最值问题——阿氏圆
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内分点:当点P在线段AB上时,P就是AB的内分点 外分点:当点P在线段AB的延长线上时,P就是AB的外 分点
阿氏圆结论与证明
当P在在圆上运动时,PA、PB的的比值始终保持不变 构造子母型相似
P
O
P2
A
P1
B
模型使用步骤
P
P2
O
A
P1
B
确定模型五步骤:
①圆心
②圆上动点 ③圆外固定点
④以圆心所在角为公共角
⑤子交点(位置需要自己找)在圆心与圆外固定点连线上
• 确定动点的运动轨迹,以及轨迹的圆心和半径 • 找到比例为k的边,构成母三角形,标出两边的夹角 • 利用标出两边的夹角,构造一个线段,长度比半径成比例k,构造出子三角形,母子
三角形相似 • 得到去除系数k的线段,结合两点之间线段最短进行求解
解析: 连接CP,在CB上取点D使CD=1 则△PCD∽△BCP AP+½BP=AP+PD 当A、P、D三点共线时,AP+PD的值最小 最小值= AC2 CD2 37
2 37 3
∵AC = 4,CD = 3,在CB上取一点M,使得CM = 2 CD = 4
源自文库
BC
3
3
AD + 2 BD的最小值 42 4 2 4 10
3
3
3
过关检测
学习从来无捷径,循序渐进登高峰
最值问题求解
阿波罗尼斯圆
阿氏圆
• 一动点P到两定点A、B的距 离之比等于定比m:n,则P点的 轨迹是以定比m:n内分和外分 定线段AB的两个分点的连线 为直径的圆,称为阿波罗尼 斯圆,简称阿氏圆
• 专门解决(AP+mBP,m≠1)最小值问题
• 与胡不归模型区别: 胡不归(动点在直线上);阿氏圆(动点在圆上)
阿氏圆结论与证明
当P在在圆上运动时,PA、PB的的比值始终保持不变 构造子母型相似
P
O
P2
A
P1
B
模型使用步骤
P
P2
O
A
P1
B
确定模型五步骤:
①圆心
②圆上动点 ③圆外固定点
④以圆心所在角为公共角
⑤子交点(位置需要自己找)在圆心与圆外固定点连线上
• 确定动点的运动轨迹,以及轨迹的圆心和半径 • 找到比例为k的边,构成母三角形,标出两边的夹角 • 利用标出两边的夹角,构造一个线段,长度比半径成比例k,构造出子三角形,母子
三角形相似 • 得到去除系数k的线段,结合两点之间线段最短进行求解
解析: 连接CP,在CB上取点D使CD=1 则△PCD∽△BCP AP+½BP=AP+PD 当A、P、D三点共线时,AP+PD的值最小 最小值= AC2 CD2 37
2 37 3
∵AC = 4,CD = 3,在CB上取一点M,使得CM = 2 CD = 4
源自文库
BC
3
3
AD + 2 BD的最小值 42 4 2 4 10
3
3
3
过关检测
学习从来无捷径,循序渐进登高峰
最值问题求解
阿波罗尼斯圆
阿氏圆
• 一动点P到两定点A、B的距 离之比等于定比m:n,则P点的 轨迹是以定比m:n内分和外分 定线段AB的两个分点的连线 为直径的圆,称为阿波罗尼 斯圆,简称阿氏圆
• 专门解决(AP+mBP,m≠1)最小值问题
• 与胡不归模型区别: 胡不归(动点在直线上);阿氏圆(动点在圆上)