高中数学 第一章《集合与简易逻辑》数学竞赛讲义 苏教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合与简易逻辑
一、基础知识
定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记
为A x ∈,否则称x 不属于A ,记作A x ∉。例如,通常用N ,Z ,Q ,B ,Q +
分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
定义3 交集,}.{B x A x x B A ∈∈=且 定义4 并集,}.{B x A x x B A ∈∈=或
定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。 定义6 差集,},{\B x A x x B A ∉∈=且。
定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合
},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞
定理1 集合的性质:对任意集合A ,B ,C ,有:
(1));()()(C A B A C B A = (2))()()(C A B A C B A =; (3));(111B A C B C A C = (4)).(111B A C B C A C = 【证明】这里仅证(1)、(3),其余由读者自己完成。
(1)若)(C B A x ∈,则A x ∈,且B x ∈或C x ∈,所以)(B A x ∈或)(C A x ∈,即)()(C A B A x ∈;反之,)()(C A B A x ∈,则)(B A x ∈或)(C A x ∈,即A x ∈且B x ∈或C x ∈,即A x ∈且)(C B x ∈,即).(C B A x ∈
(3)若B C A C x 11 ∈,则A C x 1∈或B C x 1∈,所以A x ∉或B x ∉,所以)(B A x ∉,又I x ∈,所以)(1B A C x ∈,即)(111B A C B C A C ⊆,反之也有
.)(111B C A C B A C ⊆
定理2 加法原理:做一件事有n 类办法,第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有n m 种不同的方法,那么完成这件事一共有
n m m m N +++= 21种不同的方法。
定理3 乘法原理:做一件事分n 个步骤,第一步有1m 种不同的方法,第二步有2m 种不同的方法,…,第n 步有n m 种不同的方法,那么完成这件事一共有n m m m N ⋅⋅⋅= 21种不同的方法。
二、方法与例题
1.利用集合中元素的属性,检验元素是否属于集合。 例1 设},,{2
2
Z y x y x a a M ∈-==,求证:
(1))(,12Z k M k ∈∈-; (2))(,24Z k M k ∈∈-;
(3)若M q M p ∈∈,,则.M pq ∈
2.利用子集的定义证明集合相等,先证B A ⊆,再证A B ⊆,则A =B 。 例2 设A ,B 是两个集合,又设集合M 满足
B A M B A B A M B M A ===,,求集合M (用A ,B 表示)
。
3.分类讨论思想的应用。
例3 }02{},01{},023{2
2
2
=+-==-+-==+-=mx x x C a ax x x B x x x A ,若
C C A A B A == ,,求.,m a
4.计数原理的应用。
例4 集合A ,B ,C 是I ={1,2,3,4,5,6,7,8,9,0}的子集,(1)若I B A = ,求有序集合对(A ,B )的个数;(2)求I 的非空真子集的个数。
5.配对方法。
例5 给定集合},,3,2,1{n I =的k 个子集:k A A A ,,,21 ,满足任何两个子集的交集非空,并且再添加I 的任何一个其他子集后将不再具有该性质,求k 的值。
6.竞赛常用方法与例问题。
定理4 容斥原理;用A 表示集合A 的元素个数,则,B A B A B A -+=
C B A C B C A B A C B A C B A +---++=,需要xy 此结论可以
推广到n 个集合的情况,即
∑
∑∑∑
=≠≤<<≤=+
-=n
i k j i j
i n
k j i j i i n
i i
A A A A A A A
1
11
.)
1(1
1
n
i i
n A
=--+-
定义8 集合的划分:若I A A A n = 21,且),,1(j i n j i A A j i ≠≤≤∅= ,则这些子集的全集叫I 的一个n -划分。
定理5 最小数原理:自然数集的任何非空子集必有最小数。
定理6 抽屉原理:将1+mn 个元素放入)1(>n n 个抽屉,必有一个抽屉放有不少于1+m 个元素,也必有一个抽屉放有不多于m 个元素;将无穷多个元素放入n 个抽屉必有一个抽屉放有无穷多个元素。
例6 求1,2,3,…,100中不能被2,3,5整除的数的个数。
例7 S 是集合{1,2,…,2004}的子集,S 中的任意两个数的差不等于4或7,问S 中最多
含有多少个元素?