《导数及其应用》经典题型及知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《导数及其应用》经典题型和知识点总结

一、知识网络结构

题型一 求函数的导数及导数的几何意义 考点一 导数的概念,物理意义的应用

例1.(1)设函数()f x 在2x =处可导,且(2)1f '=,求0

(2)(2)

lim

2h f h f h h

→+--;

(2)已知()(1)(2)

(2008)f x x x x x =+++,求(0)f '.

考点二 导数的几何意义的应用

例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值

例3:已知曲线y=.3

43

13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.

题型二 函数单调性的应用

考点一 利用导函数的信息判断f(x)的大致形状

例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( )

导 数

导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值

常见函数的导数 导数的运算法则

考点二 求函数的单调区间及逆向应用

例1 求函数522

4

+-=x x y 的单调区间.(不含参函数求单调区间)

例2 已知函数f (x )=1

2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间)

练习:求函数x

a

x x f +

=)(的单调区间。

例3 若函数f(x)=x 3-ax 2

+1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用)

练习1:已知函数0],1,0(,2)(3

>∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3

)(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 3. 已知函数f (x )=ax 3+3x 2-x+1在R 上为减函数,求实数a 的取值范围。

总结:已知函数)(x f y =在),(b a 上的单调性,求参数的取值范围方法: 1、利用集合间的包含关系

2、转化为恒成立问题(即0)(0)(/

/

≤≥x f x f 或)(分离参数) 3、利用二次方程根的分布(数形结合) 例4 求证x x

练习:已知x>1,证明x>ln(1+x).

题型三 函数的极值与最值

考点一 利用导数求函数的极值。

例1 求下列函数的极值:(1)f(x)=x +1

4x ;(2)f(x)=ln x +1x .(不含参函数求极值)

例2 设a>0,求函数f(x)=x 2+a

x (x>1)的单调区间,并且如果有极值时,求出极值.(含参函数求极值)

例3设函数f(x)=a

3x 3+bx 2+cx +d(a>0),且方程f ′(x)-9x =0的两个根分别为1,4.若f(x)在(-∞,

+∞)内无极值点,求a 的取值范围.(函数极值的逆向应用)

例4 已知函数f(x)=x 3

-3ax -1,a ≠0. (利用极值解决方程的根的个数问题) (1)求f(x)的单调区间;

(2)若f(x)在x =-1处取得极值,直线y =m 与y =f(x)的图象有三个不同的交点,求m 的取值范围.

题型四 函数的最值

例1 求函数[]2,2,1

4)(2

-∈+=

x x x

x f 的最大值与最小值。(不含参求最值)

例2 已知函数f(x)=ax 3-6ax 2+b ,试问是否存在实数a 、b ,使f(x)在[-1,2]上取得最大值3,最小值-29,若存在,求出a ,b 的值;若不存在,请说明理由.(最值的逆向应用)

例3 已知f(x)=xlnx ,g(x)=x 3+ax 2-x +2. (1)求函数f(x)的单调区间.

(2)若对任意x ∈(0,+∞),2f(x)≤g ′(x)+2恒成立,求实数a 的取值范围.(利用极值处理恒成立

问题)

练习1 已知f (x )=x 3-1

2

x 2-2x +5,当x ∈[-1,2]时,f (x )

(2)f (x )=ax 3-3x +1对于x ∈[-1,1]恒有f (x )≥0成立,则a =________.

二、知识点

1、函数()f x 从1x 到2x 的平均变化率:

()()

2121

f x f x x x --.

2、导数定义:()f x 在点0x 处的导数记作x

x f x x f x f y x x x ∆-∆+='='

→∆=)()(lim

)(000

00

3、函数()y f x =在点0x 处的导数的几何意义是曲线()

y f x =在点

()()

00,x f x P 处的切线的斜率.

4、常见函数的导数公式:

①'

C 0=;②1')(-=αααx

x ; ③x x cos )(sin '

=;④x x sin )(cos '

-=;

⑤a a a x

x ln )('

=;⑥x

x e e ='

)(; ⑦a x x a ln 1)(log '

=

;⑧x

x 1)(ln '

= 5、导数运算法则:

()1 ()()()()f x g x f x g x '

''±=±⎡⎤⎣⎦;

()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;

()3()()()()()()

()()()2

0f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.

6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减.

7、求解函数()y f x =单调区间的步骤:

(1)确定函数()y f x =的定义域; (2)求导数'

'

()y f x =; (3)解不等式'

()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间.

8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:

()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.

9、求解函数极值的一般步骤:

(1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根

(4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:

()1求函数()y f x =在(),a b 内的极值;

()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最

相关文档
最新文档