北师大版七年级数学上册5.1 认识一元一次方程公开课优质教案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章一元一次方程 1 认识一元一次方程第1课时

1.内容结构特点

为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生的抽象概括能力,本章内容的呈现大都以求解一个实际问题为切入点,让学生经历抽象符号交换、应用等活动,从中培养学生解决问题的兴趣和能力,增强学生的思维水平和应用数学知识去解决实际问题的意识.

2.教材的地位及作用

方程是中学数学的重要内容,一元一次方程作为内容最基本、形式最简单的方程,在初中代数中占有极其重要的地位.本章内容在整个代数知识的学习中起着承上启下的作用,一方面是对已学过的代数式、有理数的运算、整式的加减等知识的巩固和加深,另一方面又为今后学习方程组、分式方程、函数等知识奠定基础,尤其是一元一次方程的应用,充分体现了数学知识来源于实践,又指导实践的辩证关系.学生在“建模”“理论联系实际”等数学思想的学习中,既可以增强应用数学的意识,提高分析问题、解决问题的能力,又可以养成学以致用的好习惯.

3.教学重点与难点

教学重点:

(1)理解等式的两条基本性质;会用字母表示它们,并能熟练运用.

(2)熟练掌握一元一次方程的基本解法.

(3)能根据实际生活背景列一元一次方程解应用题.

教学难点:通过对实际问题的分析,正确理解题目中隐含的等量关系,列出方程.4.教学目标

(1)根据具体问题中的数量关系,经历形成方程模型、解方程和运用方程解决实际问题的过程;体会方程是刻画现实世界的有效数学模型.

(2)了解一元一次方程及其相关概念;会解一元一次方程(数字系数).

(3)能以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力.

(4)在经历建立方程模型解决实际问题的过程中,体会数学的应用价值.

5.教学建议

(1)教学应结合具体内容多采用“问题情境——建立模型——应用拓展”的模式展开,让学生经历方程的形成与应用的过程,从而更好地理解方程的意义,发展应用数学的意识和能力.

(2)有效的数学学习不是单纯的模仿和记忆,解方程的步骤也没有统一模式,教师应注意引导学生选择合理的解方程步骤,关注他们的个性发展.

(3)运用方程解决实际问题时,注意启发学生从多角度寻找等量关系,关注他们能否恰当地转化和分析量与量之间的关系,并鼓励学生大胆质疑和创新.

6

认识一元一次方程

第1课时

教学重点与难点

教学重点:

1.一元一次方程的概念.

2.通过现实情境建立方程模型的思想.

教学难点:

1.对一元一次方程的概念、特征的理解.

2.从现实情境中提炼等量关系.

学情分析

认知基础:因为在小学阶段学习过简易方程,所以七年级的学生对方程这个模型并不陌生.不过与初中的要求相比,已学过的这些知识的规范性、严谨性还不够,对知识的理解比较表层,而且受小学算术解法的影响,大部分学生还没有真正体会到方程在解决实际问题时的优越性和重要性.

活动经验基础:教材为学生提供了许多生动有趣的现实情境,而且七年级学生的思维活跃,乐意接受新事物,喜欢参与探索活动,只要激发起兴趣,本节课要贯彻的数学思想就能较好的实施下去.

教学目标

1.通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.

2.能根据给出的现实情境,找出其中的等量关系列出方程.

3.通过观察,归纳出一元一次方程的概念.

4.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力.

教学方法

先通过设置丰富的问题情境吸引学生思考、讨论,克服算术解法的思维定势影响,突出“建模思想”,并引导学生归纳概括相关概念,再利用辨析题,用对比的方法让学生进一步加深对方程、一元一次方程概念的认识,增强他们的判断能力和理解能力.教学过程

一、师生互动,游戏引入

设计说明

通过联系生活中的实际问题,以互动游戏的方式导入新课,可以使学生在心理上缩短与教师间的距离,以放松、愉快的状态顺利开始新课,同时还激发了学生的好奇心和主动学习的欲望,为引出方程的概念作准备.

教师和同学们互动做两个游戏:

游戏一:圈出日历中一个竖列上相邻的三个日期,把它们的和告诉我,我能马上知道这三天分别是几号.

此游戏可由两名学生分别说出任意三个日期的和,教师回答结果.

游戏二:把你的年龄乘2减5的得数告诉我,我就知道你今年几岁.

此游戏可安排两组学生尝试完成.

问题1:你能说出其中的奥秘吗?

学生进行小组活动,通过观察分析特征,抓住问题中的等量关系.

问题2:你能用符号语言表述其中的数量关系吗?

学生能够发现、找到的规律是多样的.以游戏一为例,当确定三个日期的和为45时,通常会有以下几种形式:(x-7)+x+(x+7)=45(其中x为竖列三个数中的第二个);x+(x+7)+(x+14)=45(其中x为竖列三个数中的第一个);x+(x-7)+(x-14)=45(其中x 为竖列三个数中的第三个),教师应及时鼓励和评价学生的各种答案,并使学生在倾听别人的想法、意见的同时,不断完善自己的认识.

随着问题的逐一解答,学生已经联想到以前学过的方程知识,这时教师就可以顺势切入课题,并请学生回顾并口述方程的概念了.

含有未知数的等式叫做方程.

随堂练习1:判断下列各式中哪些是方程?

(1)2x-3=5;(2)1-8=x;(3)x-3=2x+7;(4)x-(x-1)=1;(5)y-2;(6)3-2=1.

答案:(1)(2)(3)(4).

教学说明

本节课采用师生互动游戏的形式引入新课,学生积极参与到熟悉的情境活动中,通过饶有兴趣的思考,自然而然的渴望知道其中的奥秘,进而被教师带入课堂学习,带进了神奇的方程世界.由于七年级的学生性格活泼,参与热情高,易调动,所以课堂气氛活跃,师生交流融洽而热烈.

相关文档
最新文档