.ABCD16.(单选题.5分)命题p :存在a∈R 且a≠0.对于任意的x∈R .使得f (x+a )<f (x )+f (a ); 命题q 1:f (x )单调递减且f (x )>0恒成立; 命题q 2:f (x )单调递增.存在x 0<0使得f (x 0)=0. 则下列说法正确的是( ) A.只有q 1是p 的充分条件 B.只有q 2是p 的充分条件 C.q 1.q 2都是p 的充分条件 D.q 1.q 2都不是p 的充分条件17.(问答题.14分)已知ABCD 是边长为1的正方形.正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转 π2 至ABC 1D 1.求线段CD 1与平面ABCD 所成的角.18.(问答题.14分)已知函数f (x )=sinωx .ω>0. (1)f (x )的周期是4π.求ω.并求f (x )= 12 的解集;(2)已知ω=1.g (x )=f 2(x )+ √3 f (-x )f ( π2 -x ).x∈[0. π4].求g (x )的值域.19.(问答题.14分)在研究某市交通情况时.道路密度是指该路段上一定时间内通过的车辆数除以时间.车辆密度是该路段一定时间内通过的车辆数除以该路段的长度.现定义交通流量为v= qx .x 为道路密度.q 为车辆密度.交通流量v=f (x )= {100−135•(13)80 x ,0<x <40−k (x −40)+85,40≤x ≤80 .(1)若交通流量v >95.求道路密度x 的取值范围;(2)已知道路密度x=80时.测得交通流量v=50.求车辆密度q 的最大值.20.(问答题.16分)已知双曲线Γ1: x 24 - y 2b 2 =1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A(x A .y A )(第一象限).曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A = √6 .求b 的值;(2)当b= √5 .Γ2与x 轴交点记作点F 1、F 2.P 是曲线Γ上一点.且在第一象限.且|PF 1|=8.求∠F 1PF 2;(3)过点D (0. b 22 +2)斜率为- b2 的直线l 与曲线Γ只有两个交点.记为M 、N.用b 表示 OM ⃗⃗⃗⃗⃗⃗ • ON ⃗⃗⃗⃗⃗⃗ .并求 OM ⃗⃗⃗⃗⃗⃗ • ON⃗⃗⃗⃗⃗⃗ 的取值范围.21.(问答题.18分)已知数列{a n }为有限数列.满足|a 1-a 2|≤|a 1-a 3|≤…≤|a 1-a m |.则称{a n }满足性质P .(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P.请说明理由; (2)若a 1=1.公比为q 的等比数列.项数为10.具有性质P.求q 的取值范围;(3)若{a n }是1.2.3.….m 的一个排列(m≥4).{b n }符合b k =a k+1(k=1.2.….m-1).{a n }、{b n }都具有性质P.求所有满足条件的数列{a n }.2020年上海市高考数学试卷参考答案与试题解析试题数:21.满分:1501.(填空题.4分)已知集合A={1.2.4}.集合B={2.4.5}.则A∩B=___ .【正确答案】:[1]{2.4}【解析】:由交集的定义可得出结论.【解答】:解:因为A={1.2.3}.B={2.4.5}.则A∩B={2.4}.故答案为:{2.4}.【点评】:本题考查交集的定义.属于基础题.2.(填空题.4分)计算:limn→∞n+13n−1=___ .【正确答案】:[1] 13【解析】:由极限的运算法则和重要数列的极限公式.可得所求值.【解答】:解:limn→∞n+13n−1= limn→∞1+1n3−1n= 1+limn→∞1n3−limn→∞1n= 1+03−0= 13.故答案为:13.【点评】:本题考查数列的极限的求法.注意运用极限的运算性质.考查运算能力.是一道基础题.3.(填空题.4分)已知复数z=1-2i(i为虚数单位).则|z|=___ .【正确答案】:[1] √5【解析】:由已知直接利用复数模的计算公式求解.【解答】:解:由z=1-2i.得|z|= √12+(−2)2=√5.故答案为:√5.【点评】:本题考查复数模的求法.是基础的计算题.4.(填空题.4分)已知函数f (x )=x 3.f -1(x )是f (x )的反函数.则f -1(x )=___ . 【正确答案】:[1]x 13 .x∈R【解析】:由已知求解x.然后把x 与y 互换即可求得原函数的反函数.【解答】:解:由y=f (x )=x 3.得x= √y 3 .把x 与y 互换.可得f (x )=x 3的反函数为f -1(x )= √x 3. 故答案为: √x 3.【点评】:本题考查函数的反函数的求法.注意反函数的定义域是原函数的值域.是基础题. 5.(填空题.4分)已知x 、y 满足 {x +y −2≥0x +2y −3≤0y ≥0 .则z=y-2x 的最大值为___ .【正确答案】:[1]-1【解析】:由约束条件作出可行域.化目标函数为直线方程的斜截式.数形结合得到最优解.联立方程组求得最优解的坐标.代入目标函数得答案.【解答】:解:由约束条件 {x +y −2≥0x +2y −3≤0y ≥0作出可行域如图阴影部分.化目标函数z=y-2x 为y=2x+z.由图可知.当直线y=2x+z 过A 时.直线在y 轴上的截距最大. 联立 {x +y −2=0x +2y −3=0 .解得 {x =1y =1 .即A (1.1).z 有最大值为1-2×1=-1. 故答案为:-1.【点评】:本题考查简单的线性规划.考查数形结合的解题思想方法.是中档题.6.(填空题.4分)已知行列式 |1a b2c d 300| =6.则 |abcd| =___ . 【正确答案】:[1]2【解析】:直接利用行列式的运算法则求解即可.【解答】:解:行列式 |1ab2c d 30| =6. 可得3 |a b cd | =6.解得 |a bcd| =2. 故答案为:2.【点评】:本题考查行列式的应用.代数余子式的应用.是基本知识的考查.7.(填空题.5分)已知有四个数1.2.a.b.这四个数的中位数是3.平均数是4.则ab=___ . 【正确答案】:[1]36【解析】:分别由题意结合中位数.平均数计算方法得a+b=13. 2+a2=3.解得a.b.再算出答案即可.【解答】:解:因为四个数的平均数为4.所以a+b=4×4-1-2=13. 因为中位数是3.所以 2+a2=3.解得a=4.代入上式得b=13-4=9.所以ab=36. 故答案为:36.【点评】:本题考查样本的数字特征.中位数.平均数.属于基础题. 8.(填空题.5分)已知数列{a n }是公差不为零的等差数列.且a 1+a 10=a 9.则 a 1+a 2+⋯+a 9a 10=___ . 【正确答案】:[1] 278【解析】:根据等差数列的通项公式可由a 1+a 10=a 9.得a 1=-d.在利用等差数列前n 项和公式化简 a 1+a 2+⋯+a 9a 10即可得出结论.【解答】:解:根据题意.等差数列{a n }满足a 1+a 10=a 9.即a 1+a 1+9d=a 1+8d.变形可得a 1=-d.所以 a 1+a 2+⋯+a 9a 10 = 9a 1+9×8d2a 1+9d=9a 1+36d a 1+9d = −9d+36d −d+9d = 278. 故答案为: 278 .【点评】:本题考查等差数列的前n项和与等差数列通项公式的应用.注意分析a1与d的关系.属于基础题.9.(填空题.5分)从6个人挑选4个人去值班.每人值班一天.第一天安排1个人.第二天安排1个人.第三天安排2个人.则共有___ 种安排情况.【正确答案】:[1]180【解析】:根据题意.由组合公式得共有C61C51C42排法.计算即可得出答案.【解答】:解:根据题意.可得排法共有C61C51C42 =180种.故答案为:180.【点评】:本题考查组合数公式.解题关键是正确理解题意并熟悉组合数公式.属于基础题.10.(填空题.5分)已知椭圆C:x24 + y23=1的右焦点为F.直线l经过椭圆右焦点F.交椭圆C于P、Q两点(点P在第二象限).若点Q关于x轴对称点为Q′.且满足PQ⊥FQ′.求直线l的方程是___ .【正确答案】:[1]x+y-1=0【解析】:求出椭圆的右焦点坐标.利用已知条件求出直线的斜率.然后求解直线方程.【解答】:解:椭圆C:x 24 + y23=1的右焦点为F(1.0).直线l经过椭圆右焦点F.交椭圆C于P、Q两点(点P在第二象限).若点Q关于x轴对称点为Q′.且满足PQ⊥FQ′.可知直线l的斜率为-1.所以直线l的方程是:y=-(x-1).即x+y-1=0.故答案为:x+y-1=0.【点评】:本题考查椭圆的简单性质的应用.直线与直线的对称关系的应用.直线方程的求法.是基本知识的考查.11.(填空题.5分)设a∈R .若存在定义域为R 的函数f (x )同时满足下列两个条件: (1)对任意的x 0∈R .f (x 0)的值为x 0或x 02; (2)关于x 的方程f (x )=a 无实数解. 则a 的取值范围是___ .【正确答案】:[1](-∞.0)∪(0.1)∪(1.+∞)【解析】:根据条件(1)可知x 0=0或1.进而结合条件(2)可得a 的范围【解答】:解:根据条件(1)可得f (0)=0或f (1)=1. 又因为关于x 的方程f (x )=a 无实数解.所以a≠0或1. 故a∈(-∞.0)∪(0.1)∪(1.+∞). 故答案为:(-∞.0)∪(0.1)∪(1.+∞).【点评】:本题考查函数零点与方程根的关系.属于基础题.12.(填空题.5分)已知 a 1⃗⃗⃗⃗ . a 2⃗⃗⃗⃗ . b 1⃗⃗⃗ . b 2⃗⃗⃗⃗ .…. b k ⃗⃗⃗⃗ (k∈N*)是平面内两两互不相等的向量.满足| a 1⃗⃗⃗⃗ −a 2⃗⃗⃗⃗ |=1.且| a i ⃗⃗⃗ - b j ⃗⃗⃗ |∈{1.2}(其中i=1.2.j=1.2.….k ).则k 的最大值是___ . 【正确答案】:[1]6【解析】:设 OA 1⃗⃗⃗⃗⃗⃗⃗⃗ =a 1⃗⃗⃗⃗ . OA 2⃗⃗⃗⃗⃗⃗⃗⃗ =a 2⃗⃗⃗⃗ .结合向量的模等于1和2画出图形.由圆的交点个数即可求得k 的最大值.【解答】:解:如图.设 OA 1⃗⃗⃗⃗⃗⃗⃗⃗ =a 1⃗⃗⃗⃗ . OA 2⃗⃗⃗⃗⃗⃗⃗⃗ =a 2⃗⃗⃗⃗ .由| a 1⃗⃗⃗⃗ −a 2⃗⃗⃗⃗ |=1.且| a i ⃗⃗⃗ - b j ⃗⃗⃗ |∈{1.2}.分别以A 1.A 2为圆心.以1和2为半径画圆.其中任意两圆的公共点共有6个. 故满足条件的k 的最大值为6. 故答案为:6.【点评】:本题考查两向量的线性运算.考查向量模的求法.正确理解题意是关键.是中档题. 13.(单选题.5分)下列不等式恒成立的是( )A.a 2+b 2≤2abB.a 2+b 2≥-2abC.a+b≥2 √|ab |D.a 2+b 2≤-2ab 【正确答案】:B【解析】:利用(a+b )2≥0恒成立.可直接得到a 2+b 2≥-2ab 成立.通过举反例可排除ACD .【解答】:解:A .显然当a <0.b >0时.不等式a 2+b 2≤2ab 不成立.故A 错误; B .∵(a+b )2≥0.∴a 2+b 2+2ab≥0.∴a 2+b 2≥-2ab.故B 正确; C .显然当a <0.b <0时.不等式a+b≥2 √|ab | 不成立.故C 错误; D .显然当a >0.b >0时.不等式a 2+b 2≤-2ab 不成立.故D 错误. 故选:B .【点评】:本题考查了基本不等式的应用.考查了转化思想.属基础题. 14.(单选题.5分)已知直线方程3x+4y+1=0的一个参数方程可以是( ) A. { x =1+3ty =−1−4t(t 为参数)B. {x =1−4ty =−1+3t(t 为参数)C. {x =1−3t y =−1+4t (t 为参数)D. {x =1+4t y =1−3t (t 为参数) 【正确答案】:B【解析】:选项的参数方程.化为普通方程.判断即可.【解答】:解: { x =1+3t y =−1−4t (t 为参数)的普通方程为: x−1y+1=−34 .即4x+3y-1=0.不正确;{x =1−4t y =−1+3t(t 为参数)的普通方程为: x−1y+1=−43 .即3x+4y+1=0.正确;{x =1−3t y =−1+4t(t 为参数)的普通方程为: x−1y+1=−34 .即4x+3y-1=0.不正确;{x =1+4t y =1−3t(t 为参数)的普通方程为: x−1y−1=−43 .即3x+4y-7=0.不正确;故选:B .【点评】:本题考查直线的参数方程与普通方程的互化.是基本知识的考查.15.(单选题.5分)在棱长为10的正方体ABCD-A1B1C1D1中.P为左侧面ADD1A1上一点.已知点P到A1D1的距离为3.P到AA1的距离为2.则过点P且与A1C平行的直线交正方体于P、Q 两点.则Q点所在的平面是()A.AA1B1BB.BB1C1C1D1DD.ABCD【正确答案】:D【解析】:由图可知点P在△AA1D内.过P作EF || A1D.且EF∩AA1于E.EF∩AD于F.在平面ABCD中.过F作FG || CD.交BC于G.由平面与平面平行的判定可得平面EFG || 平面A1DC.连接AC.交FG于M.连接EM.再由平面与平面平行的性质得EM || A1C.在△EFM中.过P作PQ || EM.且PQ∩FM于Q.可得PQ || A1C.由此说明过点P且与A1C平行的直线相交的面是ABCD.即Q点所在的平面是平面ABCD.【解答】:解:如图.由点P到A1D1的距离为3.P到AA1的距离为2.可得P在△AA1D内.过P作EF || A1D.且EF∩AA1于E.EF∩AD于F.在平面ABCD中.过F作FG || CD.交BC于G.则平面EFG || 平面A1DC.连接AC.交FG于M.连接EM.∵平面EFG || 平面A1DC.平面A1AC∩平面A1DC=A1C.平面A1AC∩平面EFM=EM.∴EM || A1C.在△EFM中.过P作PQ || EM.且PQ∩FM于Q.则PQ || A1C.∵线段FM在四边形ABCD内.Q在线段FM上.∴Q在四边形ABCD内.∴则Q点所在的平面是平面ABCD.故选:D.【点评】:本题考查空间中直线与直线位置关系的判定及应用.考查空间想象能力与思维能力.是中档题.16.(单选题.5分)命题p:存在a∈R且a≠0.对于任意的x∈R.使得f(x+a)<f(x)+f(a);命题q1:f(x)单调递减且f(x)>0恒成立;命题q2:f(x)单调递增.存在x0<0使得f(x0)=0.则下列说法正确的是()A.只有q1是p的充分条件B.只有q2是p的充分条件C.q1.q2都是p的充分条件D.q1.q2都不是p的充分条件【正确答案】:C【解析】:对于命题q1:当a>0时.结合f(x)单调递减.可推出 f(x+a)<f(x)<f(x)+f(a).命题q1是命题p的充分条件.对于命题q2:当a=x0<0时.f(a)=f(x0)=0.结合f (x)单调递增.推出f(x+a)<f(x).进而f(x+a)<f(x)+f(a).命题q2都是p的充分条件.【解答】:解:对于命题q1:当f(x)单调递减且f(x)>0恒成立时.当a>0时.此时x+a>x.又因为f(x)单调递减.所以f(x+a)<f(x)又因为f(x)>0恒成立时.所以f(x)<f(x)+f(a).所以f(x+a)<f(x)+f(a).所以命题q1⇒命题p.对于命题q2:当f(x)单调递增.存在x0<0使得f(x0)=0.当a=x0<0时.此时x+a<x.f(a)=f(x0)=0.又因为f(x)单调递增.所以f(x+a)<f(x).所以f(x+a)<f(x)+f(a).所以命题p2⇒命题p.所以q1.q2都是p的充分条件.故选:C.【点评】:本题考查命题的真假.及函数的单调性.关键是分析不等式之间关系.属于中档题.17.(问答题.14分)已知ABCD是边长为1的正方形.正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;至ABC1D1.求线段CD1与平面ABCD所成的角.(2)正方形ABCD绕AB逆时针旋转π2【正确答案】:【解析】:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成.依次求出圆面和矩形的面积.相加即可;(2)先利用线面垂直的判定定理证明AD1⊥平面ADB.连接CD1.则∠D1CA即为线段CD1与平面ABCD所成的角.再利用三角函数的知识求出cos∠D1CA即可.【解答】:解:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成.∴S=2×π×12+2π×1=4π.故该圆柱的表面积为4π.(2)∵正方形ABC1D1.∴AD1⊥AB..∴AD1⊥AD.又∠DAD1= π2∵AD∩AB=A.且AD、AB⊂平面ADB.∴AD1⊥平面ADB.即D1在面ADB上的投影为A.连接CD1.则∠D1CA即为线段CD1与平面ABCD所成的角.而cos∠D1CA= ACCD1 = √2√3=√63.∴线段CD1与平面ABCD所成的角为arccos √63.【点评】:本题考查圆柱的表面积、空间线面夹角问题.熟练掌握线面垂直的判定定理是解题的关键.考查学生的空间立体感和运算能力.属于基础题.18.(问答题.14分)已知函数f(x)=sinωx.ω>0.(1)f(x)的周期是4π.求ω.并求f(x)= 12的解集;(2)已知ω=1.g(x)=f2(x)+ √3 f(-x)f(π2 -x).x∈[0. π4].求g(x)的值域.【正确答案】:【解析】:(1)直接利用正弦型函数的性质的应用求出结果.(2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.【解答】:解:(1)由于f(x)的周期是4π.所以ω= 2π4π=12.所以f(x)=sin 12x.令sin 12x=12.故12x=2kπ+π6或2kπ+5π6.整理得x=4kπ+π3或x=4kπ+5π3.故解集为{x| x=4kπ+π3或x=4kπ+5π3.k∈Z}.(2)由于ω=1.所以f(x)=sinx.所以g(x)= sin2x+√3sin(−x)sin(π2−x) = 1−cos2x2−√32sin2x =- √32sin2x−12cos2x+12= 12-sin(2x+ π6).由于x∈[0. π4].所以π6≤2x+π6≤2π3.1 2≤sin(2x+π6)≤1 .故−1≤−sin(2x+π6)≤−12.故−12≤g(x)≤0.所以函数g (x )的值域为[- 12,0] .【点评】:本题考查的知识要点:三角函数关系式的恒等变换.正弦型函数的性质的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.19.(问答题.14分)在研究某市交通情况时.道路密度是指该路段上一定时间内通过的车辆数除以时间.车辆密度是该路段一定时间内通过的车辆数除以该路段的长度.现定义交通流量为v= q x.x 为道路密度.q 为车辆密度.交通流量v=f (x )= {100−135•(13)80 x ,0<x <40−k (x −40)+85,40≤x ≤80 .(1)若交通流量v >95.求道路密度x 的取值范围;(2)已知道路密度x=80时.测得交通流量v=50.求车辆密度q 的最大值.【正确答案】:【解析】:(1)易知v 越大.x 越小.所以v=f (x )是单调递减函数.k >0.于是只需100-135•(13)80x>95.解不等式即可; (2)把x=80.v=50代入v=f (x )的解析式中.求出k 的值.利用q=vx 可得到q 关于x 的函数关系式.分段判断函数的单调性.并求出各自区间上q 的最大值.取较大者即可.【解答】:解:(1)∵v= qx .∴v 越大.x 越小. ∴v=f (x )是单调递减函数.k >0. 当40≤x≤80时.v 最大为85. 于是只需令100-135• (13)80x>95.解得x < 803 .故道路密度x 的取值范围为(0. 803).(2)把x=80.v=50代入v=f (x )=-k (x-40)+85中. 得50=-k•40+85.解得k= 78 . ∴q=vx= {100x −135•(13)80x •x ,0<x <40−78(x−40)x +85x ,40≤x ≤80.① 当0<x <40时.v=100-135•( 13) 80x <100. q=vx <100×40=4000.② 当40≤x≤80时.q 是关于x 的二次函数.q=- 78 x 2+120x. 对称轴为x= 4807 .此时q有最大值.为 −78×(4807)2+120×4807=288007>4000. 综上所述.车辆密度q 的最大值为 288007.【点评】:本题考查分段函数的实际应用.考查学生分析问题和解决问题的能力.以及运算能力.属于中档题.20.(问答题.16分)已知双曲线Γ1: x 24- y 2b2 =1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A (x A .y A )(第一象限).曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A = √6 .求b 的值;(2)当b= √5 .Γ2与x 轴交点记作点F 1、F 2.P 是曲线Γ上一点.且在第一象限.且|PF 1|=8.求∠F 1PF 2; (3)过点D (0. b 22 +2)斜率为- b2 的直线l 与曲线Γ只有两个交点.记为M 、N.用b 表示 OM ⃗⃗⃗⃗⃗⃗ •ON ⃗⃗⃗⃗⃗⃗ .并求 OM ⃗⃗⃗⃗⃗⃗ • ON ⃗⃗⃗⃗⃗⃗ 的取值范围.【正确答案】:【解析】:(1)联立曲线Γ1与曲线Γ2的方程.以及x A = √6 .解方程可得b ; (2)由双曲线的定义和三角形的余弦定理.计算可得所求角; (3)设直线l :y=- b2 x+4+b 22.求得O 到直线l 的距离.判断直线l 与圆的关系:相切.可设切点为M.考虑双曲线的渐近线方程.只有当y A >2时.直线l 才能与曲线Γ有两个交点.解不等式可得b 的范围.由向量投影的定义求得 OM ⃗⃗⃗⃗⃗⃗ • ON ⃗⃗⃗⃗⃗⃗ .进而得到所求范围.【解答】:解:(1)由x A = √6 .点A 为曲线Γ1与曲线Γ2的交点.联立 {x A 24−y A 2b 2=1x A 2+y A 2=4+b2.解得y A = √2 .b=2;(2)由题意可得F 1.F 2为曲线Γ1的两个焦点.由双曲线的定义可得|PF 1|-|PF 2|=2a.又|PF 1|=8.2a=4. 所以|PF 2|=8-4=4.因为b= √5 .则c= √4+5 =3. 所以|F 1F 2|=6.在△PF 1F 2中.由余弦定理可得cos∠F 1PF 2= |PF 1|2+|PF 2|2−|F 1F 2|22|PF 1|•|PF 2|=64+16−362×8×4 = 1116. 由0<∠F 1PF 2<π.可得∠F 1PF 2=arccos 1116 ; (3)设直线l :y=- b2x+4+b 22.可得原点O 到直线l 的距离d=|4+b 22|√1+b 24= √4+b 2 .所以直线l 是圆的切线.设切点为M.所以k OM = 2b .并设OM :y= 2b x 与圆x 2+y 2=4+b 2联立.可得x 2+ 4b 2 x 2=4+b 2. 可得x=b.y=2.即M (b.2).注意直线l 与双曲线的斜率为负的渐近线平行. 所以只有当y A >2时.直线l 才能与曲线Γ有两个交点.由 {x A 24−y A 2b 2=1x A 2+y A 2=4+b 2.可得y A 2= b 4a+b 2 .所以有4< b 44+b 2 .解得b 2>2+2 √5 或b 2<2-2 √5 (舍去).因为 OM⃗⃗⃗⃗⃗⃗ 为 ON ⃗⃗⃗⃗⃗⃗ 在 OM ⃗⃗⃗⃗⃗⃗ 上的投影可得. OM ⃗⃗⃗⃗⃗⃗ • ON ⃗⃗⃗⃗⃗⃗ =4+b 2. 所以 OM ⃗⃗⃗⃗⃗⃗ • ON ⃗⃗⃗⃗⃗⃗ =4+b 2>6+2 √5 . 则 OM ⃗⃗⃗⃗⃗⃗ • ON ⃗⃗⃗⃗⃗⃗ ∈(6+2 √5 .+∞).【点评】:本题考查双曲线与圆的定义和方程、性质.考查直线和圆的方程、双曲线的方程的联立.以及向量的数量积的几何意义.考查方程思想和化简运算能力.属于中档题.21.(问答题.18分)已知数列{a n }为有限数列.满足|a 1-a 2|≤|a 1-a 3|≤…≤|a 1-a m |.则称{a n }满足性质P .(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P.请说明理由; (2)若a 1=1.公比为q 的等比数列.项数为10.具有性质P.求q 的取值范围;(3)若{a n }是1.2.3.….m 的一个排列(m≥4).{b n }符合b k =a k+1(k=1.2.….m-1).{a n }、{b n }都具有性质P.求所有满足条件的数列{a n }.【正确答案】:【解析】:(1)根据定义.验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P即可;(2)假设公比q的等比数列满足性质p.可得:|a1-a1q n|≥|a1-a1q n-1|.推出(q-1)q n-1[q n-1(q+1)-2]≥0.通过q≥1.0<q≤1时.-1≤q<0时:q<-1时.四种情况讨论求解即可.(3)设a1=p.分p=1时.当p=m时.当p=2时.当p=m-1时.以及P∈{3.4.….m-3.m-2}.五种情况讨论.判断数列{a n}的可能情况.分别推出{b n}判断是否满足性质P即可.【解答】:解:(1)对于数列3.2.5.1.有|2-3|=1.|5-3|=2.|1-3|=2.满足题意.该数列满足性质P;对于第二个数列4、3、2、5、1.|3-4|=1.|2-4|=2.|5-4|=1.不满足题意.该数列不满足性质P.(2)由题意:|a1-a1q n|≥|a1-a1q n-1|.可得:|q n-1|≥|q n-1-1|.n∈{2.3.….9}.两边平方可得:q2n-2q n+1≥q2n-2-2q n-1+1.整理可得:(q-1)q n-1[q n-1(q+1)-2]≥0.当q≥1时.得q n-1(q+1)-2≥0此时关于n恒成立.所以等价于n=2时.q(q+1)-2≥0.所以.(q+2)(q-1)≥0.所以q≤-2.或q≥1.所以取q≥1.当0<q≤1时.得q n-1(q+1)-2≤0.此时关于n恒成立.所以等价于n=2时.q(q+1)-2≤0.所以(q+2)(q-1)≤0.所以-2≤q≤1.所以取0<q≤1.当-1≤q<0时:q n-1[q n-1(q+1)-2]≤0.当n为奇数时.得q n-1(q+1)-2≤0.恒成立.当n为偶数时.q n-1(q+1)-2≥0.不恒成立;故当-1≤q<0时.矛盾.舍去.当q<-1时.得q n-1[q n-1(q+1)-2]≤0.当n为奇数时.得q n-1(q+1)-2≤0.恒成立.当n为偶数时.q n-1(q+1)-2≥0.恒成立;故等价于n=2时.q(q+1)-2≥0.所以(q+2)(q-1)≥0.所以q≤-2或q≥1.所以取q≤-2.综上q∈(-∞.-2]∪(0.+∞).(3)设a1=p.p∈{3.4.….m-3.m-2}.因为a1=p.a2可以取p-1.或p+1.a3可以取p-2.或p+2.如果a2或a3取了p-3或p+3.将使{a n}不满足性质P;所以{a n}的前5项有以下组合:① a1=p.a2=p-1;a3=p+1;a4=p-2;a5=p+2;② a1=p.a2=p-1;a3=p+1;a4=p+2;a5=p-2;③ a1=p.a2=p+1;a3=p-1;a4=p-2;a5=p+2;④ a1=p.a2=p+1;a3=p-1;a4=p+2;a5=p-2;对于① .b1=p-1.|b2-b1|=2.|b3-b1|=1.与{b n}满足性质P矛盾.舍去;对于② .b1=p-1.|b2-b1|=2.|b3-b1|=3.|b4-b1|=2与{b n}满足性质P矛盾.舍去;对于③ .b1=p+1.|b2-b1|=2.|b3-b1|=3.|b4-b1|=1与{b n}满足性质P矛盾.舍去;对于④ b1=p+1.|b2-b1|=2.|b3-b1|=1.与{b n}满足性质P矛盾.舍去;所以P∈{3.4.….m-3.m-2}.均不能同时使{a n}、{b n}都具有性质P.当p=1时.有数列{a n}:1.2.3.….m-1.m满足题意.当p=m时.有数列{a n}:m.m-1.….3.2.1满足题意.当p=2时.有数列{a n}:2.1.3.….m-1.m满足题意.当p=m-1时.有数列{a n}:m-1.m.m-2.m-3.….3.2.1满足题意.所以满足题意的数列{a n}只有以上四种.【点评】:本题考查数列的综合应用.不等式以及不等关系.二次函数的性质以及函数的相关性质的综合应用.考查分析问题解决问题的能力是难度大的题目.必须由高的数学思维逻辑修养才能解答.。
2020年上海市春季高考数学试卷真题+参考答案+详细解析
2020年上海市春季高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7-12题每题5分) 1.(4分)集合{1,3}A =,{1,2,}B a =,若A B ⊆,则a = . 2.(4分)不等式13x>的解集为 . 3.(4分)函数tan 2y x =的最小正周期为 .4.(4分)已知复数z 满足26z z i +=+,则z 的实部为 . 5.(4分)已知3sin22sin x x =,(0,)x π∈,则x = . 6.(4分)若函数133x x y a =+为偶函数,则a = . 7.(5分)已知直线1:1l x ay +=,2:1l ax y +=,若12//l l ,则1l 与2l 的距离为 .8.(5分)已知二项式5(2x +,则展开式中3x 的系数为 .9.(5分)三角形ABC 中,D 是BC 中点,2AB =,3BC =,4AC =,则AD AB = . 10.(5分)已知{3,2,1,0,1,2,3}A =---,a 、b A ∈,则||||a b <的情况有 种.11.(5分)已知1A 、2A 、3A 、4A 、5A 五个点,满足1120n n n n A A A A +++⋅=,(1n =,2,3),112||||1n n n n A A A A n +++⋅=+(1n =,2,3),则15||A A 的最小值为 .12.(5分)已知()f x =其反函数为1()f x -,若1()()f x a f x a --=+有实数根,则a 的取值范围为 . 二、选择题(本大题共4题,每题5分,共20分)13.(5分)计算:1135lim (35n n n n n --→∞+=+ )A .3B .53C .35D .514.(5分)“αβ=”是“22sin cos 1αβ+=”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件15.(5分)已知椭圆2212x y +=,作垂直于x 轴的垂线交椭圆于A 、B 两点,作垂直于y 轴的垂线交椭圆于C 、D 两点,且AB CD =,两垂线相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .圆D .抛物线16.(5分)数列{}n a 各项均为实数,对任意*n N ∈满足3n n a a +=,且行列式123n n n n a a c a a +++=为定值,则下列选项中不可能的是( )A .11a =,1c =B .12a =,2c =C .11a =-,4c =D .12a =,0c =三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.18.(14分)已知各项均为正数的数列{}n a ,其前n 项和为n S ,11a =. (1)若数列{}n a 为等差数列,1070S =,求数列{}n a 的通项公式; (2)若数列{}n a 为等比数列,418a =,求满足100n n S a >时n 的最小值.19.(14分)有一条长为120米的步行道OA ,A 是垃圾投放点1ω,若以O 为原点,OA 为x 轴正半轴建立直角坐标系,设点(,0)B x ,现要建设另一座垃圾投放点2(,0)t ω,函数()t f x 表示与B 点距离最近的垃圾投放点的距离.(1)若60t =,求60(10)f 、60(80)f 、60(95)f 的值,并写出60()f x 的函数解析式;(2)若可以通过()t f x 与坐标轴围成的面积来测算扔垃圾的便利程度,面积越小越便利.问:垃圾投放点2ω建在何处才能比建在中点时更加便利?20.(16分)已知抛物线2y x =上的动点00(),M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t =于A 、B 两点.(1)若点M ,求M 与焦点的距离; (2)若1t =-,(1,1)P ,(1,1)Q -,求证:A B y y ⋅为常数;(3)是否存在t ,使得1A B y y ⋅=且P Q y y ⋅为常数?若存在,求出t 的所有可能值,若不存在,请说明理由.21.(18分)已知非空集合A R ⊆,函数()y f x =的定义域为D ,若对任意t A ∈且x D ∈,不等式()()f x f x t +恒成立,则称函数()f x 具有A 性质.(1)当{1}A =-,判断()f x x =-、()2g x x =是否具有A 性质; (2)当(0,1)A =,1()f x x x=+,[,)x a ∈+∞,若()f x 具有A 性质,求a 的取值范围; (3)当{2A =-,}m ,m Z ∈,若D 为整数集且具有A 性质的函数均为常值函数,求所有符合条件的m 的值.2020年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7-12题每题5分) 1.(4分)集合{1,3}A =,{1,2,}B a =,若A B ⊆,则a = 3 . 【解析】3A ∈,且A B ⊆,3B ∴∈,3a ∴=,故答案为:3. 【评注】本题主要考查了集合的包含关系,是基础题. 2.(4分)不等式13x >的解集为 1(0,)3. 【解析】由13x >得130x x ->,则(13)0x x ->,即(31)0x x -<,解得103x <<, 所以不等式的解集是1(0,)3,故答案为:1(0,)3.【评注】本题考查分式不等式、一元二次不等式的解法,以及转化思想,属于基础题. 3.(4分)函数tan 2y x =的最小正周期为 2π. 【解析】函数tan 2y x =的最小正周期为2π,故答案为:2π. 【评注】本题主要考查正切函数的周期性和求法,属于基础题. 4.(4分)已知复数z 满足26z z i +=+,则z 的实部为 2 .【解析】设z a bi =+,(,)a b R ∈.复数z 满足26z z i +=+,36a bi i ∴-=+, 可得:36a =,1b -=,解得2a =,1b =-.则z 的实部为2.故答案为:2.【评注】本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题. 5.(4分)已知3sin22sin x x =,(0,)x π∈,则x = 1arccos 3.【解析】3sin22sin x x =,6sin cos 2sin x x x =,(0,)x π∈,sin 0x ∴≠,1cos 3x ∴=,故1arccos 3x =. 故答案为:1arccos 3.【评注】本题主要考查函数值的计算,利用三角函数的倍角公式是解决本题的关键. 6.(4分)若函数133x x y a =+为偶函数,则a = 1 . 【解析】根据题意,函数133x x y a =+为偶函数,则()()f x f x -=,即()()113333x xx xa a --+=+, 变形可得:(33)(33)x x x x a ---=-,必有1a =;故答案为:1.【评注】本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.7.(5分)已知直线1:1l x ay +=,2:1l ax y +=,若12//l l ,则1l 与2l【解析】直线1:1l x ay +=,2:1l ax y +=,当12//l l 时,210a -=,解得1a =±;当1a =时1l 与2l 重合,不满足题意;当1a =-时12//l l ,此时1:10l x y --=,2:10l x y -+=;则1l 与2l 的距离为d =.【评注】本题考查了平行线的定义和平行线间的距离计算问题,是基础题.8.(5分)已知二项式5(2x +,则展开式中3x 的系数为 10 .【解析】41435(2)10C x x =,所以展开式中3x 的系数为10.故答案为:10. 【评注】本题考查利用二项式定理求特定项的系数,属于基础题.9.(5分)三角形ABC 中,D 是BC 中点,2AB =,3BC =,4AC =,则AD AB = 194. 【解析】在ABC ∆中,2AB =,3BC =,4AC =,∴由余弦定理得,222416911cos 222416AB AC BC BAC AB AC +-+-∠===⨯⨯,∴111124162AB AC =⨯⨯=,且D 是BC 的中点,∴21111119()()(4)22224AD AB AB AC AB AB AB AC =+=+=⨯+=.故答案为:194. 【评注】本题考查了余弦定理,向量加法的平行四边形法则,向量数乘的几何意义,向量数量积的运算及计算公式,考查了计算能力,属于基础题.10.(5分)已知{3,2,1,0,1,2,3}A =---,a 、b A ∈,则||||a b <的情况有 18 种. 【解析】当3a =-,0种, 当2a =-,2种, 当1a =-,4种; 当0a =,6种, 当1a =,4种; 当2a =,2种, 当3a =,0种,故共有:2464218++++=.故答案为:18.【评注】本题主要考查分类讨论思想在概率中的应用,属于基础题目.11.(5分)已知1A 、2A 、3A 、4A 、5A 五个点,满足1120n n n n A A A A +++⋅=,(1n =,2,3),112||||1n n n n A A A A n +++⋅=+(1n =,2,3),则15||A A 的最小值为. 【解析】设12||A A x =,则232||A A x =,344538||,||23x A A A A x==,设1(0,0)A ,如图,求15||A A 的最小值,则:2(,0)A x ,3422(,),(,)2x A x A x x -,52(,)23x A x--,∴2222152242||()()23493x x A A x x=-+-=+,当且仅当22449x x=,即x =15||A A ∴. 【评注】本题考查了向量垂直的充要条件,利用向量坐标解决向量问题的方法,基本不等式求最值的方法,考查了计算能力,属于中档题.12.(5分)已知()f x =1()f x -,若1()()f x a f x a --=+有实数根,则a 的取值范围为 3[,)4+∞ . 【解析】因为1()y f x a -=-与()y f x a =+互为反函数,若1()y f x a -=-与()y f x a =+有实数根,则()y f x a =+与y x =有交点,x ,即221331()244a x x x =-+=-+,故答案为:3[,)4+∞.【评注】本题主要考查函数的性质,函数与方程的关系,属于中档题. 二、选择题(本大题共4题,每题5分,共20分)13.(5分)计算:1135lim (35n nn n n --→∞+=+ )A .3B .53C .35D .5【解析】111133()5355limlim 5335()15n n nn n n n n ---→∞→∞-++==++.故选:D . 【评注】本题考查数列极限的求法,是基础的计算题. 14.(5分)“αβ=”是“22sin cos 1αβ+=”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件【解析】(1)若αβ=,则2222sin cos sin cos 1αβαα+=+=,∴“αβ=“是“22sin cos 1αβ+=“的充分条件;(2)若22sin cos 1αβ+=,则22sin sin αβ=,得不出αβ=,∴“αβ=”不是“22sin cos 1αβ+=”的必要条件,∴“αβ=”是“22sin cos 1αβ+=”的充分非必要条件.故选:A .【评注】本题考查了充分条件、必要条件和充分不必要条件的定义,22sin cos 1αα+=,正弦函数的图象,考查了推理能力,属于基础题.15.(5分)已知椭圆2212x y +=,作垂直于x 轴的垂线交椭圆于A 、B 两点,作垂直于y 轴的垂线交椭圆于C 、D 两点,且AB CD =,两垂线相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .圆D .抛物线【解析】2AB ,2CD ∴,判断轨迹为上下两支,即选双曲线,设(,)A m t ,(,)D t n ,所以(,)P m n ,因为2212m t +=,2212t n +=,消去t 可得:22212m n -=,故选:B .【评注】本题考查轨迹方程的求法与判断,是基本知识的考查,基础题. 16.(5分)数列{}n a 各项均为实数,对任意*n N ∈满足3n n a a +=,且行列式123nn n n a a c a a +++=为定值,则下列选项中不可能的是( ) A .11a =,1c =B .12a =,2c =C .11a =-,4c =D .12a =,0c =【解析】行列式131223nn n n n n n n aa a a a a c a a ++++++=-=,对任意*n N ∈满足3n n a a +=,∴2122123n n n n n n a a a ca a a c +++++⎧-=⎪⎨-=⎪⎩, 作差整理得:1n n a a +=(常数列,0c =),或120n n n a a a ++++=,当120n n n a a a ++++=,则12n n n a a a +++=-及212n n na a a c ++=-, ∴方程220n nx a x a c ++-=有两根1n a +,2n a +,∴△2224()430n n n a a c c a =--=->,因为B 错,故选:B . 【评注】本题考查行列式,以及方程求解,属于中档题. 三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.【解析】(1)PD ⊥平面ABCD ,PD DC ∴⊥.3CD =,5PC ∴=,4PD ∴=,2134123P ABCD V -∴=⨯⨯=,所以四棱锥P ABCD -的体积为12.(2)ABCD 是正方形,PD ⊥平面ABCD ,BC PD ∴⊥,BC CD ⊥,又PD CD D =,BC ∴⊥平面PCD , BC PC ∴⊥,异面直线AD 与PB 所成角为60︒,//BC AD ,∴在Rt PBC ∆中,60PBC ∠=︒,3BC =,故PC =Rt PDC ∆中,3CD =,PD ∴=【评注】本题考查几何体的体积,空间点线面的距离的求法,考查转化思想以及空间想象能力计算能力,是中档题.18.(14分)已知各项均为正数的数列{}n a ,其前n 项和为n S ,11a =. (1)若数列{}n a 为等差数列,1070S =,求数列{}n a 的通项公式; (2)若数列{}n a 为等比数列,418a =,求满足100n n S a >时n 的最小值.【解析】(1)数列{}n a 为公差为d 的等差数列,1070S =,11a =,可得110109702d +⨯⨯=,解得43d =,则4411(1)333n a n n =+-=-;(2)数列{}n a 为公比为q 的等比数列,418a =,11a =,可得318q =,即12q =,则11()2n n a -=,111()122()1212nn n S --==--,100n nS a >,即为11112()100()22n n --->, 即2101n >,可得7n ,即n 的最小值为7.【评注】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.19.(14分)有一条长为120米的步行道OA ,A 是垃圾投放点1ω,若以O 为原点,OA 为x 轴正半轴建立直角坐标系,设点(,0)B x ,现要建设另一座垃圾投放点2(,0)t ω,函数()t f x 表示与B 点距离最近的垃圾投放点的距离.(1)若60t =,求60(10)f 、60(80)f 、60(95)f 的值,并写出60()f x 的函数解析式;(2)若可以通过()t f x 与坐标轴围成的面积来测算扔垃圾的便利程度,面积越小越便利.问:垃圾投放点2ω建在何处才能比建在中点时更加便利?【解析】(1)投放点1(120,0)ω,2(60,0)ω,60(10)f 表示与(10,0)B 距离最近的投放点(即2ω)的距离, 所以60(10)|6010|50f =-=,同理分析,60(80)|6080|20f =-=,60(95)|12095|25f =-=, 由题意得,60(){|60|,|120|}min f x x x =--, 则当|60||120|x x --,即90x 时,60()|60|f x x =-;当|60||120|x x ->-,即90x >时,60()|120|f x x =-; 综上60|60|,90()|120|,90x x f x x x -⎧=⎨->⎩;(2)由题意得(){||,|120|}t min f x t x x =--,所以||,0.5(120)()|120|,0.5(120)t t x x t f x x x t -+⎧=⎨->+⎩,则()t f x 与坐标轴围成的面积如阴影部分所示,所以222113(120)603600244S t t t t =+-=-+,由题意,(60)S S <,即2360360027004t t -+<,解得2060t <<,即垃圾投放点2ω建在(20,0)与(60,0)之间时,比建在中点时更加便利. 【评注】本题是新定义问题,考查对题目意思的理解,分类讨论是关键,属于中档题.20.(16分)已知抛物线2y x =上的动点00(),M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t =于A 、B 两点.(1)若点M,求M 与焦点的距离; (2)若1t =-,(1,1)P ,(1,1)Q -,求证:A B y y ⋅为常数;(3)是否存在t ,使得1A B y y ⋅=且P Q y y ⋅为常数?若存在,求出t 的所有可能值,若不存在,请说明理由. 【解析】(1)解:抛物线2y x =上的动点00(),M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t =于A 、B 两点.点M,∴点M的横坐标22M x ==,2y x =,12p ∴=, M ∴与焦点的距离为192244M p MF x =+=+=. (2)证明:设200(,)M y y ,直线0201:1(1)1y PM y x y --=--,当1x =-时,0011A y y y -=+, 直线0201:1(1)1y QM y x y ++=--,1x =-时,0011By y y --=-,1A B y y ∴=-,A B y y ∴⋅为常数1-. (3)解:设200(,)M y y ,(,)A A t y ,直线200020:()A y y MA y y x y y t--=--, 联立2y x =,得22220000000A A y t y t y y y y y y y y ---+-=--,2000p A y t y y y y -∴+=-,即00A P Ay y t y y y -=-,同理得00B Q By y t y y y -=-,1A B y y ⋅=,2200200()()1A B P Q A B y ty y y t y y y y y y -++∴=-++, 要使P Q y y 为常数,即1t =,此时P Q y y 为常数1,∴存在1t =,使得1A B y y ⋅=且P Q y y ⋅为常数1.【评注】本题考查点到焦点的距离的求法,考查两点纵坐标乘积为常数的证明,考查满足两点纵坐标乘积为常数的实数值是否存在的判断与求法,考查抛物线、直线方程等基础知识,考查运算求解能力,是中档题.21.(18分)已知非空集合A R ⊆,函数()y f x =的定义域为D ,若对任意t A ∈且x D ∈,不等式()()f x f x t +恒成立,则称函数()f x 具有A 性质.(1)当{1}A =-,判断()f x x =-、()2g x x =是否具有A 性质; (2)当(0,1)A =,1()f x x x=+,[,)x a ∈+∞,若()f x 具有A 性质,求a 的取值范围; (3)当{2,}A m =-,m Z ∈,若D 为整数集且具有A 性质的函数均为常值函数,求所有符合条件的m 的值. 【解析】(1)()f x x =-为减函数,()(1)f x f x ∴<-,()f x x ∴=-具有A 性质;()2g x x =为增函数,()(1)g x g x ∴>-,()2g x x ∴=不具有A 性质;(2)依题意,对任意(0,1)t ∈,()()f x f x t +恒成立,∴1()()f x x x a x=+为增函数(不可能为常值函数),由双勾函数的图象及性质可得1a ,当1a 时,函数单调递增,满足对任意(0,1)t ∈,()()f x f x t +恒成立, 综上,实数a 的取值范围为[1,)+∞. (3)D 为整数集,具有A 性质的函数均为常值函数,当0m 时,取单调递减函数()f x x =-,两个不等式恒成立,但()f x 不为常值函数; 当m 为正偶数时,取()0,1,n f x n ⎧=⎨⎩为偶数为奇数,两个不等式恒成立,但()f x 不为常值函数;当m 为正奇数时,根据对任意t A ∈且x D ∈,不等式()()f x f x t +恒成立,可得()()()(1)(1)()f x m f x f x m f x f x f x m -++--,则()(1)f x f x =+,所以()f x 为常值函数, 综上,m 为正奇数.【评注】本题以新定义为载体,考查抽象函数的性质及其运用,考查逻辑推理能力及灵活运用知识的能力,属于中档题.。
2020届上海市高三春季高考数学详解版(附专家点评)
.
x
3. 函数 y = tan 2x 的最小正周期为
.
4. 已知复数 z 满足 z + 2z = 6 + i ,则 z 的实部为
.
5. 已知 3sin 2x = 2sin x , x (0, ) ,则 x =
.
6.
若函数 y = a 3x
1 + 3x
为偶函数,则 a =
.
7. 已知直线 l1 : x + ay = 1 , l2 : ax + y = 1 ,若 l1 ∥ l2 ,则 l1 与 l2 的距离为
m
=
n
,则
am122
= =
m2 + c a1m + c
m2 − c 2 = a12a2 a12 − 2c 2 = a12 a12 − c ,
即
3a12c
=
4c2
c
=
0
or
c
=
3 4
a12
;
( ) (2)若 m + n = −a1 ,则 (−a1 )2 = (m + n)2 4mn = 4
21. 已知非空集合 A R ,函数 y = f (x) 的定义域为 D ,若对任意 t A 且 x D ,不等式 f (x) f (x + t) 恒成立,则称函数 f (x) 具有 A 性质. (1)当 A = {−1} ,判断 f (x) = −x 、 g(x) = 2x 是否具有 A 性质;
2020 年上海市春季高考数学试卷
注:题目来源主要为网上流传的回忆版,如有错漏,欢迎指正. 一. 填空题(本大题共 12 题,满分 54 分,第 1~6 题每题 4 分,第 7~12 题每题 5 分)
2020-2021学年上海市高三(上)春季高考数学模拟试卷(八)(10月份)
2020-2021学年上海市高三(上)春季高考数学模拟试卷(八)(10月份)一、填空题:1. 若复数z满足(1+i)z=2i(i是虚数单位),则z¯=________.【答案】1−i【考点】复数的运算【解析】把原等式变形后直接利用复数代数形式的乘除运算化简求值.【解答】∵(1+i)z=2i,∴z=2i1+i =2i(1−i)(1+i)(1−i)=2+2i2=1+i,∴z¯=1−i.2. 方程ln(9x+3x−1)=0的根为________.【答案】【考点】函数零点的判定定理有理数指数幂的运算性质及化简求值【解析】根据题意,分析可得ln(9x+3x−1)=0,即9x+3x−1=1,令t=3x,解可得t的值,则有3x=1,解可得x的值,即可得答案.【解答】根据题意,ln(9x+3x−1)=0,即9x+3x−1=1,令t=3x,(t>0),则有t2+t−2=0,解可得t=1或−2;又由t>0,则有t=1,即3x=1,解可得x=0,3. 从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每个班级至少有一名代表,则各班级的代表数有________种不同的选法.(用数字作答)【答案】20【考点】排列、组合及简单计数问题【解析】由题意,七个名额分成四份,名额之间没有差别,四个班级之间也没有差别,故把七个名额分成四份即得选法种数,此问题可用插板法解决,七个个体间有六个空,选出三个空插板,即可分成四份,此题易解【解答】由题意,4个班级的学生中选出7名学生代表,每一个班级中至少有一名代表,相当于7个球排成一排,然后插3块木板把它们分成4份,即中间6个空位,选3个插板,分成四份,总的分法有C63=204. 若函数y=2sin(ωx−π3)+1(ω>0)的最小正周期是π,则ω=________.【答案】2【考点】三角函数的周期性及其求法【解析】根据正弦函数的图象与性质,即可求出ω的值.【解答】解:根据正弦函数的图象与性质,知函数y=2sin(ωx−π3)+1(ω>0)的最小正周期是T=2πω=π,解得ω=2.故答案为:2.5. 若函数f(x)=x a的反函数的图象经过点(12, 14),则a=________.【答案】12【考点】反函数【解析】直接利用反函数的性质求出结果.【解答】解:若函数f(x)=x a的反函数的图象经过点(12, 14 ),则(14, 12)满足f(x)=xα,所以12=(14)α,解得:α=12.故答案为:12.6. 函数y=f(x)与y=ln x的图象关于直线y=−x对称,则f(x)=________.【答案】−e−x【考点】函数解析式的求解及常用方法【解析】设点(x, y)在y=f(x)的图象上,则(x, y)关于直线y=−x对称的点(−y, −x)在y=ln x的图象上,代入后解出y即可.【解答】设点(x, y)在y=f(x)的图象上,则(x, y)关于直线y=−x对称的点(−y, −x)在y=ln x的图象上,得到−x=ln(−y),∴−y=e−x,∴y=−e−x,f(x)=−e−x,7. 已知抛物线C的顶点为坐标原点,双曲线的右焦点是C的焦点F,若斜率为−1,且过F的直线与C交于A、B两点,则|AB|=________.【答案】104【考点】双曲线的离心率【解析】由双曲线的方程求得焦点坐标,即可求得抛物线方程,方法一:设直线AB的方程,代入抛物线方程,利用韦达定理及抛物线的弦长公式即可求得|AB|;方法二:根据抛物线的弦长公式|AB|=,即可求得|AB|.【解答】双曲线中a=5,b=12,则c=13,则右焦点是C(13, 0),设抛物线的方程为y2=2px,=13,则2p=52,∴抛物线的方程为y2=52x,方法一:则直线AB的方程为y=−x+13,,整理得:x2−78x,+169=0,设A(x1, y1),B(x1, y1),x1+x2=78,则|AB|=x1+x2+p=78+26=104,故答案为:104.方法二:斜率为−1,则直线AB的倾斜角为135∘,由抛物线的焦点弦公式,|AB|===104,故答案为:104.8. 已知A(2, 3),B(1, 4),且=(sin x, cos y),x,y∈(−,),则x+y =________.【答案】或-【考点】平面向量的基本定理【解析】求出的坐标,根据向量相等得出sin x,cos y的值,从而得出x,y的值.【解答】=(−1, 1),∵=(sin x, cos y),∴sin x=-,cos y=,∵x,y∈(−,),∴x=-,y=或-.∴x+y=或-.9. 将函数y=-的图象绕着y轴旋转一周所得的几何容器的容积是________.【答案】【考点】旋转体(圆柱、圆锥、圆台)【解析】函数y=-的图象是圆x2+y2=1,y≤0,是半径为1的下半圆,将函数y=-的图象绕着y轴旋转一周所得的几何容器为以R=1为半径的半球体,由此能求出结果.【解答】∵函数y=-的图象是圆x2+y2=1,y≤0,是半径为1的下半圆,∴将函数y=-的图象绕着y轴旋转一周所得的几何容器为以R=1为半径的半球体,∴将函数y=-的图象绕着y轴旋转一周所得的几何容器的容积是:V==.10. 张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在△ABC中,a,b,c分别是角A,B,C的对边,已知b=2,∠A=45∘,求边c,显然缺少条件,若他打算补充a的大小,并使得c只有一解,a的可能取值是________(只需填写一个适合的答案)【答案】2【考点】正弦定理【解析】由正弦定理可得sin B=∈{1}∪(0,],可得a={2}∪[2,+∞),即可确定一个a的可能取值是2.【解答】由已知及正弦定理,可得=,可得sin B=∈{1}∪(0,],可得:a={2}∪[2,+∞).可得a的可能取值是2.11. 已知数列{a n}满足:①a1=0,②对任意的n∈N∗都有a n+1>a n成立.函数f n(x)=|sin(x−a n)|,x∈[a n, a n+1]满足:对于任意的实数m∈[0, 1),f n(x)=m总有两个不同的根,则{a n}的通项公式是________.【答案】a n=π【考点】数列递推式【解析】利用三角函数的图象与性质、诱导公式、数列的递推关系可得a n+1−a n=nπ,再利用“累加求和”方法、等差数列的求和公式即可得出.【解答】∵a1=0,当n=1时,f1(x)=|sin(x−a1)|=|sin x|,x∈[0, a2],又∵对任意的m∈[0, 1),f1(x)=m总有两个不同的根,∴a2=π,∴f1(x)=sin x,x∈[0, π],a2=π,又f2(x)=|sin(x−a2)|=|sin(x−π)|=|cos|,x∈[π, a3],∵对任意的m∈[0, 1),f1(x)=m总有两个不同的根,∴a3=3π,又f3(x)=|sin(x−a3)|=|sin(x−3π)|=|sinπ|,x∈[3π, a4],∵对任意的b∈[0, 1),f1(x)=m总有两个不同的根,∴a4=6π,由此可得a n+1−a n=nπ,∴a n=a1+(a2−a1)+...+(a n−a n−1)=0+π+...+(n−1)π=π,二、选择题(共4小题,每小题0分,满分0分)设a,b∈R,若a>b,则()A.1 a <1bB.lg a>lg bC.sin a>sin bD.2a>2b【答案】D【考点】不等式的基本性质【解析】利用指数函数的单调性可判断D准确.【解答】解:由a>b,利用指数函数的单调性可得:2a>2b.再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A,B,C不正确.故选D.已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【考点】数列的求和数列的应用充分条件、必要条件、充要条件【解析】此题暂无解析【解答】由要S4+S6−2S5=10a1+21d−2(5a1+10d)=d,可知当d>0时,有S4+S6−2S5>0,即S4+S6>2S5,反之,若S4+S6>2S5,则d>0,所以“d>0”是“S4+S6>2S5”的充要条件,选C.设点M、N均在双曲线C:=1上运动,F1,F2是双曲线C的左、右焦点,||的最小值为()A.2B.4C.2D.以上都不对【答案】B【考点】双曲线的离心率【解析】设O为F1F2的中点,则||=|2|=2||≥2a=4.【解答】设O为F1F2的中点,则||=|2|=2||≥2a=4.∴||的最小值为4.称项数相同的两个有穷数列对应项乘积之和为这两个数列的内积,设:数列甲:x1,x2,…,x5为递增数列,且x i∈N∗(i=1, 2,…,5);数列乙:y1,y2,y3,y4,y5满足y i∈{−1, 1}(i=1, 2, (5)则在甲、乙的所有内积中()A.当且仅当x1=1,x2=3,x3=5,x4=7,x5=9时,存在16个不同的整数,它们同为奇数B.当且仅当x1=2,x2=4,x3=6,x4=8,x5=10时,存在16个不同的整数,它们同为偶数C.不存在16个不同的整数,要么同为奇数,要么同为偶数D.存在16个不同的整数,要么同为奇数,要么同为偶数【答案】D【考点】进行简单的合情推理【解析】在理解即时定义的前提下,用列举法计算出各种情况的内积,分别讨论A,B,C,D四个选项,逐一计算得解.【解答】对于A,取特例x1=1,x2=2,x3=3,x4=4,x5=5时,此时内积可能为:{−15, −13, −11, −9, −7, −5, −3, −1, 1, 3, 5, 7, 9, 11, 13, 15},16个都是奇数,所以A不对,对于B,取特例x1=1,x2=2,x3=3,x4=4,x5=6时,此时内积可能为:{−16, −14, −12, −10, −8, −6, −4, −2, 2, 4, 6, 8, 10, 12, 14, 16},16个都是偶数,所以B不对,对于C,由A,B可知存在16个整数,要么同为奇数,要么同为偶数,所以C不对,三、解答题:如图,在长方体ABCD−A1B1C1D1中,已知AB=BC=4,DD1=8,M为棱C1D1的中点.(1)求四棱锥M−ABCD的体积;(2)求直线BM与平面BCC1B1所成角的正切值.【答案】∵在长方体ABCD−A1B1C1D1中,AB=BC=4,DD1=8,M为棱C1D1的中点.∴点M到平面ABCD的距离d=DD1=8,S=4×4=16.正方形ABCD∴四棱锥M−ABCD的体积:V M−ABCD===.∵MC1⊥平面BCC1B1,∴∠MBC1是直线BM与平面BCC1B1所成角,∵AB=BC=4,DD1=8,M为棱C1D1的中点.∴BC1==4,MC1=2,∴tan∠MBC1===.∴直线BM与平面BCC1B1所成角的正切值为.【考点】棱柱、棱锥、棱台的体积直线与平面所成的角【解析】(1)点M到平面ABCD的距离d=DD1=8,S=4×4=16.由此能求出四棱正方形ABCD锥M−ABCD的体积.(2)由MC1⊥平面BCC1B1,知∠MBC1是直线BM与平面BCC1B1所成角,由此能求出直线BM与平面BCC1B1所成角的正切值.【解答】∵在长方体ABCD−A1B1C1D1中,AB=BC=4,DD1=8,M为棱C1D1的中点.∴点M到平面ABCD的距离d=DD1=8,S=4×4=16.正方形ABCD∴四棱锥M−ABCD的体积:V M−ABCD===.∵MC1⊥平面BCC1B1,∴∠MBC1是直线BM与平面BCC1B1所成角,∵AB=BC=4,DD1=8,M为棱C1D1的中点.∴BC1==4,MC1=2,∴tan∠MBC1===.∴直线BM与平面BCC1B1所成角的正切值为.已知函数.(1)求f(x)在上的单调递减区间;(2)设△ABC的内角A、B、C所对应的边依次为a、b、c,若且,求△ABC面积的最大值,并指出此时△ABC为何种类型的三角形.【答案】函数=cos x.由余弦函数的性质可得:2kπ≤x≤2kπ+π是单调递减.∴在上的单调递减区间为[],由可得:2a−b−c−(a−c−2b=4.∴a+b=4可得a+b即ab≤4,当且仅当a=b时取等号.∵,即cos C=,0<C<π∴C=那么:△ABC面积S=ab sin C≤sin C=∵a=b,C=可知△ABC为等边的三角形.【考点】三角函数中的恒等变换应用解三角形三角形的面积公式【解析】(1)利用二倍角公式化简,结合三角函数的性质可得在上的单调递减区间;(2)由行列式求解a,b,c的关系,根据,求解角C,利用基本不等式的性质即可求解△ABC面积的最大值,在判断△ABC即可!【解答】函数=cos x.由余弦函数的性质可得:2kπ≤x≤2kπ+π是单调递减.∴在上的单调递减区间为[],由可得:2a−b−c−(a−c−2b=4.∴a+b=4可得a+b即ab≤4,当且仅当a=b时取等号.∵,即cos C=,0<C<π∴C=那么:△ABC面积S=ab sin C≤sin C=∵a=b,C=可知△ABC为等边的三角形.某创业投资公司拟投资开发某种新能源产品,估计能获得25万元∼1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为y=f(x)时,则公司对函数模型的基本要求是:当x∈[25, 1600]时,①f(x)是增函数;②f(x)≤75恒成立;(3)f(x)≤x5恒成立.)(1)判断函数f(x)=x30+10是否符合公司奖励方案函数模型的要求,并说明理由;(2)已知函数g(x)=a√x−5(a≥1)符合公司奖励方案函数模型要求,求实数a的取值范围.【答案】对于函数模型f(x)=x30+10,当x∈[25, 1600]时,f(x)是单调递增函数,则f(x)≤f(1600)=1603+10≤75,显然恒成立,若函数f(x)=x30+10−x5≤0恒成立,即x≥60∴f(x)=x30+10不恒成立,综上所述,函数模型f(x)=x30+10,满足基本要求①②,但是不满足③,故函数模型f(x)=x30+10,不符合公司要求;x∈[25, 1600]时,g(x)=a√x−5有意义,∴g(x)max=a√1600−5≤75,∴a≤2,设a√x−5≤x5恒成立,∴ax≤(5+x5)2恒成立,即a≤25x +2+x25,∵25x +x25≥2√25x⋅x25=2,当且仅当x=25时取等号,∴a≤2∵a≥1,∴1≤a≤2,故a的取值范围为[1, 2]【考点】根据实际问题选择函数类型【解析】(1)研究它的单调性和恒成立问题,即可判断是否符合的基本要求;(2)先求出g(x)max=a√1600−5≤75,此时a的范围,再求出满足f(x)≤x5恒成立a 的范围,即可求出【解答】对于函数模型f(x)=x30+10,当x∈[25, 1600]时,f(x)是单调递增函数,则f(x)≤f(1600)=1603+10≤75,显然恒成立,若函数f(x)=x30+10−x5≤0恒成立,即x≥60∴f(x)=x30+10不恒成立,综上所述,函数模型f(x)=x30+10,满足基本要求①②,但是不满足③,故函数模型f(x)=x30+10,不符合公司要求;x∈[25, 1600]时,g(x)=a√x−5有意义,∴g(x)max=a√1600−5≤75,∴a≤2,设a√x−5≤x5恒成立,∴ax≤(5+x5)2恒成立,即a≤25x +2+x25,∵25x +x25≥2√25x⋅x25=2,当且仅当x=25时取等号,∴a≤2∵a≥1,∴1≤a≤2,故a的取值范围为[1, 2]在平面直角坐标系中,已知椭圆C:x2a2+y2=1 (a>0, a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k, m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA⋅k OB=−14,求证:△OAB的面积为定值.【答案】(1)解:∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,2−1=1,解得a=√2;当0<a<1时,√1−a2=a,解得a=√22.(2)解:当k=1时,y=x+m,设A(x1, y1),(x2, y2),由{y=x+m,x2a2+y2=1,即(1+a2)x2+2a2mx+a2m2−a2=0,∴x1+x2=−2a2m1+a2,x1x2=a2m−a21+a2,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=m2−a21+a2. ∵△OAB是以O为直角顶点的直角三角形,∴OA→⋅OB→=0,∴x1x2+y1y2=0,∴a2m−a21+a2+m2−a21+a2=0,∴a2m2−a2+m2−a2=0∴m2(a2+1)=2a2.(3)证明:当a=2时,x2+4y2=4,设A(x 1, y 1),(x 2, y 2), ∵ k OA ⋅k OB =−14,∴y 1x 1⋅y 2x 2=−14,∴ x 1x 2=−4y 1y 2,由{x 2+4y 2=4,y =kx +m , 整理得,(1+4k 2)x 2+8kmx +4m 2−4=0,∴ x 1+x 2=−8km1+4k ,x 1x 2=4m 2−41+4k ,∴ y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+km(x 1+x 2)+m 2 =4m 2k 2−4k 21+4k 2+−8k 2m 21+4k 2+m 2=m 2−4k 21+4k 2,∴4m 2−41+4k =−4×m 2−4k 21+4k ,∴ 2m 2−4k 2=1,∴ |AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2 =√1+k 2⋅√64k 2m 2(1+4k 2)2−16m 2−161+4k 2,=2√1+k 2⋅√4k 2+1−m 21+4k 2=4√1+k 2⋅√m 21+4k 2,∵ O 到直线y =kx +m 的距离d =√1+k2=√m 2√1+k 2,∴ S △OAB =12|AB|d =12=4√1+k 2⋅√m 21+4k √m 2√1+k2=2m 21+4k =1. 【考点】圆锥曲线中的定点与定值问题 椭圆的定义【解析】(1)根据△MF 1F 2是直角三角形,即可OF 1=OM ,分类讨论即可即可求得a 的值方程; (2)将直线方程,代入椭圆方程,根据韦达定理,以及向量的数量积即可求出m 2(a 2+1)=2a 2;(3)将直线方程,代入椭圆方程,根据韦达定理及直线的斜率公式,求得2m 2−4k 2=1.由弦长公式及点到直线的距离公式,求得|AB|及d ,根据三角形的面积公式,化简即可求得△AOB 的面积为定值 【解答】(1)解:∵ M 为椭圆短轴上的一个顶点,且△MF 1F 2是直角三角形,∴ △MF 1F 2为等腰直角三角形, ∴ OF 1=OM ,当a >1时,√a 2−1=1,解得a =√2;当0<a <1时,√1−a 2=a ,解得a =√22. (2)解:当k =1时,y =x +m ,设A(x 1, y 1),(x 2, y 2), 由{y =x +m ,x 2a 2+y 2=1,即(1+a 2)x 2+2a 2mx +a 2m 2−a 2=0,∴ x 1+x 2=−2a 2m 1+a 2,x 1x 2=a 2m−a 21+a 2,∴ y 1y 2=(x 1+m)(x 2+m)=x 1x 2+m(x 1+x 2)+m 2=m 2−a 21+a .∵ △OAB 是以O 为直角顶点的直角三角形, ∴ OA →⋅OB →=0, ∴ x 1x 2+y 1y 2=0, ∴a 2m−a 21+a 2+m 2−a 21+a 2=0,∴ a 2m 2−a 2+m 2−a 2=0 ∴ m 2(a 2+1)=2a 2.(3)证明:当a =2时,x 2+4y 2=4,设A(x 1, y 1),(x 2, y 2), ∵ k OA ⋅k OB =−14,∴ y 1x 1⋅y 2x 2=−14,∴ x 1x 2=−4y 1y 2,由{x 2+4y 2=4,y =kx +m , 整理得,(1+4k 2)x 2+8kmx +4m 2−4=0,∴ x 1+x 2=−8km1+4k 2,x 1x 2=4m 2−41+4k 2,∴ y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+km(x 1+x 2)+m 2 =4m 2k 2−4k 21+4k 2+−8k 2m 21+4k 2+m 2=m 2−4k 21+4k 2,∴ 4m 2−41+4k 2=−4×m 2−4k 21+4k 2,∴ 2m 2−4k 2=1,∴ |AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k2⋅√64k2m2(1+4k2)2−16m2−161+4k2,=2√1+k2⋅√4k2+1−m2 1+4k2=4√1+k2⋅√m21+4k2,∵O到直线y=kx+m的距离d=√1+k2=√m2√1+k2,∴S△OAB=12|AB|d=12=4√1+k2⋅√m21+4k2√m2√1+k2=2m21+4k2=1.如果数列{a n}对于任意n∈N∗,都有a n+2−a n=d,其中d为常数,则称数列{a n}是“间等差数列”,d为“间公差”,若数列{a n}满足a n+a n+1=2n−35,n∈N∗,a1=a(a∈R).(1)求证:数列{a n}是“间等差数列”,并求间公差d;(2)设S n为数列{a n}的前n项和,若S n的最小值为−153,求实数a的取值范围;(3)类似地:非常数列{b n}对于任意n∈N∗,都有=q,其中q为常数,则称数列{b n}是“间等比数列”,q为“间公比”.已知数列{c n}中,满足c1=k(k≠0, k∈Z),c n c n+1=2018⋅()n−1,n∈N∗,试问数列{c n}是否为“间等比数列”,若是,求最大整数k使得对于任意n∈N∗,都有c n>c n+1;若不是,说明理由.【答案】证明:若数列{a n}满足a n+a n+1=2n−35,n∈N∗,则:a n+1+a n+2=2(n+1)−35,两式相减得:a n+2−a n=2.故:数列{a n}是“间等差数列”,公差d=2.(i)当n=2k时,(a1+a2)+(a3+a4)+...+(a n−1+a n),=−33−29+...+(2n−37),=易知:当n=18时,最小值S18=−153.(ii)当n=2k+1时,S n=a1+(a2+a3)+(a4+a5)+...+(a n−1+a n),=a1+(−33)+(−29)+...+(2n−37),=,当n=17时最小,其最小值为S17=a−136,要使其最小值为−153,则:a−136≥−153,解得:a≥−17.易知:c n c n+1=2018⋅()n−1,则:c n+1c n+2=2018⋅()n,两式相除得:,故数列{c n}为“间等比数列”,其间等比为.,易求出数列的通项公式为:,由于:c n>c n+1,则:数列单调递减.那么,奇数项和偶数项都为单调递减,所以:k>0.要使数列为单调递减数列.只需c2m−1>c2m>c2m+1,即:,解得:,所以k的最大值为63.【考点】数列递推式【解析】(1)直接利用定义求出数列为间等差数列.(2)利用分类讨论思想,利用数列的前n项和公式求出数列的和,进一步利用不等量关系求出结果.(3)利用分类讨论思想,进一步求出数列的通项公式,再利用函数的单调性求出k的最大值.【解答】证明:若数列{a n}满足a n+a n+1=2n−35,n∈N∗,则:a n+1+a n+2=2(n+1)−35,两式相减得:a n+2−a n=2.故:数列{a n}是“间等差数列”,公差d=2.(i)当n=2k时,(a1+a2)+(a3+a4)+...+(a n−1+a n),=−33−29+...+(2n−37),=易知:当n=18时,最小值S18=−153.(ii)当n=2k+1时,S n=a1+(a2+a3)+(a4+a5)+...+(a n−1+a n),=a1+(−33)+(−29)+...+(2n−37),=,当n=17时最小,其最小值为S17=a−136,要使其最小值为−153,则:a−136≥−153,解得:a≥−17.易知:c n c n+1=2018⋅()n−1,则:c n+1c n+2=2018⋅()n,两式相除得:,故数列{c n}为“间等比数列”,其间等比为.,易求出数列的通项公式为:,由于:c n>c n+1,则:数列单调递减.那么,奇数项和偶数项都为单调递减,所以:k>0.要使数列为单调递减数列.只需c2m−1>c2m>c2m+1,即:,解得:,所以k的最大值为63.。
2020年上海市高考数学试卷+参考答案+详情解析
2020年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)已知集合A={1,2,4},集合B={2,4,5},则A∩B=.2.(4分)计算:=.3.(4分)已知复数z=1﹣2i(i为虚数单位),则|z|=.4.(4分)已知函数f(x)=x3,f′(x)是f(x)的反函数,则f′(x)=.5.(4分)已知x、y满足,则z=y﹣2x的最大值为.6.(4分)已知行列式=6,则=.7.(5分)已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=.8.(5分)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.9.(5分)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.10.(5分)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C 于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l的方程是.11.(5分)设a∈R,若存在定义域为R的函数f(x)同时满足下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的方程f(x)=a无实数解,则a的取值范围是.12.(5分)已知,,,,…,(k∈N*)是平面内两两互不相等的向量,满足||=1,且|﹣|∈{1,2}(其中i=1,2,j=1,2,…,k),则k的最大值是.二、选择题(本大题共4题,每题5分,共20分)13.(5分)下列等式恒成立的是()A.a2+b2≤2ab B.a2+b2≥﹣2ab C.a+b≥2D.a2+b2≤﹣2ab 14.(5分)已知直线方程3x+4y+1=0的一个参数方程可以是()A.B.C.D.15.(5分)在棱长为10的正方体ABCD﹣A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线相交的面是()A.AA1B1B B.BB1C1C C.CC1D1D D.ABCD 16.(5分)命题p:存在a∈R且a≠0,对于任意的x∈R,使得f(x+a)<f(x)+f(a);命题q1:f(x)单调递减且f(x)>0恒成立;命题q2:f(x)单调递增,存在x0<0使得f(x0)=0,则下列说法正确的是()A.只有q1是p的充分条件B.只有q2是p的充分条件C.q1,q2都是p的充分条件D.q1,q2都不是p的充分条件三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转至ABC1D1,求线段CD1与平面ABCD所成的角.18.(14分)已知函数f(x)=sinωx,ω>0.(1)f(x)的周期是4π,求ω,并求f(x)=的解集;(2)已知ω=1,g(x)=f2(x)+f(﹣x)f(﹣x),x∈[0,],求g(x)的值域.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为v=,x为道路密度,q为车辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求车辆密度q的最大值.20.(16分)已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=,求b的值;(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示•,并求•的取值范围.21.(18分)已知数列{a n}为有限数列,满足|a1﹣a2|≤|a1﹣a3|≤…≤|a1﹣a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m﹣1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.2020年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)已知集合A={1,2,4},集合B={2,4,5},则A∩B={2,4} .【分析】由交集的定义可得出结论.【解答】解:因为A={1,2,3},B={2,4,5},则A∩B={2,4}.故答案为:{2,4}.【点评】本题考查交集的定义,属于基础题.2.(4分)计算:=.【分析】由极限的运算法则和重要数列的极限公式,可得所求值.【解答】解:====,故答案为:.【点评】本题考查数列的极限的求法,注意运用极限的运算性质,考查运算能力,是一道基础题.3.(4分)已知复数z=1﹣2i(i为虚数单位),则|z|=.【分析】由已知直接利用复数模的计算公式求解.【解答】解:由z=1﹣2i,得|z|=.故答案为:.【点评】本题考查复数模的求法,是基础的计算题.4.(4分)已知函数f(x)=x3,f′(x)是f(x)的反函数,则f′(x)=x,x∈R.【分析】由已知求解x,然后把x与y互换即可求得原函数的反函数.【解答】解:由y=f(x)=x3,得x=,把x与y互换,可得f(x)=x3的反函数为f﹣1(x)=.故答案为:.【点评】本题考查函数的反函数的求法,注意反函数的定义域是原函数的值域,是基础题.5.(4分)已知x、y满足,则z=y﹣2x的最大值为﹣1 .【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图阴影部分,化目标函数z=y﹣2x为y=2x+z,由图可知,当直线y=2x+z过A时,直线在y轴上的截距最大,联立,解得,即A(1,1).z有最大值为1﹣2×1=﹣1.故答案为:﹣1.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.6.(4分)已知行列式=6,则= 2 .【分析】直接利用行列式的运算法则求解即可.【解答】解:行列式=6,可得3=6,解得=2.故答案为:2.【点评】本题考查行列式的应用,代数余子式的应用,是基本知识的考查.7.(5分)已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=36 .【分析】分别由题意结合中位数,平均数计算方法得a+b=13,=3,解得a,b,再算出答案即可.【解答】解:因为四个数的平均数为4,所以a+b=4×4﹣1﹣2=13,因为中位数是3,所以=3,解得a=4,代入上式得b=13﹣4=9,所以ab=36,故答案为:36.【点评】本题考查样本的数字特征,中位数,平均数,属于基础题.8.(5分)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.【分析】根据等差数列的通项公式可由a1+a10=a9,得a1=﹣d,在利用等差数列前n 项和公式化简即可得出结论.【解答】解:根据题意,等差数列{a n}满足a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=﹣d,所以====.故答案为:.【点评】本题考查等差数列的前n项和与等差数列通项公式的应用,注意分析a1与d的关系,属于基础题.9.(5分)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有180 种安排情况.【分析】根据题意,由组合公式得共有排法,计算即可得出答案.【解答】解:根据题意,可得排法共有=180种.故答案为:180.【点评】本题考查组合数公式,解题关键是正确理解题意并熟悉组合数公式,属于基础题.10.(5分)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l的方程是x+y﹣1=0 .【分析】求出椭圆的右焦点坐标,利用已知条件求出直线的斜率,然后求解直线方程.【解答】解:椭圆C:+=1的右焦点为F(1,0),直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,可知直线l的斜率为﹣1,所以直线l的方程是:y=﹣(x﹣1),即x+y﹣1=0.故答案为:x+y﹣1=0.【点评】本题考查椭圆的简单性质的应用直线与直线的对称关系的应用,直线方程的求法,是基本知识的考查.11.(5分)设a∈R,若存在定义域为R的函数f(x)同时满足下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的方程f(x)=a无实数解,则a的取值范围是(﹣∞,0)∪(0,1)∪(1,+∞).【分析】根据条件(1)可知x0=0或1,进而结合条件(2)可得a的范围【解答】解:根据条件(1)可得x0=0或1,又因为关于x的方程f(x)=a无实数解,所以a≠0或1,故a∈(﹣∞,0)∪(0,1)∪(1,+∞),故答案为:(﹣∞,0)∪(0,1)∪(1,+∞).【点评】本题考查函数零点与方程根的关系,属于基础题.12.(5分)已知,,,,…,(k∈N*)是平面内两两互不相等的向量,满足||=1,且|﹣|∈{1,2}(其中i=1,2,j=1,2,…,k),则k的最大值是 6 .【分析】设,,结合向量的模等于1和2画出图形,由圆的交点个数即可求得k的最大值.【解答】解:如图,设,,由||=1,且|﹣|∈{1,2},分别以A1,A2为圆心,以1和2为半径画圆,其中任意两圆的公共点共有6个.故满足条件的k的最大值为6.故答案为:6.【点评】本题考查两向量的线性运算,考查向量模的求法,正确理解题意是关键,是中档题.二、选择题(本大题共4题,每题5分,共20分)13.(5分)下列等式恒成立的是()A.a2+b2≤2ab B.a2+b2≥﹣2ab C.a+b≥2D.a2+b2≤﹣2ab 【分析】利用(a+b)2≥0恒成立,可直接得到a2+b2≥﹣2ab成立,通过举反例可排除ACD.【解答】解:A.显然当a<0,b>0时,不等式a2+b2≤2ab不成立,故A错误;B.∵(a+b)2≥0,∴a2+b2+2ab≥0,∴a2+b2≥﹣2ab,故B正确;C.显然当a<0,b<0时,不等式a+b≥2不成立,故C错误;D.显然当a>0,b>0时,不等式a2+b2≤﹣2ab不成立,故D错误.故选:B.【点评】本题考查了基本不等式的应用,考查了转化思想,属基础题.14.(5分)已知直线方程3x+4y+1=0的一个参数方程可以是()A.B.C.D.【分析】选项的参数方程,化为普通方程,判断即可.【解答】解:的普通方程为:,即4x+3y﹣1=0,不正确;的普通方程为:,即3x+4y+1=0,正确;的普通方程为:,即4x+3y﹣1=0,不正确;的普通方程为:,即3x+4y﹣7=0,不正确;故选:B.【点评】本题考查直线的参数方程与普通方程的互化,是基本知识的考查.15.(5分)在棱长为10的正方体ABCD﹣A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线相交的面是()A.AA1B1B B.BB1C1C C.CC1D1D D.ABCD【分析】由图可知点P在△AA1D内,过P作EF∥A1D,且EF∩AA1于E,EF∩AD于F,在平面ABCD中,过F作FG∥CD,交BC于G,由平面与平面平行的判定可得平面EFG ∥平面A1DC,连接AC,交FG于M,连接EM,再由平面与平面平行的性质得EM∥A1C,在△EFM中,过P作PN∥EM,且PN∩FM于N,可得PN∥A1C,由此说明过点P且与A1C平行的直线相交的面是ABCD.【解答】解:如图,由点P到A1D1的距离为3,P到AA1的距离为2,可得P在△AA1D内,过P作EF∥A1D,且EF∩AA1于E,EF∩AD于F,在平面ABCD中,过F作FG∥CD,交BC于G,则平面EFG∥平面A1DC.连接AC,交FG于M,连接EM,∵平面EFG∥平面A1DC,平面A1AC∩平面A1DC=A1C,平面A1AC∩平面EFM=EM,∴EM∥A1C.在△EFM中,过P作PN∥EM,且PN∩FM于N,则PN∥A1C.∵线段FM在四边形ABCD内,N在线段FM上,∴N在四边形ABCD内.∴过点P且与A1C平行的直线相交的面是ABCD.故选:D.【点评】本题考查空间中直线与直线位置关系的判定及应用,考查空间想象能力与思维能力,是中档题.16.(5分)命题p:存在a∈R且a≠0,对于任意的x∈R,使得f(x+a)<f(x)+f(a);命题q1:f(x)单调递减且f(x)>0恒成立;命题q2:f(x)单调递增,存在x0<0使得f(x0)=0,则下列说法正确的是()A.只有q1是p的充分条件B.只有q2是p的充分条件C.q1,q2都是p的充分条件D.q1,q2都不是p的充分条件【分析】对于命题q1:当a>0时,结合f(x)单调递减,可推出f(x+a)<f(x)<f(x)+f(a),命题q1是命题p的充分条件.对于命题q2:当a=x0<0时,f(a)=f(x0)=0,结合f(x)单调递增,推出f(x+a)<f(x),进而f(x+a)<f(x)+f (a),命题q2都是p的充分条件.【解答】解:对于命题q1:当f(x)单调递减且f(x)>0恒成立时,当a>0时,此时x+a>x,又因为f(x)单调递减,所以f(x+a)<f(x)又因为f(x)>0恒成立时,所以f(x)<f(x)+f(a),所以f(x+a)<f(x)+f(a),所以命题q1⇒命题p,对于命题q2:当f(x)单调递增,存在x0<0使得f(x0)=0,当a=x0<0时,此时x+a<x,f(a)=f(x0)=0,又因为f(x)单调递增,所以f(x+a)<f(x),所以f(x+a)<f(x)+f(a),所以命题p2⇒命题p,所以q1,q2都是p的充分条件,故选:C.【点评】本题考查命题的真假,及函数的单调性,关键是分析不等式之间关系,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转至ABC1D1,求线段CD1与平面ABCD所成的角.【分析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,依次求出圆面和矩形的面积,相加即可;(2)先利用线面垂直的判定定理证明AD1⊥平面ADB,连接CD1,则∠D1CA即为线段CD1与平面ABCD所成的角,再利用三角函数的知识求出cos∠D1CA即可.【解答】解:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,∴S=2×π×12+2π×1=4π.故该圆柱的表面积为4π.(2)∵正方形ABC1D1,∴AD1⊥AB,又∠DAD1=,∴AD1⊥AD,∵AD∩AB=A,且AD、AB⊂平面ADB,∴AD1⊥平面ADB,即D1在面ADB上的投影为A,连接CD1,则∠D1CA即为线段CD1与平面ABCD所成的角,而cos∠D1CA==,∴线段CD1与平面ABCD所成的角为arccos.【点评】本题考查圆柱的表面积、空间线面夹角问题,熟练掌握线面垂直的判定定理是解题的关键,考查学生的空间立体感和运算能力,属于基础题.18.(14分)已知函数f(x)=sinωx,ω>0.(1)f(x)的周期是4π,求ω,并求f(x)=的解集;(2)已知ω=1,g(x)=f2(x)+f(﹣x)f(﹣x),x∈[0,],求g(x)的值域.【分析】(1)直接利用正弦型函数的性质的应用求出结果.(2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.【解答】解:(1)由于f(x)的周期是4π,所以ω=,所以f(x)=sin.令sin,故或,整理得或.故解集为{x|或,k∈Z}.(2)由于ω=1,所以f(x)=sin x.所以g(x)===﹣=﹣sin(2x+).由于x∈[0,],所以.,故,故.所以函数g(x)的值域为[﹣.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为v=,x为道路密度,q为车辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求车辆密度q的最大值.【分析】(1)易知v越大,x越小,所以v=f(x)是单调递减函数,k>0,于是只需令,解不等式即可;(2)把x=80,v=50代入v=f(x)的解析式中,求出k的值,利用q=vx可得到q 关于x的函数关系式,分段判断函数的单调性,并求出各自区间上q的最大值,取较大者即可.【解答】解:(1)∵v=,∴v越大,x越小,∴v=f(x)是单调递减函数,k>0,当40≤x≤80时,v最大为85,于是只需令,解得x>3,故道路密度x的取值范围为(3,40).(2)把x=80,v=50代入v=f(x)=﹣k(x﹣40)+85中,得50=﹣k•40+85,解得k=.∴q=vx=,当0<x<40时,q单调递增,q<100×40﹣135×≈4000;当40≤x≤80时,q是关于x的二次函数,开口向下,对称轴为x=,此时q有最大值,为>4000.故车辆密度q的最大值为.【点评】本题考查分段函数的实际应用,考查学生分析问题和解决问题的能力,以及运算能力,属于中档题.20.(16分)已知双曲线Γ1:﹣=1与圆Γ2:x2+y2=4+b2(b>0)交于点A(x A,y A)(第一象限),曲线Γ为Γ1、Γ2上取满足x>|x A|的部分.(1)若x A=,求b的值;(2)当b=,Γ2与x轴交点记作点F1、F2,P是曲线Γ上一点,且在第一象限,且|PF1|=8,求∠F1PF2;(3)过点D(0,+2)斜率为﹣的直线l与曲线Γ只有两个交点,记为M、N,用b表示•,并求•的取值范围.【分析】(1)联立曲线Γ1与曲线Γ2的方程,以及x A=,解方程可得b;(2)由双曲线的定义和三角形的余弦定理,计算可得所求角;(3)设直线l:y=﹣x+,求得O到直线l的距离,判断直线l与圆的关系:相切,可设切点为M,考虑双曲线的渐近线方程,只有当y A>2时,直线l才能与曲线Γ有两个交点,解不等式可得b的范围,由向量投影的定义求得•,进而得到所求范围.【解答】解:(1)由x A=,点A为曲线Γ1与曲线Γ2的交点,联立,解得y A=,b=2;(2)由题意可得F1,F2为曲线Γ1的两个焦点,由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=8,2a=4,所以|PF2|=8﹣4=4,因为b=,则c==3,所以|F1F2|=6,在△PF1F2中,由余弦定理可得cos∠F1PF2===,由0<∠F1PF2<π,可得∠F1PF2=arccos;(3)设直线l:y=﹣x+,可得原点O到直线l的距离d==,所以直线l是圆的切线,设切点为M,所以k OM=,并设OM:y=x与圆x2+y2=4+b2联立,可得x2+x2=4+b2,可得x=b,y=2,即M(b,2),注意直线l与双曲线的斜率为负的渐近线平行,所以只有当y A>2时,直线l才能与曲线Γ有两个交点,由,可得y A2=,所以有4<,解得b2>2+2或b2<2﹣2(舍去),因为为在上的投影可得,•=4+b2,所以•=4+b2>6+2,则•∈(6+2,+∞).【点评】本题考查双曲线与圆的定义和方程、性质,考查直线和圆的方程、双曲线的方程的联立,以及向量的数量积的几何意义,考查方程思想和化简运算能力,属于中档题.21.(18分)已知数列{a n}为有限数列,满足|a1﹣a2|≤|a1﹣a3|≤…≤|a1﹣a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m﹣1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【分析】(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P 即可;(2)假设公比q的等比数列满足性质p,可得:|a1﹣a1q n|≥|a1﹣a1q n﹣1|,推出(q﹣1)q n﹣1[q n﹣1(q+1)﹣2]≥0,通过q≥1,0<q≤1时,﹣1≤q<0时:q<﹣1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m﹣1时,以及P∈{3,4,…,m﹣3,m﹣2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.【解答】解:(1)对于数列3,2,5,1,有|2﹣3|=1,|5﹣3|=2,|1﹣3|=2,满足题意,该数列满足性质P;对于第二个数列4、3、2、5、1,|3﹣4|=1,|2﹣4|=2,|5﹣4|=1.不满足题意,该数列不满足性质P.(2)由题意:|a1﹣a1q n|≥|a1﹣a1q n﹣1|,可得:|q n﹣1|≥|q n﹣1﹣1|,n∈{2,3,…,9},两边平方可得:q2n﹣2q n+1≥q2n﹣2﹣2q n﹣1+1,整理可得:(q﹣1)q n﹣1[q n﹣1(q+1)﹣2]≥0,当q≥1时,得q n﹣1(q+1)﹣2≥0此时关于n恒成立,所以等价于n=2时,q(q+1)﹣2≥0,所以,(q+2)(q﹣1)≥0,所以q≤﹣2,或q≥1,所以取q≥1,当0<q≤1时,得q n﹣1(q+1)﹣2≤0,此时关于n恒成立,所以等价于n=2时,q (q+1)﹣2≤0,所以(q+2)(q﹣1)≤0,所以﹣2≤q≤1,所以取0<q≤1.当﹣1≤q<0时:q n﹣1[q n﹣1(q+1)﹣2]≤0,当n为奇数时,得q n﹣1(q+1)﹣2≤0,恒成立,当n为偶数时,q n﹣1(q+1)﹣2≥0,不恒成立;故当﹣1≤q<0时,矛盾,舍去.当q<﹣1时,得q n﹣1[q n﹣1(q+1)﹣2]≤0,当n为奇数时,得q n﹣1(q+1)﹣2≤0,恒成立,当n为偶数时,q n﹣1(q+1)﹣2≥0,恒成立;故等价于n=2时,q(q+1)﹣2≥0,所以(q+2)(q﹣1)≥0,所以q≤﹣2或q≥1,所以取q≤﹣2,综上q∈(﹣∞,﹣2]∪(0,+∞).(3)设a1=p,p∈{3,4,…,m﹣3,m﹣2},因为a1=p,a2可以取p﹣1,或p+1,a3可以取p﹣2,或p+2,如果a2或a3取了p﹣3或p+3,将使{a n}不满足性质P;所以{a n}的前5项有以下组合:①a1=p,a2=p﹣1;a3=p+1;a4=p﹣2;a5=p+2;②a1=p,a2=p﹣1;a3=p+1;a4=p+2;a5=p﹣2;③a1=p,a2=p+1;a3=p﹣1;a4=p﹣2;a5=p+2;④a1=p,a2=p+1;a3=p﹣1;a4=p+2;a5=p﹣2;对于①,b1=p﹣1,|b2﹣b1|=2,|b3﹣b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p﹣1,|b2﹣b1|=2,|b3﹣b1|=3,|b4﹣b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2﹣b1|=2,|b3﹣b1|=3,|b4﹣b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2﹣b1|=2,|b3﹣b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m﹣3,m﹣2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m﹣1,m满足题意.当p=m时,有数列{a n}:m,m﹣,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m﹣1,m满足题意.当p=m﹣1时,有数列{a n}:m﹣1,m,m﹣2,m﹣3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【点评】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.。
2019-2020年高考数学试卷题含答案
xx 上海市学业水平考试暨春季高考数学试卷(有答案)一. 填空题(本大题共12题,每题3分,共36分)1.复数(为虚数单位)的实部是__________________. 2.若,则_________________. 3.直线与直线的夹角为__________________. 4. 函数的定义域为___________________.5. 三阶行列式135400121--中,元素的代数余子式的值为_____________________. 6. 函数的反函数的图像经过点,则实数______________.7. 在中,若,,,则_______________.8. 个人排成一排照相,不同排列方式的种数为____________________(结果用数值表示). 9. 无穷等比数列的首项为,公比为,则的各项的和为________________.10. 若(为虚数单位)是关于的实系数一元二次方程的一个虚根,则__________________. 11. 函数在区间上的最小值为,最大值为,则实数的取值范围是___________________. 12. 在平面直角坐标系中,点是圆上的两个动点,且满足,则的最小值为____________________.二. 选择题(本大题共12题,每题3分,共36分)13. 满足且的角属于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 14. 半径为的球的表面积为( )(A ) (B ) (C ) (D )15. 在的二项展开式中,项的系数为( )(A ) (B ) (C ) (D )16. 幂函数的大致图像是( )17. 已知向量,,则向量在向量方向上的投影为( )(A ) (B ) (C ) (D )18. 设直线与平面平行,直线在平面上,那么( )(A )直线平行于直线 (B )直线与直线异面(C )直线与直线没有公共点 (D )直线与直线不垂直19. 在用数学归纳法证明等式212322n n n ++++=+ 的第步中,假设时原等式成立,那么在时需要证明的等式为( )(A )2212322(1)22(1)(1)k k k k k k ++++++=+++++ (B )212322(1)2(1)(1)k k k k ++++++=+++ (C )221232212(1)22(1)(1)k k k k k k k ++++++++=+++++ (D )21232212(1)2(1)(1)k k k k k ++++++++=+++20. 关于双曲线与的焦距和渐近线,下列说法正确的是( )(A )焦距相等,渐近线相同 (B )焦距相等,渐近线不相同(C )焦距不相等,渐近线相同 (D )焦距不相等,渐近线不相同21. 设函数的定义域为,则“”是“为奇函数”的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件22. 下列关于实数的不等式中,不恒成立的是( )(A ) (B )(C ) (D )23. 设单位向量与既不平行也不垂直,对非零向量、有结论:○1若,则;○2若,则. 关于以上两个结论,正确的判断是( )(A )○1成立,○2不成立 (B )○1不成立,○2成立(C )○1成立,○2成立 (D )○1不成立,○2不成立24. 对于椭圆22(,)22: 1 (,0,)a b x y C a b a b a b+=>≠. 若点满足. 则称该点在椭圆内,在平面直角坐标系中,若点在过点的任意椭圆内或椭圆上,则满足条件的点构成的图形为( )(A )三角形及其内部 (B )矩形及其内部 (C )圆及其内部 (D )椭圆及其内部三. 解答题(本大题共5题,共8+8+8+12+12=48分)25. (本题满分8分)如图,已知正三棱柱的体积为,底面边长为,求异面直线与所成的角的大小.26.(本题满分8分)已知函数,求的最小正周期及最大值,并指出取得最大值时的值.27.(本题满分8分)如图,汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点处. 已知灯口直径是,灯深,求灯泡与反射镜的顶点的距离.28.(本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.已知数列是公差为的等差数列.(1)若成等比数列,求的值;(2)设,数列的前项和为. 数列满足,记,求数列的最小项(即对任意成立).29.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.对于函数,记集合.(1)设,,求;(2)设,,,如果.求实数的取值范围.2019-2020年高考数学试卷题含答案一. 选择题:(9分)1.若函数是偶函数,则的一个值是 ( )(A) (B) (C) (D)2.在复平面上,满足的复数的所对应的轨迹是( )(A) 两个点 (B)一条线段 (C)两条直线 (D) 一个圆3.已知函数的图像是折线,如图,其中(1,2),(2,1),(3,2),(4,1),(5,2)A B C D E ,若直线与的图像恰有四个不同的公共点,则的取值范围是( )(A) (B) (C) (D)二. 填空题:(9分)4.椭圆的长半轴的长为_________________5.已知圆锥的母线长为10,母线与轴的夹角为,则该圆锥的侧面积为__________________6.小明用数列记录某地区xx12月份31天中每天是否下过雨,方法为:当第天下过雨时,记,当第天没下过雨时,记,他用数列记录该地区该月每天气象台预报是否有雨,方法为:当预报第天有雨时,记,当预报第天没有雨时,记记录完毕后,小明计算出112233313125a b a b a b a b ++++=,那么该月气象台预报准确的总天数为______________________三. 解答题:(12分)对于数列与,若对数列的每一项,均有或,则称数列是与的一个“并数列”。
2020年上海市高考数学试卷-含详细解析
2020年上海市高考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共4小题,共20.0分) 1. 下列等式恒成立的是( )A. a 2+b 2≤2abB. a 2+b 2≥−2abC. a +b ≥2√|ab|D. a 2+b 2≤−2ab 2. 已知直线方程3x +4y +1=0的一个参数方程可以是( )A. { x =1+3ty =−1−4tB. {x =1−4ty =−1+3tC. {x =1−3ty =−1+4tD. {x =1+4ty =1−3t3. 在棱长为10的正方体ABCD −A 1B 1C 1D 1中,P 为左侧面ADD 1A 1上一点,已知点P到A 1D 1的距离为3,P 到AA 1的距离为2,则过点P 且与A 1C 平行的直线交正方体于P,Q 两点,则Q 点所在的平面是( )A. AA 1B 1BB. BB 1C 1CC. CC 1D 1DD. ABCD4. 命题p :存在a ∈R 且a ≠0,对于任意的x ∈R ,使得f(x +a)<f(x)+f(a); 命题q 1:f(x)单调递减且f(x)>0恒成立; 命题q 2:f(x)单调递增,存在x 0<0使得f(x 0)=0, 则下列说法正确的是( )A. 只有q 1是p 的充分条件B. 只有q 2是p 的充分条件C. q 1,q 2都是p 的充分条件D. q 1,q 2都不是p 的充分条件二、填空题(本大题共12小题,共60.0分)5. 已知集合A ={1,2,4},集合B ={2,4,5},则A ∩B = .6. 计算:lim n→∞ n+13n−1= 7. 已知复数z =1−2i(i 为虚数单位),则|z|= .8. 已知函数f(x)=x 3,f′(x)是f(x)的反函数,则f′(x)= 。
9. 已知x 、y 满足{x +y −2≥0x +2y −3≤0y ≥0,则z =y −2x 的最大值为10. 已知行列式|1ab2cd 30|=6,则|ab cd|=11.已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=.12.已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则a1+a2+⋯+a9a10=.13.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.14.已知椭圆C:x24+y23=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第二象限),若点Q关于x轴对称点为Q′,且满足PQ⊥FQ′,求直线l 的方程是.15.设a∈R,若存在定义域为R的函数f(x)同时满足下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的方程f(x)=a无实数解,则a的取值范围是.16.已知a1⃗⃗⃗⃗ ,a2⃗⃗⃗⃗ ,b1⃗⃗⃗ ,b2⃗⃗⃗⃗ ,…,b k⃗⃗⃗⃗ (k∈N∗)是平面内两两互不相等的向量,满足|a1⃗⃗⃗⃗ −a2⃗⃗⃗⃗ |=1,且|a i⃗⃗⃗ −b j⃗⃗⃗ |∈{1,2}(其中i=1,2,j=1,2,…,k),则k的最大值是.三、解答题(本大题共5小题,共60.0分)17.已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转π2至ABC1D1,求线段CD1与平面ABCD所成的角.18.已知函数f(x)=sinωx,ω>0.(1)f(x)的周期是4π,求ω,并求f(x)=12的解集;(2)已知ω=1,g(x)=f 2(x)+√3f(−x)f(π2−x),x ∈[0,π4],求g(x)的值域.19. 在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为v =qx ,x 为道路密度,q 为车辆密度.v =f(x)={100−135⋅(13)x ,0<x <40−k(x −40)+85,40≤x ≤80.(1)若交通流量v >95,求道路密度x 的取值范围;(2)已知道路密度x =80,交通流量v =50,求车辆密度q 的最大值.20. 已知双曲线Γ1:x 24−y 2b 2=1与圆Γ2:x 2+y 2=4+b 2(b >0)交于点A(x A ,y A )(第一象限),曲线Γ为Γ1、Γ2上取满足x >|x A |的部分. (1)若x A =√6,求b 的值;(2)当b =√5,Γ2与x 轴交点记作点F 1、F 2,P 是曲线Γ上一点,且在第一象限,且|PF 1|=8,求∠F 1PF 2; (3)过点D(0,b 22+2)斜率为−b2的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ ,并求OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ 的取值范围.21.已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.答案和解析1.【答案】B【解析】【分析】本题考查了基本不等式的应用,考查了转化思想,属基础题.利用(a +b)2≥0恒成立,可直接得到a 2+b 2≥−2ab 成立,通过举反例可排除ACD . 【解答】解:A.显然当a <0,b >0时,不等式a 2+b 2≤2ab 不成立,故A 错误;B .∵(a +b)2≥0,∴a 2+b 2+2ab ≥0,∴a 2+b 2≥−2ab ,故B 正确,D 错误; C.显然当a <0,b <0时,不等式a +b ≥2√|ab|不成立,故C 错误; 故选:B .2.【答案】B【解析】【分析】本题考查直线的参数方程与普通方程的互化,是基本知识的考查. 选项的参数方程,化为普通方程,判断即可. 【解答】解:{ x =1+3ty =−1−4t 的普通方程为:x−1y+1=−34,即4x +3y −1=0,不正确; {x =1−4t y =−1+3t的普通方程为:x−1y+1=−43,即3x +4y +1=0,正确; {x =1−3t y =−1+4t的普通方程为:x−1y+1=−34,即4x +3y −1=0,不正确; {x =1+4t y =1−3t的普通方程为:x−1y−1=−43,即3x +4y −7=0,不正确; 故选:B .3.【答案】D【解析】【分析】本题考查空间中直线与直线位置关系的判定及应用,考查空间想象能力与思维能力,是中档题. 【解答】 解:如图,由点P到A1D1的距离为3,P到AA1的距离为2,可得P在△AA1D内,过P作EF//A1D,且EF∩AA1于E,EF∩AD于F,在平面ABCD中,过F作FG//CD,交BC于G,则平面EFG//平面A1DC.连接AC,交FG于M,连接EM,∵平面EFG//平面A1DC,平面A1AC∩平面A1DC=A1C,平面A1AC∩平面EFM=EM,∴EM//A1C.在ΔEFM中,过P作PN//EM,且PN∩FM于N,则PN//A1C.∵线段FM在四边形ABCD内,N在线段FM上,∴N在四边形ABCD内.∴点N即为过点P且与A1C平行的直线与正方体的交点,即与点Q重合∴点Q在平面ABCD内故选:D.4.【答案】C【解析】【分析】本题考查命题的真假,及函数的单调性,关键是分析不等式之间关系,属于中档题.对于命题q1:当a>0时,结合f(x)单调递减,可推出f(x+a)<f(x)<f(x)+f(a),命题q1是命题p的充分条件.对于命题q2:当a=x0<0时,f(a)=f(x0)=0,结合f(x)单调递增,推出f(x+a)<f(x),进而f(x+a)<f(x)+f(a),命题q2都是p的充分条件.【解答】解:对于命题q1:当f(x)单调递减且f(x)>0恒成立时,当a>0时,此时x+a>x,又因为f(x)单调递减,所以f(x+a)<f(x)又因为f(x)>0恒成立时,所以f(x)<f(x)+f(a),所以f(x+a)<f(x)+f(a),所以命题q1⇒命题p,对于命题q2:当f(x)单调递增,存在x0<0使得f(x0)=0,当a=x0<0时,此时x+a<x,f(a)=f(x0)=0,又因为f(x)单调递增,所以f(x+a)<f(x),所以f(x+a)<f(x)+f(a),所以命题p2⇒命题p,所以q1,q2都是p的充分条件,故选:C.5.【答案】{2,4}【解析】【分析】本题考查交集及其运算,属于基础题.由交集的定义可得出结论.【解答】解:因为A={1,2,3},B={2,4,5},则A∩B={2,4}.故答案为:{2,4}.6.【答案】13【解析】【分析】本题考查数列的极限的求法,注意运用极限的运算性质,考查运算能力,是一道基础题.由极限的运算法则和重要数列的极限公式,可得所求值.【解答】解:,故答案为:13.7.【答案】√5【解析】【分析】本题考查复数模的求法,属于基础题. 由已知直接利用复数模的计算公式求解. 【解答】解:由z =1−2i ,得|z|=√12+(−2)2=√5. 故答案为:√5.8.【答案】√x 3【解析】【分析】本题考查函数的反函数的求法,注意反函数的定义域是原函数的值域,是基础题. 由已知求解x ,然后把x 与y 互换即可求得原函数的反函数. 【解答】解:由y =f(x)=x 3,得x =√y 3,把x 与y 互换,可得f(x)=x 3的反函数为f −1(x)=√x 3. 故答案为:√x 3.9.【答案】−1【解析】【分析】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案. 【解答】解:由约束条件{x +y −2≥0x +2y −3≤0y ≥0作出可行域如图阴影部分,化目标函数z =y −2x 为y =2x +z ,由图可知,当直线y =2x +z 过A 时,直线在y 轴上的截距最大, 联立{x +y −2=0x +2y −3=0,解得{x =1y =1,即A(1,1). z 有最大值为1−2×1=−1. 故答案为:−1.10.【答案】2【解析】【分析】本题考查行列式的应用,代数余子式的应用,是基本知识的考查. 直接利用行列式的运算法则求解即可. 【解答】 解:行列式|1ab2cd 300|=6, 可得3|ab cd |=6,解得|a bcd|=2. 故答案为:2.11.【答案】36【解析】【分析】本题考查样本的数字特征,中位数,平均数,属于基础题. 分别由题意结合中位数,平均数计算方法得a +b =13,2+a 2=3,解得a ,b ,再算出答案即可.【解答】解:因为四个数的平均数为4,所以a +b =4×4−1−2=13,因为中位数是3,所以2+a 2=3,解得a =4,代入上式得b =13−4=9,所以ab =36, 故答案为:36.12.【答案】278【解析】【分析】本题考查等差数列的前n 项和与等差数列通项公式的应用,注意分析a 1与d 的关系,属于基础题.根据等差数列的通项公式可由a 1+a 10=a 9,得a 1=−d ,在利用等差数列前n 项和公式化简a 1+a 2+⋯+a 9a 10即可得出结论.【解答】解:根据题意,等差数列{a n }满足a 1+a 10=a 9,即a 1+a 1+9d =a 1+8d ,变形可得a 1=−d , 所以a 1+a 2+⋯+a 9a 10=9a 1+9×8d 2a 1+9d=9a 1+36d a 1+9d=−9d+36d −d+9d=278.故答案为:278.13.【答案】180【解析】【分析】本题考查组合数公式,解题关键是正确理解题意并熟悉组合数公式,属于基础题.根据题意,由组合公式得共有C 61C 51C 42排法,计算即可得出答案. 【解答】解:根据题意,可得排法共有C 61C 51C 42=180种. 故答案为:180.14.【答案】x +y −1=0【解析】【分析】本题考查椭圆的简单性质的应用直线与直线的对称关系的应用,直线方程的求法,是基本知识的考查.求出椭圆的右焦点坐标,利用已知条件求出直线的斜率,然后求解直线方程. 【解答】 解:椭圆C:x 24+y 23=1的右焦点为F(1,0),直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限), 若点Q 关于x 轴对称点为Q′,且满足PQ ⊥FQ′,可知直线l 的斜率为−1,所以直线l 的方程是:y =−(x −1), 即x +y −1=0. 故答案为:x +y −1=0.15.【答案】(−∞,0)∪(0,1)∪(1,+∞)【解析】【分析】本题考查函数零点与方程根的关系,属于中档题.根据条件(1)可知x 0=0或1,进而结合条件(2)可得a 的范围. 【解答】解:根据条件(1)可得x 0=0或1,又因为关于x 的方程f(x)=a 无实数解,所以a ≠0或1, 故a ∈(−∞,0)∪(0,1)∪(1,+∞), 故答案为:(−∞,0)∪(0,1)∪(1,+∞).16.【答案】6【解析】【分析】本题考查两向量的线性运算,考查向量模的求法,正确理解题意是关键,是中档题. 设OA 1⃗⃗⃗⃗⃗⃗⃗⃗ =a 1⃗⃗⃗⃗ ,OA 2⃗⃗⃗⃗⃗⃗⃗⃗ =a 2⃗⃗⃗⃗ ,结合向量的模等于1和2画出图形,由圆的交点个数即可求得k 的最大值.【解答】解:如图,设OA 1⃗⃗⃗⃗⃗⃗⃗⃗ =a 1⃗⃗⃗⃗ ,OA 2⃗⃗⃗⃗⃗⃗⃗⃗ =a 2⃗⃗⃗⃗ ,由|a1⃗⃗⃗⃗ −a2⃗⃗⃗⃗ |=1,且|a i⃗⃗⃗ −b j⃗⃗⃗ |∈{1,2},分别以A1,A2为圆心,以1和2为半径画圆,其中任意两圆的公共点共有6个.故满足条件的k的最大值为6.故答案为:6.17.【答案】解:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,∴S=2×π×12+2π×1=4π.故该圆柱的表面积为4π.(2)∵正方形ABC1D1,∴AD1⊥AB,又∠DAD1=π2,∴AD1⊥AD,∵AD∩AB=A,且AD、AB⊂平面ADB,∴AD1⊥平面ADB,即D1在面ADB上的投影为A,连接CD1,则∠D1CA即为线段CD1与平面ABCD所成的角,而cos∠D1CA=ACCD1=√2√3=√63,∴线段CD1与平面ABCD所成的角为arccos√63.【解析】本题考查圆柱的表面积、空间线面夹角问题,熟练掌握线面垂直的判定定理是解题的关键,考查学生的空间立体感和运算能力,属于中档题.(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,依次求出圆面和矩形的面积,相加即可;(2)先利用线面垂直的判定定理证明AD1⊥平面ADB,连接CD1,则∠D1CA即为线段CD1与平面ABCD所成的角,再利用三角函数的知识求出cos∠D1CA即可.18.【答案】解:(1)由于f(x)的周期是4π,所以ω=2π4π=12,所以f(x)=sin12x.令sin12x=12,故12x=2kπ+π6或2kπ+5π6,整理得x=4kπ+π3或x=4kπ+5π3.故解集为{x|x=4kπ+π3或x=4kπ+5π3,k∈Z}.(2)由于ω=1,所以f(x)=sinx.所以g(x)=sin2x+√3sin(−x)sin(π2−x)=1−cos2x2−√32sin2x=−√32sin2x−12cos2x+1 2=12−sin(2x+π6).由于x∈[0,π4],所以π6≤2x+π6≤2π3.1 2≤sin(2x+π6)≤1,故−1≤−sin(2x+π6)≤−12,故−12≤g(x)≤0.所以函数g(x)的值域为[−12,0].【解析】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.(1)直接利用正弦型函数的性质的应用求出结果.(2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.19.【答案】解:(1)∵v=qx,∴v越大,x越小,∴v=f(x)是单调递减函数,k>0,当40≤x ≤80时,v 最大为85,于是只需令100−135⋅(13)x >95,解得x >3, 故道路密度x 的取值范围为(3,40).(2)把x =80,v =50代入v =f(x)=−k(x −40)+85中, 得50=−k ⋅40+85,解得k =78.∴q =vx ={100x −135⋅(13)x ⋅x,0<x <40−78(x −40)x +85x,40≤x ≤80, 当0<x <40时,q 单调递增,q <100×40−135×(13)40×40≈4000;当40≤x ≤80时,q 是关于x 的二次函数,开口向下,对称轴为x =4807,此时q 有最大值,为−78×(4807)2+120×4807=288007>4000.故车辆密度q 的最大值为288007.【解析】本题考查分段函数的实际应用,考查学生分析问题和解决问题的能力,以及运算能力,属于中档题.(1)易知v 越大,x 越小,所以v =f(x)是单调递减函数,k >0,于是只需令100−135⋅(13)x >95,解不等式即可;(2)把x =80,v =50代入v =f(x)的解析式中,求出k 的值,利用q =vx 可得到q 关于x 的函数关系式,分段判断函数的单调性,并求出各自区间上q 的最大值,取较大者即可.20.【答案】解:(1)由x A =√6,点A 为曲线Γ1与曲线Γ2的交点,联立{x A 24−y A 2b 2=1x A 2+y A 2=4+b2,解得y A =√2,b =2;(2)由题意可得F 1,F 2为曲线Γ1的两个焦点,由双曲线的定义可得|PF 1|−|PF 2|=2a ,又|PF 1|=8,2a =4,所以|PF 2|=8−4=4,因为b =√5,则c =√4+5=3, 所以|F 1F 2|=6,在△PF 1F 2中,由余弦定理可得cos∠F 1PF 2=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1|⋅|PF 2|=64+16−362×8×4=1116,由0<∠F 1PF 2<π,可得∠F 1PF 2=arccos 1116;(3)设直线l:y =−b2x +4+b 22,可得原点O 到直线l 的距离d =|4+b 22|√1+b 24=√4+b 2,所以直线l 是圆的切线,设切点为M ,所以k OM =2b ,并设OM:y =2b x 与圆x 2+y 2=4+b 2联立,可得x 2+4b 2x 2=4+b 2, 可得x =b ,y =2,即M(b,2),注意直线l 与双曲线的斜率为负的渐近线平行, 所以只有当y A >2时,直线l 才能与曲线Γ有两个交点,由{x A 24−y A 2b 2=1x A 2+y A 2=4+b 2,可得y A2=b 4a+b 2,所以有4<b 44+b 2,解得b 2>2+2√5或b 2<2−2√5(舍去), 因为OM⃗⃗⃗⃗⃗⃗⃗ 为ON ⃗⃗⃗⃗⃗⃗ 在OM ⃗⃗⃗⃗⃗⃗⃗ 上的投影可得,OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =4+b 2, 所以OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ =4+b 2>6+2√5, 则OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ ∈(6+2√5,+∞).【解析】本题考查双曲线与圆的定义和方程、性质,考查直线和圆的方程、双曲线的方程的联立,以及向量的数量积的几何意义,考查方程思想和化简运算能力,属于较难题. (1)联立曲线Γ1与曲线Γ2的方程,以及x A =√6,解方程可得b ; (2)由双曲线的定义和三角形的余弦定理,计算可得所求角;(3)设直线l:y =−b2x +4+b 22,求得O 到直线l 的距离,判断直线l 与圆的关系:相切,可设切点为M ,考虑双曲线的渐近线方程,只有当y A >2时,直线l 才能与曲线Γ有两个交点,解不等式可得b 的范围,由向量投影的定义求得OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ ,进而得到所求范围.21.【答案】解:(1)对于数列3,2,5,1,有|2−3|=1,|5−3|=2,|1−3|=2,满足题意,该数列满足性质P ;对于第二个数列4、3、2、5、1,|3−4|=1,|2−4|=2,|5−4|=1.不满足题意,该数列不满足性质P .(2)由题意:|a 1−a 1q n |≥|a 1−a 1q n−1|,可得:|q n −1|≥|q n−1−1|,n ∈{2,3,…,9},两边平方可得:q 2n −2q n +1≥q 2n−2−2q n−1+1,整理可得:(q −1)q n−1[q n−1(q +1)−2]≥0,当q ≥1时,得q n−1(q +1)−2≥0此时关于n 恒成立,所以等价于n =2时,q(q +1)−2≥0,所以,(q +2)(q −1)≥0,所以q ≤−2,或q ≥1,所以取q ≥1,当0<q ≤1时,得q n−1(q +1)−2≤0,此时关于n 恒成立,所以等价于n =2时,q(q +1)−2≤0,所以(q +2)(q −1)≤0,所以−2≤q ≤1,所以取0<q ≤1. 当−1≤q <0时:q n−1[q n−1(q +1)−2]≤0,当n 为奇数时,得q n−1(q +1)−2≤0,恒成立,当n 为偶数时,q n−1(q +1)−2≥0,不恒成立;故当−1≤q <0时,矛盾,舍去.当q <−1时,得q n−1[q n−1(q +1)−2]≤0,当n 为奇数时,得q n−1(q +1)−2≤0,恒成立,当n 为偶数时,q n−1(q +1)−2≥0,恒成立;故等价于n =2时,q(q +1)−2≥0, 所以(q +2)(q −1)≥0,所以q ≤−2或q ≥1,所以取q ≤−2, 综上.(3)设a 1=p ,p ∈{3,4,…,m −3,m −2},因为a 1=p ,a 2可以取p −1,或p +1,a 3可以取p −2,或p +2,如果a 2或a 3取了p −3或p +3,将使{a n }不满足性质P ;所以{a n }的前5项有以下组合: ①a 1=p ,a 2=p −1;a 3=p +1;a 4=p −2;a 5=p +2;②a1=p,a2=p−1;a3=p+1;a4=p+2;a5=p−2;③a1=p,a2=p+1;a3=p−1;a4=p−2;a5=p+2;④a1=p,a2=p+1;a3=p−1;a4=p+2;a5=p−2;对于①,b1=p−1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p−1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m−3,m−2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m−1,m满足题意.当p=m时,有数列{a n}:m,m−,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m−1,m满足题意.当p=m−1时,有数列{a n}:m−1,m,m−2,m−3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【解析】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P即可;(2)假设公比q的等比数列满足性质p,可得:|a1−a1q n|≥|a1−a1q n−1|,推出(q−1)q n−1[q n−1(q+1)−2]≥0,通过q≥1,0<q≤1时,−1≤q<0时:q<−1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m−1时,以及P∈{3,4,…,m−3,m−2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.。
2023年上海市春季高考数学真题试卷含详解
2023年上海市春季高考数学试卷一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,第1题至第6题每个空格填对得4分,第7题至第12题每个空格填对得5分,否则一律得零分.1.(4分)已知集合A ={1,2},B ={1,a },且A =B ,则a =2.(4分)已知向量=(3,4),=(1,2),则﹣2=3.(4分)若不等式|x ﹣1|≤2,则实数x 的取值范围为....4.(4分)已知圆C 的一般方程为x 2+2x +y 2=0,则圆C 的半径为5.(4分)已知事件A 发生的概率为P (A )=0.5,则它的对立事件发生的概率P ()=..6.(4分)已知正实数a 、b 满足a +4b =1,则ab 的最大值为7.(5分)某校抽取100名学生测身高,其中身高最大值为186cm ,最小值为154cm ,根据身高数据绘制频率组距分布直方图,组距为5,且第一组下限为153.5,则组数为8.(5分)设(1﹣2x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 4=9.(5分)已知函数f (x )=2x +1,且g (x )=﹣..,则方程g (x )=2的解为.10.(5分)已知有4名男生6名女生,现从10人中任选3人,则恰有1名男生2名女生的概率为.,满足|z 1﹣1|=1,则|z 1﹣z 2|的取值范围为,都是单位向量,且|=1,满足|•⊥|≤|,•⊥|≤|,•与.的夹•11.(5分)设z 1,z 2∈C 且z 1=i •12.(5分)已知空间向量,角为60°,若P 为空间任意一点,且|的最大值为.|,则二、选择题(本大题共有4题,满分18分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,第13题至第14题选对得4分,第15题至第16题选对得5分,否则一律得零分.13.(4分)下列函数是偶函数的是()A .y =sin xB .y =cos xC .y =x 3)D .y =2x14.(4分)根据下图判断,下列选项错误的是(A .从2018年开始后,图表中最后一年增长率最大B .从2018年开始后,进出口总额逐年增大C .从2018年开始后,进口总额逐年增大D .从2018年开始后,图表中2020年的增长率最小15.(5分)如图,P 是正方体ABCD ﹣A 1B 1C 1D 1边A 1C 1上的动点,下列哪条边与边BP 始终异面()A .DD 1B .ACC .AD 1D .B 1C16.(5分)已知数列{a n }的各项均为实数,S n 为其前n 项和,若对任意k >2022,都有|S k |>|S k +1|,则下列说法正确的是()A .a 1,a 3,a 5,…,a 2n ﹣1为等差数列,a 2,a 4,a 6,…,a 2n 为等比数列B .a 1,a 3,a 5,…,a 2n﹣1为等比数列,a 2,a 4,a 6,…,a 2n 为等差数列C .a 1,a 2,a 3,…,a 2022为等差数列,a 2022,a 2023,…,a n 为等比数列D .a 1,a 2,a 3,…,a 2022为等比数列,a 2022,a 2023,…,a n 为等差数列三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)已知三棱锥P ﹣ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PB =AB =3,AC =4,M 为BC 中点,过点M 分别作平行于平面PAB 的直线交AC 、PC 于点E ,F .(1)求直线PM 与平面ABC 所成角的大小;(2)证明:ME ∥平面PAB ,并求直线ME 到平面PAB 的距离.18.(14分)在△ABC 中,角A ,B ,C 对应边为a ,b ,c ,其中b =2.(1)若A +C =120°,且a =2c ,求边长c ;(2)若A ﹣C =15°,a =c sin A ,求△ABC 的面积S△ABC .,其中F 0为19.(14分)为了节能环保,节约材料,定义建筑物的“体形系数”为S =建筑物暴露在空气中的面积(单位:平方米),V 0为建筑物的体积(单位:立方米).(1)若有一个圆柱体建筑的底面半径为R ,高度为H ,求该建筑体的S (用R ,H 表示);(2)现有一个建筑体,侧面皆垂直于地面,设A 为底面面积,L 为建筑底面周长.已知f 为正比例系数,L 2与A 成正比,定义:f =,建筑面积即为每一层的底面面积,总建+,n 为层筑面积即为每层建筑面积之和,值为T .已知该建筑体推导得出S =数,层高为3米,其中f =18,T =10000,试求当取第几层时,该建筑体S 最小?20.(18分)已知椭圆Γ:+=1(m >0,m ≠).(1)若m =2,求椭圆Γ的离心率;(2)设A 1、A 2为椭圆Γ的左右顶点,若椭圆Γ上一点E 的纵坐标为1,且﹣2,求m 的值;•=(3)存在过椭圆Γ上一点P 、且斜率为仅有一个公共点,求m 的取值范围.的直线l ,使得直线l 与双曲线﹣=121.(18分)设函数f (x )=ax 3﹣(a +1)x 2+x ,g (x )=kx +m ,其中a ≥0,k 、m ∈R ,若对任意x ∈[0,1]均有f (x )≤g (x ),则称函数y =g (x )是函数y =f (x )的“控制函数”,且对所有的函数y =g (x )取最小值定义为(x ).(1)若a =2,g (x )=x ,试问y =g (x )是否为y =f (x )的“控制函数”;(2)若a =0,使得直线y =h (x )是曲线y =f (x )在x =处的切线,求证:函数y =h (x )是为函数y =f (x )的“控制函数”,并求()的值;(3)若曲线y =f (x )在x =x 0(x 0∈(0,1))处的切线过点(1,0),且c ∈[x 0,1],求证:当且仅当c =x 0或c =1时,(c )=f (c ).2023年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,第1题至第6题每个空格填对得4分,第7题至第12题每个空格填对得5分,否则一律得零分.1.【解答】解:集合A ={1,2},B ={1,a },且A =B ,则a =2.故答案为:2.2.【解答】解:因为向量=(3,4),=(1,2),所以﹣2=(3﹣2×1,4﹣2×2)=(1,0).故答案为:(1,0).3.【解答】解:因为|x ﹣1|≤2,所以﹣2≤x ﹣1≤2,所以﹣1≤x ≤3,故答案为:[﹣1,3].4.【解答】解:根据圆C 的一般方程为x 2+2x +y 2=0,可得圆C 的标准方程为(x +1)2+y 2=1,故圆C 的圆心为(0,﹣1),半径为1,故答案为:1.5.【解答】解:由题意知P (A )+P ()=1,所以P ()=1﹣P (A )=0.5,故答案为:0.5.6.【解答】解:正实数a 、b 满足a +4b =1,则ab =且仅当a =,故答案为:.时等号成立.,当7.【解答】解:极差为186﹣154=32,组距为5,且第一组下限为153.5,=6.4,故组数为7组,故答案为:7.8.【解答】解:根据题意及二项式定理可得:a 0+a 4=故答案为:17.9.【解答】解:当x ≥0时,g (x )=2⇔log 2(x +1)=2,解得x =3;当x <0时,g (x )=f (﹣x )=2x +1=2,解得x =0(舍);所以g (x )=2的解为:x =3.故答案为:x =3.10.【解答】解:从10人中任选3人的事件个数为恰有1名男生2名女生的事件个数为则恰有1名男生2名女生的概率为故答案为:0.5.11.【解答】解:设z 1﹣1=cos θ+i sin θ,则z 1=1+cos θ+i sin θ,因为z 1=i •所以|z 1﹣z 2|==显然当当==时,原式取最小值0,,,,所以z 2=sin θ+i (cos θ+1),,,,=17.=﹣1时,原式取最大值2].故|z 1﹣z 2|的取值范围为[0,故答案为:[0,12.【解答】解:由题知再设代入已知的不等式得所以].,,且x ,y ,z >0,x 2+y 2+z 2=1,,可得,解得,,,,z ≥y ,故=y..故答案为:二、选择题(本大题共有4题,满分18分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,第13题至第14题选对得4分,第15题至第16题选对得5分,否则一律得零分.13.【解答】解:对于A,由正弦函数的性质可知,y=sin x为奇函数;对于B,由正弦函数的性质可知,y=cos x为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.故选:B.14.【解答】解:显然2021年相对于2020年进出口额增量增加特别明显,故最后一年的增长率最大,A对;统计图中的每一年条形图的高度逐年增加,故B对;2020年相对于2019的进口总额是减少的,故C错;显然进出口总额2021年的增长率最大,而2020年相对于2019年的增量比2019年相对于2018年的增量小,且计算增长率时前者的分母还大,故2020年的增长率最小,D对.故选:C.15.【解答】解:对于A,当P是A1C1的中点时,BP与DD1是相交直线;对于B,根据异面直线的定义知,BP与AC是异面直线;对于C,当点P与C1重合时,BP与AD1是平行直线;对于D,当点P与C1重合时,BP与B1C是相交直线.故选:B.16.【解答】解:由对任意正整数k>2022,都有|Sk |>|Sk+1|,可以知道a2022,a2033,a2024,,a n不可能为等差数列,因为若d=0,a n=0,则|S k|=|S k+1|,矛盾;若d=0,a n<0,当n→+∞,S n→﹣∞,k使得|S k+1|>|S k|,矛盾;若d=0,a n>0,当n→+∞,S n→+∞,必有k使得|S k+1|>|S k|,矛盾;若d>0,当n→+∞,a n→+∞,S n→+∞必有k使得|S k+1|>|S k|,矛盾;若d<0,当n→+∞,a n→﹣∞,S n→﹣∞,必有k使得|S k+1|>|S k|,矛盾;所以选项B 中的a 2,a 4,a 6,⋯,a 2n 为等差数列与上述推理矛盾,故不可能正确;选项D 中的a 2022,a 2023,a 2024,⋯,a n 为等差数列与上述推理矛盾,故不可能正确;选项A 中的a 1,a 3,a 5,⋯,a 2n ﹣1为等差数列与上述推理矛盾,故不可能正确;事实上,只需取故选:C .三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.【解答】解:(1)连接AM ,PM ,∵PA ⊥平面ABC ,∴∠PMA 为直线PM 与平面ABC 所成的角,在△PAM 中,∵AB ⊥AC ,∴BC =∵M 为BC 中点,∴AM =BC =,=5,即可.∴tan ∠PMA =,即直线PM 与平面ABC 所成角为arctan ;(2)由ME ∥平面PAB ,MF ∥平面PAB ,ME ∩MF =M ,∴平面MEF ∥平面PAB ,∵ME ⊂平面MEF ,∴ME ∥平面PAB ,∵PA ⊥平面ABC ,AC ⊂平面ABC ,∴PA ⊥AC ,∵AB ⊥AC ,PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴AC ⊥平面PAB ,∴AE 为直线ME 到平面PAB 的距离,∵ME ∥平面PAB ,ME ⊂平面ABC ,平面ABC ∩平面PAB =AB ,∴ME ∥AB ,∵M 为BC 中点,∴E 为AC 中点,∴AE =2,∴直线ME 到平面PAB 的距离为2.18.【解答】解:(1)因为A +C =120°,且a =2c ,由正弦定理可得sin A =2sin C =2sin (120°﹣A )=所以cos A =0,由A 为三角形内角可得A =90°,C =30°,B =60°,因为b =2,所以c =;c sin A ,cos A +sin A ,(2)若A ﹣C =15°,a =由正弦定理得sin A =sin C sin A ,由A 为三角形内角可得sin A >0,所以sin C =,由题意可得C 为锐角,所以C =45°,A =60°,B =75°,由正弦定理可得,所以a ==3,=3﹣=;.=,所以△ABC 的面积S△ABC =ab sin C =19.【解答】解:(1)S ==(2)由题意,建筑体3n 米,底面面积A =,∴体积V 0=3n •A =3T ,由f ==18,∴底面周长L =,∴F 0=L •3n +A =•3n +,,n ∈N *,∴“体形系数”S ==+=+计算可得n =6时,S 最小.20.【解答】解:(1)若m =2,则a 2=4,b 2=3,∴a =2,c =(2)由已知得A 1(m ,0),A 2(m ,0),设E (p ,1),∴+=1,即p 2=m 2,=1,∴e ==;∴=(m ﹣p ,﹣1),=(﹣m ﹣p ,﹣1),∴•=(m ﹣p ,﹣1)•(﹣m ﹣p ,﹣1)=p 2﹣m 2+1=﹣2,∵p 2=m 2,代入求得m =3;(3)设直线y =x +t ,联立椭圆可得+=1,整理得(3+3m 2)x 2+2由△≥0,∴t 2≤3m 2+3,联立双曲线可得由Δ=0,t 2=5m 2﹣15,∴5m 2﹣15≤3m 2+3,∴﹣3≤m ≤3,又5m 2﹣15≥0,∴m ≥综上所述:m ∈(tm 2x +(t 2﹣3)m 2=0,﹣=1,整理得(3﹣m 2)x 2+2tx +(t 2﹣5m 2)=0,,∵m ≠,,3].21.【解答】解:(1)f (x )=2x 3﹣3x 2+x ,设h (x )=f (x )﹣g (x )=2x 3﹣3x 2,h ′(x )=6x 2﹣6x =6x (x ﹣1),当x ∈[0,1]时,易知h ′(x )=6x (x ﹣1)≤0,即h (x )单调减,∴h (x )max =h (0)=0,即f (x )﹣g (x )≤0⇒f (x )≤g (x ),∴g (x )是f (x )的“控制函数“;(2)∴∴f (x )≤h (x ),即y =h (x )为函数y =f (x )的“控制函数“,又,且,∴;,,证明:(3)f (x )=ax 3﹣(a +1)x 2+x ,f ′(x )=3ax 2﹣2(a +1)x +1,y =f (x )在x =x 0(x 0∈(0,1))处的切线为t (x ),t (x )=f ′(x 0)(x ﹣x 0)+f (x 0),t (x 0)=f (x 0),t (1)=0⇒f (1)=0,,,,恒成立,函数t (x )必是函数y =f (x )的“控制函数“,是函数y=f (x )的“控制函数“,此时“控制函数“g (x )必与y =f (x )相切于x 点,t (x )与y =f (x )在且过点(1,0),在之间的点不可能使得y =f (x )在或c =1,所以曲线y =f (x )在x =x 0(x 0∈(0,1))处的切线过点(1,0),且c ∈[x 0,1],当且仅当c =x 0或c =1时,.切线下方,所以处相切,。
上海市春季高考数学试卷含答案解析
上海市春季高考数学试卷一.填空题(本大题共12题,每题3分,共36分)1.复数3+4i(i为虚数单位)的实部是.2.若log2(x+1)=3,则x=.3.直线y=x﹣1与直线y=2的夹角为.4.函数的定义域为.5.三阶行列式中,元素5的代数余子式的值为.6.函数的反函数的图象经过点(2,1),则实数a=.7.在△ABC中,若A=30°,B=45°,,则AC=.8.4个人排成一排照相,不同排列方式的种数为(结果用数值表示).9.无穷等比数列{a n}的首项为2,公比为,则{a n}的各项的和为.10.若2+i(i为虚数单位)是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,则a=.11.函数y=x2﹣2x+1在区间[0,m]上的最小值为0,最大值为1,则实数m的取值范围是.12.在平面直角坐标系xOy中,点A,B是圆x2+y2﹣6x+5=0上的两个动点,且满足,则的最小值为.二.选择题(本大题共12题,每题3分,共36分)13.若sinα>0,且tanα<0,则角α的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限14.半径为1的球的表面积为()A.πB.C.2πD.4π15.在(1+x)6的二项展开式中,x2项的系数为()A.2 B.6 C.15 D.2016.幂函数y=x﹣2的大致图象是()A.B.C.D.17.已知向量,,则向量在向量方向上的投影为()A.1 B.2 C.(1,0)D.(0,2)18.设直线l与平面α平行,直线m在平面α上,那么()A.直线l平行于直线m B.直线l与直线m异面C.直线l与直线m没有公共点D.直线l与直线m不垂直19.在用数学归纳法证明等式1+2+3+…+2n=2n2+n(n∈N*)的第(ii)步中,假设n=k时原等式成立,那么在n=k+1时需要证明的等式为()A.1+2+3+…+2k+2(k+1)=2k2+k+2(k+1)2+(k+1)B.1+2+3+…+2k+2(k+1)=2(k+1)2+(k+1)C.1+2+3+…+2k+2k+1+2(k+1)=2k2+k+2(k+1)2+(k+1)D.1+2+3+…+2k+2k+1+2(k+1)=2(k+1)2+(k+1)20.关于双曲线与的焦距和渐近线,下列说法正确的是()A.焦距相等,渐近线相同B.焦距相等,渐近线不相同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同21.设函数y=f(x)的定义域为R,则“f(0)=0”是“函数f(x)为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件22.下列关于实数a,b的不等式中,不恒成立的是()A.a2+b2≥2ab B.a2+b2≥﹣2ab C.D.23.设单位向量与既不平行也不垂直,对非零向量、有结论:①若x1y2﹣x2y1=0,则;②若x1x2+y1y2=0,则.关于以上两个结论,正确的判断是( )A .①成立,②不成立B .①不成立,②成立C .①成立,②成立D .①不成立,②不成立24.对于椭圆.若点(x 0,y 0)满足.则称该点在椭圆C (a ,b )内,在平面直角坐标系中,若点A 在过点(2,1)的任意椭圆C (a ,b )内或椭圆C (a ,b )上,则满足条件的点A 构成的图形为( ) A .三角形及其内部 B .矩形及其内部C .圆及其内部D .椭圆及其内部三.解答题(本大题共5题,共8+8+8+12+12=48分)25.如图,已知正三棱柱ABC ﹣A 1B 1C 1的体积为,底面边长为3,求异面直线BC 1与AC 所成的角的大小.26.已知函数,求f (x )的最小正周期及最大值,并指出f (x )取得最大值时x 的值.27.如图,汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点F 处.已知灯口直径是24cm ,灯深10cm ,求灯泡与反射镜的顶点O 的距离.28.已知数列{a n }是公差为2的等差数列.(1)a 1,a 3,a 4成等比数列,求a 1的值;(2)设a1=﹣19,数列{a n}的前n项和为S n.数列{b n}满足,记(n∈N*),求数列{c n}的最小项(即对任意n∈N*成立).={x|f(x)>g(x)}.29.对于函数f(x),g(x),记集合D f>g;(1)设f(x)=2|x|,g(x)=x+3,求D f>g(2)设f1(x)=x﹣1,,h(x)=0,如果.求实数a的取值范围.二卷一.选择题:30.若函数f(x)=sin(x+φ)是偶函数,则ϕ的一个值是()A.0 B. C.πD.2π31.在复平面上,满足|z﹣1|=4的复数z的所对应的轨迹是()A.两个点B.一条线段C.两条直线D.一个圆32.已知函数y=f(x)的图象是折线ABCDE,如图,其中A(1,2),B(2,1),C (3,2),D(4,1),E(5,2),若直线y=kx+b与y=f(x)的图象恰有四个不同的公共点,则k的取值范围是()A.(﹣1,0)∪(0,1)B.C.(0,1]D.二.填空题:33.椭圆的长半轴的长为.34.已知圆锥的母线长为10,母线与轴的夹角为30°,则该圆锥的侧面积为.35.小明用数列{a n}记录某地区12月份31天中每天是否下过雨,方法为:当第k天下过雨时,记a k=1,当第k天没下过雨时,记a k=﹣1(1≤k≤31),他用数列{b n}记录该地区该月每天气象台预报是否有雨,方法为:当预报第k天有雨时,记b n=1,当预报第k天没有雨时,记b n=﹣1记录完毕后,小明计算出a1b1+a2b2+a3b3+…+a31b31=25,那么该月气象台预报准确的总天数为.三.解答题:36.对于数列{a n}与{b n},若对数列{c n}的每一项c n,均有c k=a k或c k=b k,则称数列{c n}是{a n}与{b n}的一个“并数列”.(1)设数列{a n}与{b n}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,若{c n}是{a n}与{b n}一个“并数列”求所有可能的有序数组(c1,c2,c3);(2)已知数列{a n},{c n}均为等差数列,{a n}的公差为1,首项为正整数t;{c n}的前10项和为﹣30,前20项的和为﹣260,若存在唯一的数列{b n},使得{c n}是{a n}与{b n}的一个“并数列”,求t的值所构成的集合.上海市春季高考数学试卷参考答案与试题解析一.填空题(本大题共12题,每题3分,共36分)1.复数3+4i(i为虚数单位)的实部是3.【考点】复数的基本概念.【分析】根据复数的定义判断即可.【解答】解:复数3+4i(i为虚数单位)的实部是3,故答案为:3.2.若log2(x+1)=3,则x=7.【考点】对数的运算性质;函数的零点.【分析】直接利用对数运算法则化简求解即可.【解答】解:log2(x+1)=3,可得x+1=8,解得x=7.故答案为:7.3.直线y=x﹣1与直线y=2的夹角为.【考点】两直线的夹角与到角问题.【分析】由题意可得直线的斜率,可得倾斜角,进而可得直线的夹角.【解答】解:∵直线y=x﹣1的斜率为1,故倾斜角为,又∵直线y=2的倾斜角为0,故直线y=x﹣1与直线y=2的夹角为,故答案为:.4.函数的定义域为[2,+∞).【考点】函数的定义域及其求法.【分析】直接由根式内部的代数式大于等于0求解即可.【解答】解:由x﹣2≥0得,x≥2.∴原函数的定义域为[2,+∞).故答案为[2,+∞).5.三阶行列式中,元素5的代数余子式的值为8.【考点】高阶矩阵.【分析】根据余子式的定义可知,在行列式中划去第1行第3列后所余下的2阶行列式带上符号(﹣1)i+j,求出其表达式的值即可.【解答】解:元素5的代数余子式为:(﹣1)1+3||=(4×2+1×0)=8.∴元素5的代数余子式的值为8.故答案为:8.6.函数的反函数的图象经过点(2,1),则实数a=1.【考点】反函数.【分析】由于函数的反函数的图象经过点(2,1),可得函数的图象经过点(1,2),即可得出.【解答】解:∵函数的反函数的图象经过点(2,1),∴函数的图象经过点(1,2),∴2=+a,解得a=1.故答案为:1.7.在△ABC中,若A=30°,B=45°,,则AC=.【考点】余弦定理;正弦定理.【分析】利用正弦定理即可计算求解.【解答】解:∵A=30°,B=45°,,∴由正弦定理,可得:AC===2.故答案为:2.8.4个人排成一排照相,不同排列方式的种数为24(结果用数值表示).【考点】计数原理的应用.【分析】根据题意,由排列数公式直接计算即可.【解答】解:4个人排成一排照相,不同排列方式的种数为A44=24种,故答案为:24.9.无穷等比数列{a n}的首项为2,公比为,则{a n}的各项的和为3.【考点】等比数列的前n项和.【分析】{a n}的各项的和=,即可得出.【解答】解:{a n}的各项的和为: ==3.故答案为:3.10.若2+i(i为虚数单位)是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,则a=﹣4.【考点】复数代数形式的混合运算.【分析】2+i(i为虚数单位)是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,则2﹣i(i为虚数单位)也是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,再利用根与系数的关系即可得出.【解答】解:∵2+i(i为虚数单位)是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,∴2﹣i(i为虚数单位)也是关于x的实系数一元二次方程x2+ax+5=0的一个虚根,∴2+i+(2﹣i)=﹣a,解得a=﹣4.则a=﹣4.故答案为:﹣4.11.函数y=x2﹣2x+1在区间[0,m]上的最小值为0,最大值为1,则实数m的取值范围是[1,2].【考点】二次函数在闭区间上的最值.【分析】根据二次函数的性质得出,求解即可.【解答】解:∵f(x)=x2﹣2x+1=(x﹣1)2,∴对称轴x=1,∴f(1)=0,f(2)=1,f(0)=1,∵f(x)=x2﹣2x+2在区间[0,m]上的最大值为1,最小值为0,∴,∴1≤m≤2,故答案为:1≤m≤2.12.在平面直角坐标系xOy中,点A,B是圆x2+y2﹣6x+5=0上的两个动点,且满足,则的最小值为4.【考点】直线与圆的位置关系;向量的三角形法则.【分析】本题可利用AB中点M去研究,先通过坐标关系,将转化为,用根据AB=2,得到M点的轨迹,由图形的几何特征,求出模的最小值,得到本题答案.【解答】解:设A(x1,y1),B(x2,y2),AB中点M(x′,y′).∵x′=,y′=,∴=(x1+x2,y1+y2)=2,∵圆C:x2+y2﹣6x+5=0,∴(x﹣3)2+y2=4,圆心C(3,0),半径CA=2.∵点A,B在圆C上,AB=2,∴CA2﹣CM2=(AB)2,即CM=1.点M在以C为圆心,半径r=1的圆上.∴OM≥OC﹣r=3﹣1=2.∴||≥2,∴≥4,∴的最小值为4.故答案为:4.二.选择题(本大题共12题,每题3分,共36分)13.若sinα>0,且tanα<0,则角α的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】象限角、轴线角.【分析】由sinα>0,则角α的终边位于一二象限,由tanα<0,则角α的终边位于二四象限,两者结合即可解决问题.【解答】解:∵sinα>0,则角α的终边位于一二象限,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限.故选择B.14.半径为1的球的表面积为()A.πB.C.2πD.4π【考点】球的体积和表面积.【分析】利用球的表面积公式S=4πR2解答即可求得答案.【解答】解:半径为1的球的表面积为4π×12=4π,故选:D.15.在(1+x)6的二项展开式中,x2项的系数为()A.2 B.6 C.15 D.20【考点】二项式系数的性质.【分析】根据二项展开式的通项公式求出展开式的特定项即可.【解答】解:(1+x)6的二项展开式中,通项公式为:T r+1=•16﹣r•x r,令r=2,得展开式中x2的系数为:=15.故选:C.16.幂函数y=x﹣2的大致图象是()A.B.C.D.【考点】函数的图象.【分析】利用负指数幂的定义转换函数,根据函数定义域,利用排除法得出选项.【解答】解:幂函数y=x﹣2=,定义域为(﹣∞,0)∪(0,+∞),可排除A,B;值域为(0,+∞)可排除D,故选:C.17.已知向量,,则向量在向量方向上的投影为()A.1 B.2 C.(1,0)D.(0,2)【考点】平面向量数量积的运算.【分析】求出,代入向量的投影公式计算.【解答】解: =1, =1,||=,∴向量在向量方向上的投影=1.故选:A.18.设直线l与平面α平行,直线m在平面α上,那么()A.直线l平行于直线m B.直线l与直线m异面C.直线l与直线m没有公共点D.直线l与直线m不垂直【考点】空间中直线与直线之间的位置关系.【分析】由已知中直线l与平面α平行,直线m在平面α上,可得直线l与直线m异面或平行,进而得到答案.【解答】解:∵直线l与平面α平行,直线m在平面α上,∴直线l与直线m异面或平行,即直线l与直线m没有公共点,故选:C.19.在用数学归纳法证明等式1+2+3+…+2n=2n2+n(n∈N*)的第(ii)步中,假设n=k时原等式成立,那么在n=k+1时需要证明的等式为()A.1+2+3+…+2k+2(k+1)=2k2+k+2(k+1)2+(k+1)B.1+2+3+…+2k+2(k+1)=2(k+1)2+(k+1)C.1+2+3+…+2k+2k+1+2(k+1)=2k2+k+2(k+1)2+(k+1)D.1+2+3+…+2k+2k+1+2(k+1)=2(k+1)2+(k+1)【考点】数学归纳法.【分析】由数学归纳法可知n=k时,1+2+3+…+2k=2k2+k,到n=k+1时,左端为1+2+3+…+2k+2k+1+2(k+1),从而可得答案.【解答】解:∵用数学归纳法证明等式1+2+3+…+2n=2n2+n时,当n=1左边所得的项是1+2;假设n=k时,命题成立,1+2+3+…+2k=2k2+k,则当n=k+1时,左端为1+2+3+…+2k+2k+1+2(k+1),∴从“k→k+1”需增添的项是2k+1+2(k+1),∴1+2+3+…+2k+2k+1+2(k+1)=2(k+1)2+(k+1).故选:D.20.关于双曲线与的焦距和渐近线,下列说法正确的是()A.焦距相等,渐近线相同B.焦距相等,渐近线不相同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同【考点】双曲线的简单性质.【分析】分别求得双曲线的焦点的位置,求得焦点坐标和渐近线方程,即可判断它们焦距相等,但渐近线不同.【解答】解:双曲线的焦点在x轴上,可得焦点为(±,0),即为(±2,0),渐近线方程为y=±x;的焦点在y轴上,可得焦点为(0,±2),渐近线方程为y=±2x.可得两双曲线具有相等的焦距,但渐近线不同.故选:B.21.设函数y=f(x)的定义域为R,则“f(0)=0”是“函数f(x)为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】函数y=f(x)的定义域为R,若函数f(x)为奇函数,则f(0)=0,反之不成立,例如f(x)=x2.即可判断出结论.【解答】解:函数y=f(x)的定义域为R,若函数f(x)为奇函数,则f(0)=0,反之不成立,例如f(x)=x2.∴“f(0)=0”是“函数f(x)为奇函数”的必要不充分条件.故选:B.22.下列关于实数a,b的不等式中,不恒成立的是()A.a2+b2≥2ab B.a2+b2≥﹣2ab C.D.【考点】不等式的基本性质.【分析】根据级别不等式的性质分别判断即可.【解答】解:对于A:a2+b2﹣2ab=(a﹣b)2≥0,故A恒成立;对于B:a2+b2+2ab=(a+b)2≥0,故B恒成立;对于C:﹣ab=≥0,故C恒成立;D不恒成立;故选:D.23.设单位向量与既不平行也不垂直,对非零向量、有结论:①若x1y2﹣x2y1=0,则;②若x1x2+y1y2=0,则.关于以上两个结论,正确的判断是()A.①成立,②不成立B.①不成立,②成立C.①成立,②成立D.①不成立,②不成立【考点】向量的线性运算性质及几何意义.【分析】①假设存在实数λ使得=,则=λ,由于向量与既不平行也不垂直,可得x1=λx2,y1=λy2,即可判断出结论.②若x1x2+y1y2=0,则=()•=x1x2+y1y2+(x2y1+x1y2)=(x2y1+x1y2),无法得到=0,因此不一定正确.【解答】解:①假设存在实数λ使得=,则=λ,∵向量与既不平行也不垂直,∴x1=λx2,y1=λy2,满足x1y2﹣x2y1=0,因此.②若x1x2+y1y2=0,则=()•=x 1x 2+y 1y 2+(x 2y 1+x 1y 2)=(x 2y 1+x 1y 2),无法得到=0,因此不一定正确.故选:A .24.对于椭圆.若点(x 0,y 0)满足.则称该点在椭圆C (a ,b )内,在平面直角坐标系中,若点A 在过点(2,1)的任意椭圆C (a ,b )内或椭圆C (a ,b )上,则满足条件的点A 构成的图形为( ) A .三角形及其内部 B .矩形及其内部 C .圆及其内部 D .椭圆及其内部 【考点】椭圆的简单性质.【分析】点A (x 0,y 0)在过点P (2,1)的任意椭圆C (a ,b )内或椭圆C (a ,b )上,可得=1,+≤1.由椭圆的对称性可知:点B (﹣2,1),点C (﹣2,﹣1),点D (2,﹣1),都在任意椭圆上,即可得出.【解答】解:设点A (x 0,y 0)在过点P (2,1)的任意椭圆C (a ,b )内或椭圆C (a ,b )上, 则=1,+≤1.∴+≤=1,由椭圆的对称性可知:点B (﹣2,1),点C (﹣2,﹣1),点D (2,﹣1),都在任意椭圆上,可知:满足条件的点A 构成的图形为矩形PBCD 及其内部. 故选:B .三.解答题(本大题共5题,共8+8+8+12+12=48分) 25.如图,已知正三棱柱ABC ﹣A 1B 1C 1的体积为,底面边长为3,求异面直线BC 1与AC 所成的角的大小.【考点】异面直线及其所成的角.【分析】由正三棱柱ABC﹣A1B1C1的体积求出高,由A1C1与AC平行,得∠BC1A1是异面直线BC1与AC所成的角,由此利用余弦定理能求出异面直线BC1与AC所成的角的大小.【解答】解:∵正三棱柱ABC﹣A1B1C1的体积为,底面边长为3,∴,解得h=4,∵A1C1与AC平行,∴∠BC1A1是异面直线BC1与AC所成的角,在△A1BC1中,A1C1=3,BC1=BA1=5,∴cos∠BC1A1==.∴∠BC1A1=arccos.∴异面直线BC1与AC所成的角的大小为arccos.26.已知函数,求f(x)的最小正周期及最大值,并指出f(x)取得最大值时x的值.【考点】两角和与差的正弦函数;正弦函数的图象.【分析】由条件利用两角和的正弦公式化简f(x)的解析式,再利用正弦函数的周期性和最大值,得出结论.【解答】解:∵,∴函数的周期为T=2π,函数的最大值为2,且函数取得最大值时,x+=2kπ+,即x=2kπ+,k∈Z.27.如图,汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点F处.已知灯口直径是24cm,灯深10cm,求灯泡与反射镜的顶点O的距离.【考点】抛物线的简单性质.【分析】先设出抛物线的标准方程y2=2px(p>0),点(10,12)代入抛物线方程求得p,进而求得,即灯泡与反光镜的顶点的距离.【解答】解:建立平面直角坐标系,以O为坐标原点,水平方向为x轴,竖直方向为y 轴,如图所示:则:设抛物线方程为y2=2px(p>0),点(10,12)在抛物线y2=2px上,∴144=2p×10.∴=3.6.∴灯泡与反射镜的顶点O的距离3.6cm.28.已知数列{a n}是公差为2的等差数列.(1)a1,a3,a4成等比数列,求a1的值;(2)设a1=﹣19,数列{a n}的前n项和为S n.数列{b n}满足,记(n∈N*),求数列{c n}的最小项(即对任意n∈N*成立).【考点】等差数列的前n项和;等比数列的通项公式.【分析】(1)利用等差数列通项公式和等比数列性质能求出首项a1的值.=2n﹣19+2n,由此(2)由已知利用累加法能求出b n=2﹣()n﹣1.从而能求出c n﹣c n﹣1能求出数列{c n}的最小项.【解答】解:(1)∵数列{a n}是公差为2的等差数列.a1,a3,a4成等比数列,∴.解得d=2,a1=﹣8)(2)b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1=1+==2﹣()n﹣1.,,=2n﹣19+2n由题意n≥9,上式大于零,即c9<c10<…<c n,进一步,2n+2n是关于n的增函数,∵2×4+24=24>19,2×3+23=14<19,∴c1>c2>c3>c4<c5<…<c9<c10<…<c n,∴.={x|f(x)>g(x)}.29.对于函数f(x),g(x),记集合D f>g;(1)设f(x)=2|x|,g(x)=x+3,求D f>g(2)设f1(x)=x﹣1,,h(x)=0,如果.求实数a的取值范围.【考点】其他不等式的解法;集合的表示法.【分析】(1)直接根据新定义解不等式即可,(2)方法一:由题意可得则在R上恒成立,分类讨论,即可求出a 的取值范围,方法二:够造函数,求出函数的最值,即可求出a的取值范围.={x|x<﹣1或x>3};【解答】解:(1)由2|x|>x+3,得D f>g(2)方法一:,,由,则在R上恒成立,令,a>﹣t2﹣t,,∴a≥0时成立.以下只讨论a<0的情况对于,=t>0,t2+t+a>0,解得t<或t>,(a<0)又t>0,所以,∴=综上所述:方法二(2),,由a≥0.显然恒成立,即x∈Ra<0时,,在x≤1上恒成立令,,所以,综上所述:.二卷一.选择题:30.若函数f(x)=sin(x+φ)是偶函数,则ϕ的一个值是()A.0 B. C.πD.2π【考点】正弦函数的图象.【分析】由函数的奇偶性可得φ的取值范围,结合选项验证可得.【解答】解:∵函数f(x)=sin(x+φ)是偶函数,∴f(﹣x)=f(x),即sin(﹣x+φ)=sin(x+φ),∴(﹣x+φ)=x+φ+2kπ或﹣x+φ+x+φ=π+2kπ,k∈Z,当(﹣x+φ)=x+φ+2kπ时,可得x=﹣kπ,不满足函数定义;当﹣x+φ+x+φ=π+2kπ时,φ=kπ+,k∈Z,结合选项可得B为正确答案.故选:B.31.在复平面上,满足|z﹣1|=4的复数z的所对应的轨迹是()A.两个点B.一条线段C.两条直线D.一个圆【考点】复数的代数表示法及其几何意义.【分析】设z=x+yi,得到|x+yi﹣1|==4,从而求出其运动轨迹.【解答】解:设z=x+yi,则|x+yi﹣1|==4,∴(x﹣1)2+y2=16,∴运动轨迹是圆,故选:D.32.已知函数y=f(x)的图象是折线ABCDE,如图,其中A(1,2),B(2,1),C (3,2),D(4,1),E(5,2),若直线y=kx+b与y=f(x)的图象恰有四个不同的公共点,则k的取值范围是()A.(﹣1,0)∪(0,1)B.C.(0,1]D.【考点】函数的图象.【分析】根据图象使用特殊值验证,使用排除法得出答案.【解答】解;当k=0,1<b<2时,显然直线y=b与f(x)图象交于四点,故k可以取0,排除A,C;作直线BE,则k BE=,直线BE与f(x)图象交于三点,平行移动直线BD可发现直线与f(x)图象最多交于三点,即直线y=与f(x)图象最多交于三点,∴k≠.排除D.故选B.二.填空题:33.椭圆的长半轴的长为5.【考点】椭圆的简单性质.【分析】利用椭圆性质求解.【解答】解:椭圆中,a=5,∴椭圆的长半轴长a=5.故答案为:5.34.已知圆锥的母线长为10,母线与轴的夹角为30°,则该圆锥的侧面积为50π.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据勾股定理得出圆锥的底面半径,代入侧面积公式计算.【解答】解:∵圆锥的母线长为10,母线与轴的夹角为30°,∴圆锥的底面半径为5,∴圆锥的侧面积为π×5×10=50π.故答案为:50π.35.小明用数列{a n}记录某地区12月份31天中每天是否下过雨,方法为:当第k天下过雨时,记a k=1,当第k天没下过雨时,记a k=﹣1(1≤k≤31),他用数列{b n}记录该地区该月每天气象台预报是否有雨,方法为:当预报第k天有雨时,记b n=1,当预报第k天没有雨时,记b n=﹣1记录完毕后,小明计算出a1b1+a2b2+a3b3+…+a31b31=25,那么该月气象台预报准确的总天数为28.【考点】数列的应用.【分析】由题意,气象台预报准确时a k b k=1,不准确时a k b k=﹣1,根据a1b1+a2b2+a3b3+…+a31b31=25=28﹣3,即可得出结论.【解答】解:由题意,气象台预报准确时a k b k=1,不准确时a k b k=﹣1,∵a1b1+a2b2+a3b3+…+a31b31=25=28﹣3,∴该月气象台预报准确的总天数为28.故答案为:28.三.解答题:36.对于数列{a n}与{b n},若对数列{c n}的每一项c n,均有c k=a k或c k=b k,则称数列{c n}是{a n}与{b n}的一个“并数列”.(1)设数列{a n}与{b n}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,若{c n}是{a n}与{b n}一个“并数列”求所有可能的有序数组(c1,c2,c3);(2)已知数列{a n},{c n}均为等差数列,{a n}的公差为1,首项为正整数t;{c n}的前10项和为﹣30,前20项的和为﹣260,若存在唯一的数列{b n},使得{c n}是{a n}与{b n}的一个“并数列”,求t的值所构成的集合.【考点】数列的求和;数列的应用.【分析】(1)利用“并数列”的定义即可得出.(2)利用等差数列的通项公式及其前n项和公式可得a n,公差d,c n,通过分类讨论即可得出.【解答】解:(1)(1,2,3),(1,2,5),(1,3,3),(1,3,5);(2)a n=t+n﹣1,设{c n}的前10项和为T n,T10=﹣30,T20=﹣260,得d=﹣2,c1=6,所以c n=8﹣2n;c k=a k 或c k=b k.,∴k=1,t=6;或k=2,t=3,所以k≥3.k∈N*时,c k=b k,∵数列{b n}唯一,所以只要b1,b2唯一确定即可.显然,t=6,或t=3时,b1,b2不唯一,.7月25日21 / 21。
2020年上海春季高考数学试卷及解析
2020年上海市普通高校春季招生统一文化考试数学试卷考生注意:1.本场考试时间 120 分钟.试卷共 4 页,满分 150 分,答题纸共 2 页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名.将核对后的条形码贴 在指定位置.3.所有作答必须涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用 2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题满分54分)本大题共12题,第1-6题每题4分,第7-12题每题5分)考生应在答题纸相应编号的空格内直接填写结果.每个空格填对得分,否则一律得零分. 1.若集合{}1,3A =,{}1,2,B a =,若A B ⊆,则a =________. 2.不等式13x>的解集是________. 3.函数tan 2y x =的最小正周期为________. 4. 已知复数26z z i +=+,则z 的实部为________. 5.已知()3sin 2sin ,0,x x x π=∈,则x =________. 6.函数133xx y a =⋅+为偶函数,则a =________. 7.两条直线1:1l x ay +=,212:1l ax y l l +=,若∥,则12l l 与的距离为________.8.二项式(52x ,则3x 的系数为________.【答案】1. 3 2. 1|03x x ⎧⎫<<⎨⎬⎩⎭3. 2π4. 25. 1arccos 36. 17.8. 109.在△ABC 中,D 是BC 的中点,2,3,4AB BC AC ===,则AD AB =________. 【答案】194【解析】法一:因为2,3,4AB BC AC ===,所以22224311cos 22416A +-==⨯⨯,在△ABC 中,D 是BC 的中点,所以2AB ACAD +=, 因此,AD AB =()22111119224222164AB AC AB AB AB AC +⎛⎫⋅=+⋅=+⋅⋅=⎪⎝⎭. 法二:因为2,3,4AB BC AC ===,所以2222341cos 2234B +-==-⨯⨯,在△ABC 中,D 是BC 的中点,所以12AD AB BD AB BC =+=+, 因此,AD AB =22111192232244AB AB BC ⎛⎫+⋅=+⋅⋅⋅= ⎪⎝⎭. 法三:在△ABC 中,D 是BC 的中点,所以2AB ACAD +=, 平方后,2211131(422416)24164AB AC AD ⎛⎫+==+⨯⨯⨯+= ⎪⎝⎭, 在△ABD中,32,,2AB BD AD ===所以3194cos BAD +-∠==,因此,AD AB=19cos 224AD AB BAD ⋅⋅∠=⨯=.10.已知{}3,2,1,0,1,2,3,,A a b A =---∈,则满足a b <的情况有________种. 【答案】18 【解析】枚举法11.已知12345,,,,A A A A A 五个点,满足1120n n n n A A A A +++⋅=,1121n n n n A A A A n +++⋅=+,其中123n =,,,则15A A 的最小值为________.【答案【解析】设120A A a =>,因为12230A A A A ⋅=12232A A A A ⋅=,所以232A A a=,且1223A A A A ⊥; 同理,3432a A A =,4583A A a=,且2334A A A A ⊥,3445A A A A ⊥. 要使得15A A 最小,则需如图排布(将A 1置于原点处)此时,532823a A a a a ⎛⎫-- ⎪⎝⎭,,即5223a A a ⎛⎫-- ⎪⎝⎭,, 因此215A A =222224223493a a a a ⎛⎫⎛⎫-+-=+ ⎪ ⎪⎝⎭⎝⎭≥,当且仅当a =时取得等号.12. 已知函数()f x =()f x 的反函数为1()f x -,若方程1()()f x a f x a --=+有实数根,则实数a 的取值范围为________.【答案】3[+4∞,)【解析】因为1()y fx a -=-与()y f x a =+互为反函数,所以“方程1()()fx a f x a --=+有实数根”意味着“函数1()y f x a -=-的图像与函数()y f x a =+的图像有公共点”,互为反函数的图像关于直线y=x 对称,问题转化为:函数()y f x a =+的图像与直线y=x 有公共点,求a 的范围.即方程()f x a x +=有实数根,x =等价于方程21a x x =-+在01x x a⎧⎨-⎩≥≥上有解.当12a >时,112a -<,21131224a ⎛⎫-+= ⎪⎝⎭≥,所以34a ≥;当12a ≤时, ()21(1)1a a a ---+≥,所以2(1)0a -≤,无解; 综上,34a ≥.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.1135lim 35n nn n n --→∞++的值为 ( ) A.3 B.53 C.35D.5 【答案】D14.“αβ=”是22sincos 1αβ+=的 ( )A.充分非必要条件 B.必要非充分条件 C.充分必要条件 D.既不充分又不必要条件 【答案】A15.已知椭圆221,2x y +=垂直于x 轴的直线交椭圆于,A B 两点,垂直于y 轴的直线交椭圆于C D ,两点,且AB CD =,则两直线交点P 所在的曲线是 ( )A.椭圆 B.双曲线 C.圆 D.抛物线 【答案】B【解析】方法一:依据图形对称性,选项D设(),()A s t C m n ,,,则()P s n ,, 因为AB CD =,所以t m =,又22221(1)21(2)2s t m n ⎧+=⎪⎪⎨⎪+=⎪⎩,将(1)—(2)х2得22212s n -=, 因此动点P 的轨迹方程为22212x y -=,轨迹为双曲线的一部分.方法二:设sin )sin )A C ααββ,,,,则sin )P αβ,, 因为AB CD =,所以sin αβ=,平方后,22sin 2cos αβ=,即221cos22sin αβ-=-,设()P x y ,,则sin x y αβ⎧=⎪⎨=⎪⎩,所以cos sin y αβ==⎩代入上式,因此动点P 的轨迹方程为22212x y -=,轨迹为双曲线的一部分.16.对于数列{}n a 有3n n a a +=,且行列式123n n n n a a c a a +++=,下列选项中不可能的是的 ( )A.11,1a c == B.12,2a c == C.11,4a c =-= D.12,0a c == 【答案】B 【解析】因为123n n n n a a c a a +++=,所以312n n n n a a a a c +++-=,又3n n a a +=,所以212n n n a a a c ++-=, ①同理2123n n n a a a c +++-=,即212n n n a a a c ++-=, ②②-①,22121()0n n n n n a a a a a +++-+-=, 因此,10n n a a +-=或120n n n a a a ++++=,当10n n a a +-=时,数列{}n a 为常数列,D 正确;当120n n n a a a ++++=时,12n n n a a a +++=-,且212n n n a a a c ++=-,于是12,n n a a ++是方程2n x a x ++20n a c -=的两个根, 由∆≥0,得2340n a c -<,经检验选项A ,C 符合.三、解答题(本大题74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)已知底面ABCD 为正方形的四棱锥P ABCD -,底面边长为3,PD ABCD ⊥面,若AD 与BP 夹角为60.(1)求PD 的长度;(2)求四棱锥P ABCD -的体积. 【解析】(1) 因为AD BC ∥,所以PBC ∠为异面直线AD 与BP 所成角(或其补角)由AD 与BP 夹角为60,所以PBC ∠=60.PD ABCD PD BC BC PCD BC PC BC ABCD ABCD CD BC ⎫⊥⎫⇒⊥⎬⎪⇒⊥⇒⊥⊂⎬⎭⎪⇒⊥⎭面面面底面为正方形,在直角△PDC 中,PBC ∠=60,=3BC ,所以=6BP , 在直角△PDB 中, =6BP,BDPD (2) 四棱锥P ABCD -的体积为11==33P ABCD ABCD V PD S -⋅⋅⋅18.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)已知数列{}n a 的前n 项和为n S ,首项11a =;(1)若已知{}10=70n S a ,成等差数列,求{}n a 的通项公式 (2)若{}41=8n a a ,成等比数列,求>100n n S a 时n 的最小值. 【解析】(1) 已知{}n a 成等差数列,所以1101010()==702a a S +,因为11a =,所以1013a =,公差10141013a a d -==-,因此,{}n a 的通项公式为141(1)3n n a a n d -=+-=;(2) 若{}n a 成等比数列,首项11a =,41=8a ,所以公比1=2q ,因此,11=2n n a -,112=112nn S --,代入>100n nS a ,化简得2101n >, 因为672=642=128,,所以满足>100n n S a 时n 的最小值为7.19. (本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)有一条长为120米的步行道OA ,A 是垃圾投放点1ω,若以O 为原点,OA 为x 轴正半轴建立直角坐标系,设点(),0B x ,现要建设另一座垃圾投放点()2,0t ω,函数()t f x 表示与B 点距离最近的垃圾投放点的距离;(1)若60,t =求()()()606060108095f f f ,,,并写出()60f x 的函数解析式;(2)定义:将()t f x 与坐标轴围成的面积估计为扔垃圾的便利程度,问:垃圾投放点2ω要建立在何处才能比建在中点时更加便利? 【解析】(1)()()()60606010=60105080806020951209525f f f -==-==-=,,,()60f x 的函数解析式为()60|60|[090]=120(90120]x x f x x x -∈⎧⎨-∈⎩,,,,;(2)由(1)知()60f x 与坐标轴围成的面积为2011=60+6030=903022S ⨯⨯⨯⨯, 而()t f x 的函数解析式为()||[060]2=120(60120]2t t x t x f x t t x ⎧-∈+⎪⎪⎨⎪-∈+⎪⎩,,,,,()t f x 与坐标轴围成的面积为22111203=+(120)()=60+60602224t S t t t t -⨯⨯-⨯⨯-⨯,据题意,当0S S <时,垃圾投放点2ω比在中点时更加便利,即2360+1203090304t t ⨯-⨯<⨯,解得2060t <<. 因此,垃圾投放点2ω要建立在()20,0和()60,0两点之间,才能比建在中点时更加便利.20.(本题满分 16 分,第 1 小题满分 4 分,第 2 小题满分 5 分,第 3 小题满分 7 分)已知抛物线2y x =上动点()00,M x y 过M 分别作两条直线交抛物线于,P Q 两点,交直线x t =交于,A B 两点.(1)若点M M 到抛物线焦点的距离; (2)若1,(1,1),Q(1,1)t P =--,求证:A B y y ⋅为常数;(3)是否存在t ,使得A B y y ⋅=1且P Q y y ⋅为常数,若存在,求出t 的所有可能值,若不存在,请说明理由. 【解析】(1) 若点M M 的横坐标为2,依据抛物线的定义,点M 到抛物线焦点的距离等于到准线的距离, 因为抛物线2y x =的准线方程为1=4x -,所以点M 到抛物线焦点的距离为19244+=; (2) 设2(,)M a a ,直线MP 方程为:11(1)1y x a -=-+,令1x =-,得=A y 11a a -+; 直线MQ 方程为:11(1)1y x a +=--,令1x =-,得=B y 11a a +--, 因此A B y y ⋅=11a a -⨯+1=11a a +⎛⎫-- ⎪-⎝⎭为常数; (3) 设2(,)M a a ,(,)A t s ,1(,)B t s直线MA 方程为:2()a sy s x t a t--=--, 因为2y x =,代入上式整理得22220a s sa aty y a t a t---+=--,所以=P M y y ⋅2sa at a s--,即=P y sa ta s --;同理=Q y 11ata st s as a s--=--; 因此P Q y y ⋅=sa t a s -⨯-1a st as --=22222(1)+(1)sa s ta st sa s a s-+-++, 假设存在t ,使得A B y y ⋅=1且P Q y y ⋅为常数,记常数为k ,则22222(1)+=(1)sa s ta st k sa s a s-+-++,整理得,222(1)(1)()()0s k a s k t a s k t --+-+-=对于变量a 恒成立,当且仅当22(1)=0(1)()0()0s k s k t s k t -⎧⎪+-=⎨⎪-=⎩,解得1k t ==,因此假设存在1t =,使得A B y y ⋅=1且P Q y y ⋅为常数1.21.(本题满分 18 分,第 1 小题满分 4 分,第 2 小题满分 6 分,第 3 小题满分 8 分)已知A R ⊆,对于定义域为D 的函数,任意,t A x D ∈∈,恒有()(),f x t f x +≥则称函数()f x 具有性质A .(1)若{}=1A -,判断()=,()2f x x g x x -=是否具有性质A ;(2)已知()=01A ,,[)1()=+,,f x x x a x∈+∞,若()f x 具有性质A ,求正实数a 的范围; (3){}=2A m -,,m 为整数,()f x 是定义在整数集上的函数,若仅当()f x 为常值函数时,()f x 具有性质A ,求m 的所有可能值.【解析】(1)当{}=1A -,即1t =-时,若()=f x x -,则(1)=1f x x --+x -≥,恒有()(),f x t f x +≥所以()f x 具有性质A ;若()2g x x =,则(1)=22g x x --2x <,所以()g x 不具有性质A. (2)若[)1()=+,,f x x x a x∈+∞具有性质A , 不等式[)11,,x t x x a x t x+++∈+∞+≥,()01t ∈,恒成立, 不等式[)210,,x tx x a +-∈+∞≥,()01t ∈,恒成立,(视作关于x 的二次函数) 记函数[)2()1,h x x tx x a =+-∈+∞,,其图像为对称轴1=,022t x ⎛⎫-∈- ⎪⎝⎭的抛物线, 因为0a >,[)2()1,h x x tx x a =+-∈+∞,上单调递增,最小值为2()1h a a at =+-,所以只需210at a +-≥在()01t ∈,恒成立,(视作关于t 的一次函数) 只需当0t =时,210a -≥即可,所以1a ≥.(3) 征解。
上海市春季高考数学试卷(含答案).doc
上海市普通高等学校春季招生考试数学试卷一•填空题(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对得3分,否则一律得0分。
1.函数y = log2(x + 2)的定义域是 _________________2.方程2v = 8的解是_________________3.抛物线/=8x的准线方程是___________________4.函数y = 2sin x的最小正周期是_________________5.已知向量5 = (1, k),方= (9M —6)。
若万〃方,则实数k= _______________6.函数j = 4sinx + 3cosx的最大值是__________________7.复数2 + 3/ (d是虚数单位)的模是__________________8.在AABC中,角A、B、C所对边长分别为a、b、c ,若a = 5,/? = & 3 = 60°,贝ijb二—9.在如图所示的正方体ABCD_A、B\C\D\中,异面直线A/与所成角的大小为 ____________________________ 110.从4名男同学和6名女同学屮随机选取3人参加某社团活动,选岀的3人屮男女同学都有的概率为________ (结果用数值表示)。
11.若等差数列的前6项和为23,前9项和为57,则数列的前"项和»二_________________ o12.36的所有正约数之和可按如下方法得到:因为36=22X32,所以36的所有正约数之和为(1+3+32)+(2+2X3+2X32)+(22+22X3+22X32)=(1+2+22)(1+3+32)=91参照上述方法,可求得2000的所有正约数之和为________________________________二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年上海市春季高考数学试卷
一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7-12题每题5分) 1.(4分)集合A={1,3},B={1,2,a},若A⊆B,则a=.
2.(4分)不等式>3的解集为.
3.(4分)函数y=tan2x的最小正周期为.
4.(4分)已知复数z满足z+2=6+i,则z的实部为.
5.(4分)已知3sin2x=2sin x,x∈(0,π),则x=.
6.(4分)若函数y=a•3x+为偶函数,则a=.
7.(5分)已知直线l1:x+ay=1,l2:ax+y=1,若l1∥l2,则l1与l2的距离为.8.(5分)已知二项式(2x+)5,则展开式中x3的系数为.
9.(5分)三角形ABC中,D是BC中点,AB=2,BC=3,AC=4,则=.10.(5分)已知A={﹣3,﹣2,﹣1,0,1,2,3},a、b∈A,则|a|<|b|的情况有种.11.(5分)已知A1、A2、A3、A4、A5五个点,满足=0(n=1,2,3),||•||=n+1(n=1,2,3),则||的最小值为.
12.(5分)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为.
二、选择题(本大题共4题,每题5分,共20分)
13.(5分)计算:=()
A.3B.C.D.5
14.(5分)“α=β”是“sin2α+cos2β=1”的()
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件
15.(5分)已知椭圆+y2=1,作垂直于x轴的垂线交椭圆于A、B两点,作垂直于y轴的垂线交椭圆于C、D两点,且AB=CD,两垂线相交于点P,则点P的轨迹是()A.椭圆B.双曲线C.圆D.抛物线
16.(5分)数列{a n}各项均为实数,对任意n∈N*满足a n+3=a n,且行列式=c 为定值,则下列选项中不可能的是()
A.a1=1,c=1B.a1=2,c=2C.a1=﹣1,c=4D.a1=2,c=0
三、解答题(本大题共5题,共14+14+14+16+18=76分)
17.(14分)已知四棱锥P﹣ABCD,底面ABCD为正方形,边长为3,PD⊥平面ABCD.(1)若PC=5,求四棱锥P﹣ABCD的体积;
(2)若直线AD与BP的夹角为60°,求PD的长.
18.(14分)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.
(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;
(2)若数列{a n}为等比数列,a4=,求满足S n>100a n时n的最小值.
19.(14分)有一条长为120米的步行道OA,A是垃圾投放点ω1,若以O为原点,OA为x轴正半轴建立直角坐标系,设点B(x,0),现要建设另一座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.
(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;
(2)若可以通过f t(x)与坐标轴围成的面积来测算扔垃圾的便利程度,面积越小越便利.问:垃圾投放点ω2建在何处才能比建在中点时更加便利?
20.(16分)已知抛物线y2=x上的动点M(x0,y0),过M分别作两条直线交抛物线于P、Q两点,交直线x=t于A、B两点.
(1)若点M纵坐标为,求M与焦点的距离;
(2)若t=﹣1,P(1,1),Q(1,﹣1),求证:y A•y B为常数;
(3)是否存在t,使得y A•y B=1且y P•y Q为常数?若存在,求出t的所有可能值,若不存在,请说明理由.
21.(18分)已知非空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成立,则称函数f(x)具有A性质.
(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;
(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;
(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.。