B样条曲线曲面的性质及其生成算法的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B样条曲线曲面的性质及其生成算法的研究
XXX
(XXX学院数学与信息科学学院05级信本(2)班)
摘要
从B样条曲线曲面的定义入手,阐述了B样条曲线曲面的性质,在生成算法中提出了一个扩展B样条曲线曲面的新方法.扩展B样条曲线曲面的关键是为新增加的点确定节点值.生成算法的基本思想是:首先,B样条曲线和扩展部分在连接点处满足2
GC连续,用能量极小化方法确定扩展部分的曲线形状,通过对曲线重新参数化使两部分曲线满足2
C连续,进而确定新增加点的节点值.文章还讨论了运用该方法进行B样条曲面扩展,且以实例对新方法与其它方法进行了比较.
关键词:B样条曲线; B样条曲面;参数化;曲线扩展
Research On The Nature Of B-spline Curves And Surfaces And
Their Generation Algorithm
Yongning Zhang
College of Mathematics and Information Science , Xianyang Normal University , Information
Class 05(2)
Abstract
First, the definitions of B-spline curves and surfaces are introduced, and then the nature of B-spline curves and surfaces are studied. On the final, a new generation algorithm on expansion of B-spline curves and surfaces is proposed. The key thought of expansion of B-spline curves and surfaces is to determine the value of the new points. The basic idea of generation algorithm is: First of all, B-spline curve and the extension of the connecting points in a row to meet with the energy minimization method to determine the extension of the curve shape of the curve through re-parameterized so that the two parts meet the continuous curve, and then determine the new value of the node points. The article also discussed the use of the method of B-spline surfaces expansion, and compared an example of the new method with other methods.
Keywords: B-spline curve; B-spline surfaces; parameter; curve extension
目录
引言........................................................... - 3 - 1.B样条曲线.................................................. - 3 -
1.1 B样条基函数的定义...................................... - 3 -
1.2 B样条曲线的定义........................................ - 3 -
1.3 B样条曲线的性质....................................... - 4 -
1.3.1 严格的凸包性...................................... - 4 -
1.3.2 分段参数多项式.................................... - 4 -
1.3.3 可微性或连续性.................................... - 4 -
1.3.4 几何不变性........................................ - 4 -
1.3.5 局部可调性........................................ - 4 -
1.3.6近似性............................................ - 5 -
1.3.7变差缩减性........................................ - 5 -
1.4 B样条曲线的分类....................................... - 5 -
1.4.1均匀B样条曲线.................................... - 5 -
1.4.2 非均匀B样条曲线.................................. - 6 -
1.5 B样条曲线的生成算法.................................... - 7 -
1.5.1B样条曲线的扩展................................... - 7 -
1.5.2 2
GC连续条件...................................... - 8 -
1.5.3确定 的值........................................ - 8 -
1.5.4确定节点u的值.................................... - 9 -
1.5.5求控制顶点........................................ - 9 -
2.1 B样条曲面的定义....................................... - 12 -
2.2 B样条曲面的性质...................................... - 12 -
2.3 B样条曲面的分类...................................... - 12 -
2.3.1 均匀B样条曲面................................... - 12 -
2.3.2 非均匀B样条曲面................................. - 13 -
2.4 B样条曲面的生成算法.................................. - 14 -
3.应用........................................................ - 15 - 4结论........................................................ - 16 - 谢辞.......................................................... - 17 - 参考文献...................................................... - 17 -