24.3正多边形与圆1导学案x
人教版数学九年级上册24.3《正多边形和圆(1)》导学案1
课题24.3 正多边形和圆(第1课时)课型新授学习目标1.了解正多边形和圆的有关概念;理解并掌握正多边形半径、中心角、弦心距、•边长之间的关系.2.会应用多边形和圆的有关知识解决实际问题.重点讲清正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系.难点通过例题使学生理解四者:正多边形半径、中心角、•弦心距、边长之间的关系.其他直尺、圆规教师教法课前预习导学学生学法启发引导课前预习:提示:动手尝试,并要求讲出画图的方法问题1:给你一个圆,你能把这个圆周四等分吗?问题2:你能把一个圆周五等分吗?请说出你的画法。
归纳:要把一个圆周进展等分,只要把圆心角进展等分就可以了。
一般地,要把一个圆周n等分,只要把周角n等分即可,每一个圆心角的度数是。
问题3:顺次连结圆周上的四等分点,得到的是不是正方形呢?顺次连结圆周上的五等分点,得到的是不是正五边形呢?顺次连结圆周上的n等分点,得到的是不是正多边形呢?学生动手自主探究4、正多边形的有关概念正多边形的中心,正多边形的半径,正多边形的中心角,正多边形的边心距。
教师教法课上交流助学学生学法归纳总结合作探究:正多边形的中心角、半径、边心距以及边长之间有什么关系呢?友情提示:注意中心角与内角区别。
将中心角、半径、边心距放到一个三角形中讨论,问题将容易解决。
〔1〕假设正三角形的边长为1,你能求出哪些未知的量?〔2〕正n边形的一个内角等于度,中心角等于度。
2〕。
合作学习老师指导当堂达标促学学生学法拓展反应:1.填表:多边形的边数内角中心角半径边长边心距周长面积3 R4 R6 R2.如下图,•⊙O•的周长等于6 cm,•求以它的半径为边长的正六边形ABCDEF的面积.解:处理课后习题一课一得:合作学习老师指导。
部编版人教初中数学九年级上册《24.3 正多边形和圆 导学案》最新精品优秀完美获奖导学单
前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)24.3正多边形和圆1.了解正多边形的概念.2.会判定一个正多边形是中心对称图形还是轴对称图形.3.会进行有关圆与正多边形的计算.4.会通过等分圆心角的方法等分圆周,从而画出所需的正多边形.5.能够用直尺和圆规作图,作出一些特殊的正多边形.阅读教材第105至107页,完成下列知识探究.知识探究1.________相等,________也相等的多边形叫做正多边形.2.一个正多边形的外接圆的________叫做这个正多边形的中心,外接圆的________叫做正多边形的半径,正多边形每一边所对的________叫做正多边形的中心角,中心到正多边形的一边的________叫做正多边形的边心距.3.把一个圆分成几等份,连接各点所得到的多边形是________,它的中心角等于________.4.正n边形都是轴对称图形,当边数为偶数时,它的对称轴有________条,并且还是中心对称图形;当边数为奇数时,它只是____________.自学反馈1.如果正多边形的一个外角等于60°,那么它的边数为________.2.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数为________.3.已知正六边形的外接圆半径为3 cm ,那么它的周长为________cm .4.正多边形的一边所对的中心角与该正多边形的一个内角的关系是________.5.两个正六边形的边长分别是3和4,这两个正六边形的面积之比等于________.边数相等的正多边形是相似的.6.圆内接正方形的半径与边长的比是________;圆内接正方形的边长为 4 cm ,那么边心距是________.7.已知圆内接正方形的边长为4,则该圆的内接正六边形边长为________;圆内接正六边形的边长是8 cm ,那么该正六边形的半径为________;边心距为________.8.利用你手中的工具画一个边长为3 cm 的正五边形.要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径.活动1 小组讨论例1 如图所示,⊙O 中,AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=FA ︵.求证:六边形ABCDEF 是正六边形.证明:略.由本题的结论可得:只要将圆分成n 等分,顺次连接各等分点,就可得到这个圆的内接正n 边形.例2 如图,正六边形ABCDEF 内接于⊙O,若⊙O 的内接正△ACE 的面积为48 3.试求正六边形的周长.。
九年级上数学导学案第二十四章243正多边形和圆(人教版).doc
24. 3正多边形和知识与技能:1、了解正多边形和圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。
2、能运用正多边形的知识解决圆的有关计算问题。
过程与方法:1、在探索正多边形与圆的关系的过程屮,学生体会化归思想在解决问题屮的重要性。
2、发展学生的观察、比较、分析、概括及归纳的逻辑思维能力情感态度价值观:经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。
重点探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。
难点探索正多边形与圆的关系。
教学过程一、自主探究1、创设情境,导入新课:观察下列美丽图案(课本图24. 3—1)回答问题:(1)这些美丽的图案,都是在日常生活中我们经常看到的得用正多边形得到的物体,你能从这些图案中找出正多边形来吗?(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?2、自主探究问题1:将一个圆分成五等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论。
问题2:如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?认识正n边形归纳总结一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角. 中心到正多边形的一边的距离叫做正多边形的边心距.3、尝试应用1.课本例题,有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(精D确到0. Im)二、操作能力提升怎样画一个正多边形呢?问题1:已知00的半径为2cm,求作圆的内接正三角形.你能用以上方法画出正四边形、正五边形、正六边形吗?你能尺规作出正四边形、正八边形吗?你能尺规作出正六边形、正三角形、正十二边形吗?说说作正多边形的方法有哪些?四、补偿提高1、正方形ABCD的外接圆圆心0叫做正方形ABCD的 _____ ・2、正方形ABCD的内切圆00的半径0E叫做正方形ABCD的3、若正六边形的边长为1,那么正六边形的中心角是_________ 度,半径是______ ,边心距是______ ,它的每一个内角是______ ・4、正n边形的一个外角度数与它的_______ 角的度数相等.5•正多边形一定是____ 对称图形,一个正n边形共有___________ 条对称轴,每条对称轴都通过______ ;如果一个正n边形是中心对称图形,n 一定是 _________ .6.将一个正五边形绕它的中心旋转,至少要旋转________ 度,才能与原来的图形位置重合.7. _______________________________________________________________________ 两个正三角形的内切圆的半径分别为12和1&则它们的周长之比为 ______________________ 面积之比为________ .五,今天我学到了。
人教版九年级上册数学学案:24.3.1正多边形和圆
课型新授主备人授课人审核人导学流程四、拓展延伸:1.等边△ABC的边长为a,求其内切圆的内接正方形DEFG的面积.2.如图所示,已知⊙O•的周长等于6πcm,•求以它的半径为边长的正六边形ABCDEF的面积.3.如图所示,正五边形ABCDE的对角线AC、BE相交于M.(1)求证:四边形CDEM是菱形;(2)设MF2=BE·BM,若AB=4,求BE的长.五、达标测试:1.如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().A.60° B.45° C.30° D.22.5°2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是().A.36° B.60° C.72° D.108°3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为()A.18° B.36° C.72° D.144°1.已知正六边形边长为a,则它的内切圆面积为_______.2.在△ABC中,∠ACB=90°,∠B=15°,以C为圆心,CA长为半径的圆交AB于D,如图所示,若AC=6,则AD的长为________.3.四边形ABCD为⊙O的内接梯形,如图所示,AB∥CD,且CD为直径,•如果⊙O的半径等于r,∠C=60°,那图中△OAB的边长AB是______;△ODA的周长是_______;∠BOC的度数是________.师生备注班级九小组姓名授课时间学习目标1.正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,•正多边形的半径,正多边形的中心角,正多边形的边心距. 2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系. 3.正多边形的画法学习重难点重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系.难点与关键:通过例题使学生理解四者:正多边形半径、中心角、•弦心距、边长之间的关系.导学流程一、预习检测:1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?二、情境引入:如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆三、探究新知:很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF,因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.为了今后学习和应用的方便,•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.巩固1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.2.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN,其中D、E在AB上,如图的设计方案是使AC=8,BC=6.(1)求△ABC的边AB上的高h.(2)设DN=x,且h DN NFh AB-=,当x取何值时,水池DEFN的面积最大?(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树师生备注师生后记:_F_D_E_C_B_A_O_M_h_F_D_E_C_B_A_N_G。
24.3正多边形和圆导学案
24.3 正多边形和圆问题导引1.与正多边形有关的概念,你掌握了吗?2.你能利用相关知识解决一些简单的题目吗?复习巩固1.五角星的画法通常是先把圆五等分,然后连接五等分点而得到(如图).五角星的每一个角的度数为( )A .030B .035C .036D .0372.一个正多边形绕它的中心旋转036后,才能与原正多边形第一次重合,那么这个多边形是正 边形. 3.若正三角形的边长为4cm ,那么正三角形的中心角是 ,边心距是 cm .4.直径为20的圆内接正六边形的周长为 ,面积为 .能力提高5.一个正方形有一个外接圆和一个内切圆,这两个圆的面积比是( )A .3:2B .2:1C .4:9D .9:256.若正三角形的外接圆半径为6cm ,则此三角形的内切圆半径为 cm . 7.一个正多边形的半径为2,边心距为3,则它的边数为 .综合运用8.如图,正六边形ABCDEF 内接于⊙O ,点M 为的对角线AE 、BF的交点.(1)请写出图中所有的等腰三角形(不添加辅助线,不需证明);(2)若此正六边形的边长为x ,BF=y ,求y 与x 的函数关系式.9.如图(1)、(2)、(3)、…(n ),M 、N 两点分别是⊙O 的内接三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上点,且BM=CN ,连接OM 、ON .(1)求图(1)中∠MON 的度数;(2)在图(2)中∠MON 的度数是 ,在图(3)中∠MON 的度数是 .(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).第1题图 第9题图 (1) (2)(3) (4)第8题图。
数学九年级上册第二十四章圆24.3正多边形和圆导学案
24.3 正多边形和圆1.了解正多边形的概念,会通过等分圆心角的方法等分圆周画出所需的正多边形. 2.会判定一个正多边形是中心对称图形还是轴对称图形,能够用直尺和圆规作图,作出一些特殊的正多边形.3. 会进行有关圆与正多边形的计算.重点:正多边形和圆中正多边形半径、中心角、弦心距、边长之间的关系.难点:理解正多边形半径、中心角、弦心距、边长之间的关系.一、自学指导.(10分钟)自学:阅读教材P 105~107.归纳:1.__各边__相等,__各角__也相等的多边形叫做正多边形.2.把一个圆分成几等份,连接各点所得到的多边形是__正多边形__,它的中心角等于__360°边数__. 3.一个正多边形的外接圆的__圆心__叫做这个正多边形的中心;外接圆的__半径__叫做正多边形的半径;正多边形每一边所对的__圆心角__叫做正多边形的中心角;中心到正多边形的一边的__距离__叫做正多边形的边心距.4.正n 边形都是轴对称图形,当边数为偶数时,它的对称轴有__n__条,并且还是中心对称图形;当边数为奇数时,它只是__轴对称图形__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.如果正多边形的一个外角等于60°,那么它的边数为__6__.2.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数为__4__.3.已知正六边形的外接圆半径为3 cm ,那么它的周长为__18_cm __.4.正多边形的一边所对的中心角与该正多边形的一个内角的关系是__互补__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(9分钟)1.如图所示,⊙O 中,AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=FA ︵.求证:六边形ABCDEF 是正六边形.证明:略.点拨精讲:由本题的结论可得:只要将圆分成n等分,顺次连接各等分点,就可得到这个圆的内接正n边形.2.如图,正六边形ABCDEF内接于⊙O,若⊙O的内接正三角形ACE的面积为483,试求正六边形的周长.解:48.点拨精讲:圆的内接正六边形的边长等于圆的半径,故要求正六边形的边长,需先求圆的半径.3.利用你手中的工具画一个边长为3 cm的正五边形.点拨精讲:要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3 cm的正五边形的半径.4.你能用尺规作出正四边形、正八边形吗?点拨精讲:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆内接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……5.你能用尺规作出正六边形、正三角形、正十二边形吗?点拨精讲:以半径长在圆周上截取六段相等的弧,顺次连接各等分点,则作出正六边形.先作出正六边形,则可作正三角形,正十二边形,正二十四边形……二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.正n边形的一个内角与一个外角之比是5∶1,那么n等于__12__.2.若一正四边形与一正八边形的周长相等,则它们的边长之比为__2∶1__.3.正八边形有__8__条对称轴,它不仅是__轴__对称图形,还是__中心__对称图形.点拨精讲:正n边形的中心对称性和轴对称性.4.有两个正多边形边数比为2∶1,内角度数比为4∶3,求它们的边数.解:10,5.点拨精讲:本题应用方程的方法来解决.5.教材P106练习.学生总结本堂课的收获与困惑.(2分钟)1.正多边形和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边形的边心距.2.正多边形的半径、正多边形的中心角、边长、正多边形的边心距之间的等量关系.3.画正多边形的方法.学习至此,请使用本课时对应训练部分.(10分钟)。
24.3正多边形与圆1导学案(新部编)
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校24.3 正多边形和圆(第一课时)一、教学目标了解正多边形和圆的有关概念;根据定义会判断一个多边形是否为正多边形;理解并掌握正多边形半径和边长、边心距、中心角之间的关系。
二、自学指导:1、把一个圆分成相等的n 段弧后作出的这个圆的内接多边形是正多边形吗?你会证明吗?(2)正n 边形的对称性如何?2、正n 边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?注:自学时间为5分钟,5分钟后比谁能更准确快速地完成检测题。
三、检测题:1、矩形是正多边形吗?菱形呢?正方形呢?为什么?2、如图,⊙O 的内接正六边形ABCDEF 中,OP BC ⊥于点P, 则这个正六边形的中心为 ;它的半径为 ;中心角是∠ ,是 度;边心距为 。
思考1:正多边形的中心、半径、中心角、边心距的定义是什么?讨论1:正n 边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?(3n ≥)讨论2:正n 边形的对称性如何?(3n ≥)(3)如图:在⊙O 中,»»»»»»AB BC CD DE EF AF =====,六边形ABCDEF 是⊙O 的内接六边形,求证:六边形ABCDEF 是正六边形.思考2:1、各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,请说明为什么,如果不是,举出反例.例:有一个亭子它的地基是半径为4m 的正六边形,求地基的周长和面积(精确到0.1平方米).P O F E D C B A P r R O F E DC BA。
24.3正多边形和圆(导学案)
24.3正多边形和圆、新课导入1•导入课题:2•学习目标:(1)理解正多边形及其半径、边长、边心距、中心角等概念(2)会进行特殊的与正多边形有关的计算,会画某些正多边形3•学习重、难点:重点:正多边形的有关概念与计算•难点:正多边形的有关计算•二、分层学习第一层次学习1•自学指导:(1) 自学内容:教材第105页至第106页的内容•(2) 自学时间:6分钟•(3) 自学方法:完成自学参考提纲•(4) 自学参考提纲:①什么叫正多边形?矩形是正多边形吗?菱形呢?正方形呢?各边相等、各角也相等的多边形叫做正多边形•矩形和菱形不是正多边形,正方形是正多边形•②正多边形是轴对称图形吗?是中心对称图形吗?是轴对称图形,不一定是中心对称图形③以正六边形为例,指出右图中正多边形的中心、心距•中心:点0.半径:0C、OE、OF.情景:欣赏下面图片问题:什么叫正多边形?图中有哪些正多边形?正多边形与圆有哪些关系?半径、中心角和边中心角:/ EOF.边心距:0M.④正n边形的每个内角都为“ 2 ?80,每个外角都为^6^,中心角为.n n n ⑤有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(保留小数点后解:作0M丄BC于M.连接OB、0C, •/ ABCDEF是正六边形•••△ OBC 为正三角形,•••/ MOC= 1/ BOC=30 , OB=BC=OC2• I = 6BC = 6OB = 6^4 = 24 ( m)在Rt△ OMC 中,•••/ MOC=3° ,• MC= 1 OC=2m.2• OM=OC 2-MC 2= 2 .3 m.…S OBC = —BC|_O M = — 4 2^3 =4 , 3(m ).f 2 2=6S°BC =24;3 41.6 m…S正六边形即地基的周长为24m,面积约为41.6m2.2•自学:学生结合自学指导进行自学.3. 助学:(1)师助生:①明了学情:明了学生完成自学参考提纲的情况②差异指导:根据学情进行个别指导或分类指导(2)生助生:小组内相互交流、研讨4. 强化:(1) 正多边形的相关概念.(2) 正n多边形的对称性.⑶填表:正务边形边数内角中心角半径边长边心距周长面积岳1 6 3 3 3 60fl丨21「22斗血90°2184 6120°60°2212 6 31•自学指导:(1) 自学内容:教材第107页的内容.(2) 自学时间:4分钟.(3) 自学要求:阅读并画图,推理以强化理解•(4) 自学参考提纲:①两种六等分圆周的方法中,第一种方法的依据是作相等的圆心角;第二种方法的依据是在圆上作相等的弧•2•自学:学生结合自学指导进行自学3•助学:(1)师助生:①明了学情:明了学生是否明白画图的依据②差异指导:根据学情进行指导(2)生助生:生生互动,交流、研讨4•强化:正多边形的画法.三、评价1•学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有哪些疑惑?2•教师对学生的评价:(1) 表现性评价:点评学生学习的态度、积极性、动手情况及学习效果和存在问题等•(2) 纸笔评价:课堂评价检测•3•教师的自我评价(教学反思) :(1)本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想•其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.(2)等分圆周法是一种作正多边形的常见方法,通过作简单的第二层次学习②分别在所给的圆中画出正三角形、正方形和正六边形正三角形、正方形、正六边形,一直推广到作正八边形的情况, 可以向学生灌输极限的思想,极限是微积分中最主要、 最基本的概念,它从数量上描述变量在变化过程中的变化趋势, 在 高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.----------- 评价作:亚I ------------------------------------- ■>(时间:12分钟满分:100分)、基础巩固(70分)1. (10分)下列说法中正确的是(C ) A. 各边都相等的多边形是正多边形B. 正多边形既是轴对称图形,又是中心对称图形C. 各边都相等的圆内接多边形是正多边形D. 各角都相等的圆内接多边形是正多边形4.(20分)如图,要拧开一个边长为 a=6mm的正六边形螺帽,扳手张开的开口 b 至少为多少?解:如图,/ ABC=120 .AB = a,AC = b.过 B 作 BD 丄 AC 于点 D, 贝U AD=DC= 1 b2在 Rt △ ABD 中,/ BAC=30 ,••• BD= — AB=3mm.2• AD = AB 2 BD 2 = , 62 32 = 3 - 3 (mm ) • b=2AD=63mm.即扳手张开的开口 b 至少要6.3 mm.2. (10分)如果一个正多边形的每个外角都等于36 °,则这个多边形的中心角等于( A ) D.54 °3.(10分)如图,点0是正六边形的对称中心,如果用一副三角板的角,么n 的所有可能取值的个数是(A )A.4B.5C.6D.75. (20分)如图,正方形的边长为4cm,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积解:设正八边形的边长为xcm,2则i 4^x 2 二X2.即X2+8X-16=0..2解得X, , X2 - -4 2-4 (舍去).- 2•••剪去的四个小三角形的面积为4‘4血4)疋丄;<4 =(48 _32血)cm22 2 _V』•正八边形的边长为 4 2 -4 cm,面积为4 4 - 48-32••三二3^ 2 -32 cm2.、综合应用(20分)6. (20分)如图,已知正五边形ABCDE中,BF与CM相交于点P, CF=DM.(1)求证:△ BCFCDM ;(2)求/ BPM的度数.(1)证明:T ABCDE是正五边形,• BC=CD, / BCD= / CDM,又CF = DM,(2)解:由(1)知/ FBC= / MCD ,• / BPM= / FBC+ / BCM= / MCD+ / BCM= / BCF= 3X180 °108〔三、拓展延伸(10 5分)7. (10分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的直径”封闭图形的周长与直径之比称为图形的周率”下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1, a2, a3, 84,则下列关系中正确的是(A.a4> a2> a1B.84> a3> a2C.a1 > a2> a3D.a2> a3> a4。
新人教版九年级数学上册导学案:24.3正多边形和圆(1)
新人教版九年级数学上册导学案:24.3正多边形和圆(1) 学习目标1、认识正多边形半径和边长、边心距、中心角,并弄明白它们之间的关系2、会圆内接正多边形的两种画法:(1)用量角器等分圆周法作正多边形;(2)用尺规作图法作特殊的正多边形预习导学一知识链接:1.正多边形和圆的关系:只要把一个圆分成的一些弧,就可以作出这个圆的,这个圆就是这个正多边形的.2. 正多边形的性质:正n边形的每一个内角都等于,中心角等于,外角等于,正多边形的中心角与外角. 3.正多边形的计算中常用的结论是:(1)正多边形的中心角等于;(2)正多边形的半径、边心距、边长的一半构成三角形;(3)正n边形的半径和边心距,把正n边形分为2n个直角三角形.二、探究新知:思考:如何利用等分圆弧的方法来作正n边形?方法一、任何正n边形的作法:用量角器作一个等于的圆心角,再等分圆;方法二、特殊正多边形的作法:正六边形和正方形等的尺规作法.(在此基础上,还可以进一步作出正三角形、正八边形、正十二边形)活动2:正多边形都是轴对称图形吗?如果是,有多少条对称轴?正多边形都是中心对称图形吗?如果是,它的对称中心在哪里?归纳:正边形是轴对称图形,正边形是中心对称图形学以致用1.正五边形共有__________条对称轴,正六边形共有__________条对称轴.2.周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是( ) 【温馨提示】1、结合上节引入本节知识2、自主探究, 正多边形半径和边长、边心距、中心角之间的关系联系生活实际。
.3、研究正多边形和圆关系并初步学会运用这些关系进行有关的计算.4、动手、探索、画图圆内接正多边形的两种画法A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S33.若一个正多边的每个内角的度数是中心角的3倍,则正多边行的边数是()A.4B.6C.8D.104.在右图中,用尺规作图画出圆O的内接正三角形.:5、请在下图的图(1)中画出⊙O的内接正四边形;在图(2)中画出⊙O的内接正五边形;图(3)中画出⊙O的内接正六边形.6 ..用等分圆周的方法画出下列图案:巩固提升1.圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化2.已知正六边形的半径为3 cm,则这个正六边形的周长为__________ cm.3.若一个正多边的每个内角的度数是中心角的3倍,则正多边行的边数()A.4B.6C.8D.104.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.OO图(1)图(2)图(3)OO【课后反思】。
24.3正多边形与圆导学案
24.3正多边形和圆导学案学习目标:1.了解正多边形的中心、半径、中心角、边心距的概念;2.理解正多边形的半径、正多边形的中心角、边长、边心距之间的关系;3.掌握与正多边形有关的计算方法。
自主学习:1.回顾: ①等边三角形的边、角各有什么性质?正方形的边、角呢?②等边三角形与正方形的边角性质有哪些共同点?③ 叫做正多边形。
(注:相等与 相等必须同时成立)反过来,正多边形的各边 ,各角④矩形是正多边形吗?为什么?菱形呢?⑤正n 边形的内角和是__ __.每个内角都等于 .⑥正多边形的外角和是__ __.每个外角为 .2.自学教材105至106页,回答下列问题: 叫正多边形中心;叫正多边形半径;正多边形中心角; 叫正多边形边心距。
合作探究:1. 已知⊙O 的半径为 2 cm ,如何画圆的内接正三角形?正方形、正六边形、正九边形呢?2.分别求半径为R 的圆内接正三角形、正方形、正六边形的中心角、边长、边心距。
若是正五边形、正七边形,正n 边形呢?结论:正 n 边形的 n 条半径、n 条边心距将正 n 边形分割成全等直角三角形的个数是多少?每个直角三角形都由正多边形的哪些元素组成?3.正多边形都是 对称图形,一个正n 边形有 条对称轴,每条对称轴都通过正n 边形的 ;一个正多边形,如果有偶数条边,那么它既是 ,又是 对称图形。
4.教材106页例题5.要用圆形铁片截出边长为a 的正方形铁片,选用的圆形铁片的半径至少是多少?D E B B B巩固应用:1.如图,在⊙O 中,OA=AB ,OC ⊥AB 交AB 于点D ,若OA=10cm ,求⊙O 的内接正十二边形的边长。
如图,已知正六边形的内切圆半径为R ,求这个正六边形的边长和面积。
如图,已知一个圆的外切正方形的边长为4cm ,求这个圆的内接正三角形的边心距、边长.ECB。
人教版数学九年级上册同步导学案-24
《24.3正多边形和圆》导学案课题正多边形和圆数学年级九年级上册知识目标1. 理解正多边形概念和性质,知道正多边形的中心、半径、中心角和边心距.2. 会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.重点难点重点:正多边形的画法、利用正多边形解决有关问题.难点:应用多边形和圆的有关知识计算及画多边形教学过程知识链接1、什么样的图形是正多边形?2、说出下列几种常见的正多边形的名称3、说出下列生活中的图案含有哪些正多边形?正多边形和圆有什么关系呢?本节课我们一起学习。
合作探究知识点1、正多边形和圆的联系活动1、正多边形与圆到底有什么样的关系呢?(以正五边形为例)回答下列的问题我们就会知道答案:①如图所示:如何将圆等分为5份?②如图,已经将圆等分,并做出五边形,你能证明它一定是正五边形吗?证明:∵=,∴AB=BC=CD=DE=EA,=3=.∴∠A=∠B.同理∠B=∠C=∠D=∠E.又五边形ABCDE的顶点都在⊙O上,∴五边形ABCDE是⊙O的内接正五边形,⊙O是正五边形ABCDE的外接圆.引导学生分析,由等分圆得到弧相等、弦相等从而画出正多边形,反过来正多边形由边相等得到弧相等,从而得出等分圆。
通过这两个操作,我们发现多边形和圆具有以下关系:●归纳:这个正多边形就是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆. 活动2、利用刚才的结论如何三等分圆周呢?(1)度量法:①用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°,如图: ②用量角器度量,使∠AOB=∠BOC=∠COA=120°,如图:(2)尺规作图:用圆规在⊙O 上截取长度等于半径(2cm )的弦,连结AB 、BC 、CA 即可,如图:(3)计算与尺规作图结合法:由圆内接正三角形的边长与圆的半径的关系可得,正三角形的边长为32cm ,R=2cm ,用圆规在⊙O 上截取长度为32cm 的弦AB 、AC ,连结AB 、BC 、CA 即可.●通过活动1、2归纳:作正多边形的方法有两种:(1)用圆规等分圆周;(2)用尺规作图法将简单正多边形变化为复杂正多边形。
九年级数学上册 24.3 正多边形和圆导学案 (新版)新人教版
24.3 正多边形和圆预习案一、预习目标及范围:1.了解正多边形和圆的有关概念.2.理解并掌握正多边形半径、中心角、边心距、边长之间的关系.3.会应用正多边形和圆的有关知识解决实际问题.预习范围:P105-107二、预习要点1、正多边形和圆有什么关系?只要把一个圆分成的一些弧,就可以作出这个圆的,这个圆就是这个正多边形的。
2、通过教材图形,识别什么叫正多边形的中心、正多边形的中心角、正多边形的边心距?3、计算一下正五边形的中心角时多少?正五边形的一个内角是多少?正五边形的一个外角是多少?正六边形呢?4通过上述计算,说明正n边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?5、如何利用等分圆弧的方法来作正n边形?方法一、用量角器作一个等于的圆心角。
方法二、正六边形、正三角形、正十二边形等特殊正多边形的作法?三、预习检测1、判断题。
①各边都相等的多边形是正多边形。
()②一个圆有且只有一个内接正多边形。
()2、证明题。
求证:顺次连结正六边形各边中点所得的多边形是正六边形。
探究案一、合作探究活动内容1:探究1:正多边形的定义与对称性问题1 什么叫做正多边形?明确:问题2 矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?明确:问题 3 正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?归纳:探究2:正多边形与圆的关系问题1 怎样把一个圆进行四等分?问题2 依次连接各等分点,得到一个什么图形?问题3 刚才把一个圆进行四等分,依次连接各等分点,得到一个正四边形;你可以从哪方面证明?归纳:探究3:正多边形的有关概念及性质完成下面的表格:正多边形边数内角中心角外角346n探究4:正多边形的有关计算如图,已知半径为4的圆内接正六边形ABCDEF:①它的中心角等于度;②OC BC (填>、<或=);③△OBC是三角形;④圆内接正六边形的面积是△OBC面积的倍.⑤圆内接正n边形面积公式:________________________.答案:60;=;等边;6;1=2S⨯⨯正多边形周长边心距活动内容2:典例精析例:有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积 (精确到0.1 m2).解:归纳:圆内接正多边形的辅助线1.2.二、随堂检测1. 填表2. 若正多边形的边心距与半径的比为1:2,则这个多边形的边数是 .3.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为___度.(不取近似值)4. 要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.5.如图,M,N分别是⊙O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=________;图②中∠MON= ;图③中∠MON= ;(2)试探究∠MON的度数与正n边形的边数n的关系.参考答案预习检测:1.××2.证明:如图所示,∵六边形ABCD是正六边形,∴AB=BC=CD=DE=EF=AF,∠A=∠B=∠C=∠D=∠E=∠F.∵G、H、K、M、N、J分别为各边的中点,∴AG=BG=BH=AJ,在△AGJ与△BHG中,AG=BH。
人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计
人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计一. 教材分析《正多边形和圆》是人教版九年级数学上册第24章第三节的第一课时内容,主要介绍了正多边形的定义、性质以及与圆的关系。
本节课的内容是学生对几何图形学习的进一步深化,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
教材通过生活中的实例引入正多边形和圆的概念,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的深度。
但是,对于正多边形和圆的性质和关系,可能还比较陌生。
因此,在教学过程中,需要教师通过生动形象的实例和直观的图形,帮助学生理解和掌握正多边形和圆的概念和性质。
三. 教学目标1.了解正多边形的定义和性质,能够识别和判断正多边形。
2.理解圆的概念,掌握圆的性质。
3.掌握正多边形与圆的关系,能够运用正多边形和圆的知识解决实际问题。
四. 教学重难点1.重难点:正多边形的定义和性质,圆的概念和性质。
2.难点:正多边形与圆的关系的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索,激发学生的学习兴趣和积极性。
2.采用直观演示法,通过实物和图形的展示,帮助学生直观地理解和掌握正多边形和圆的概念和性质。
3.采用归纳总结法,通过总结和归纳,使学生对正多边形和圆的知识有一个系统的认识。
六. 教学准备1.准备相关的图形和图片,如正多边形和圆的实物图片,正多边形和圆的模型等。
2.准备相关的教学PPT,内容包括正多边形和圆的定义、性质和关系等。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学过的几何图形,如三角形、四边形等,激发学生的学习兴趣。
然后,展示一些生活中的实例,如五角星、车轮等,引导学生思考这些图形的共同特征。
2.呈现(10分钟)教师展示正多边形和圆的实物图片和模型,引导学生观察和描述正多边形和圆的特征。
然后,教师通过PPT呈现正多边形和圆的定义和性质,让学生初步了解和掌握。
2019-2020学年九年级数学上册 24.3 正多边形和圆导学案1 新人教版.doc
2019-2020学年九年级数学上册 24.3 正多边形和圆导学案1 新人教版导学目标知识点:了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,能运用正多边形的知识解决圆的有关计算问题。
课时:1课时导学方法:探究法导学过程:课前导学1.观察下列图形,你能说出这些图形的特征吗?提问:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?2.归纳概念:叫做正多边形。
提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?如果一个多边形有n(n≥3)条边, , 这个多边形就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.性质:二、课堂导学问题1:将一个圆分成五等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论.想一想:如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?圆内接正n边形:问题2中心半径: .中心角: .边心距: .问题3:如图,以正五边形ABCDE 边心距r 为半径, 中心为圆心作的圆与正五边形有怎样的关系?例1:有一个亭子,它的地基是半径为6m 的正六边形,求地基的周长和面积(结果保留小数点后一位)归纳:如果正n 边形的边数给定,已知它的边长、周长、半径、边心距、面积中的任意一项,都可以求出其它各项。
例2: 完成下表中有关正多边形的计算:三、展示点评 四、当堂训练 1.已知正六边形ABCDEF ,如图所示,其内切圆的半径是拓展延伸 :1、一个正多边形的内角和是7200,则这个多边形是( )A .正方形B .正五边形C .正六边形D .正八边形 2、正多边形的一边所对的中心角与正多边形的一个内角的关系是( ) A .两角互余 B .两角互补 C .两角互余或互补 D .不能确定3、已知正方形的周长为x ,它的外接圆的半径为y ,则y 与x 的函数关系是( )A .y=42x B .y=82x C .y=21x D .y=x824、如图,正方形ABCD 是⊙O 的内接正方形,点P 为劣弧CD上不同于点C 、D 的任意一点,则∠BPC 的度数是( )A .450B .600C .750D .9005.等边△ABC 的边长为a ,求其外接圆的面积.6.如图所示,已知⊙O•的周长等于6 cm ,•求以它的半径为边长的正六边形ABCDEF 的面积.课后反思:小组评价: 教师评价:。
24.3.1 正多边形和圆导学案
一、新课导入1、正多边形是我们早已熟悉的图形,你能列举出我们学过的正多边形吗?2、什么样的多边形是正多边形?你能画一个正六边形吗?二、学习目标1、掌握正多边形的定义。
2、了解正多边形和圆的关系,根据圆进行正多边形的计算。
三、研读课本认真阅读课本的内容,完成以下练习。
(一)划出你认为重点的语句。
(二)完成下面练习,并体验知识点的形成过程。
研读一、认真阅读课本要求:知道正多边形的定义;了解我们学过的正多边形。
一边阅读一边完成检测一。
检测练习一、1、各边相等;各角也相等的多边形叫三角形。
2、如果五边形ABCDE满足:∠A=∠B=∠C=∠D=∠E,AB=BC=CD=DE=EA,那么这个五边形叫正五边形。
3、如果一个n边形的n条边都相等,n个内角都相等,那么这个n边形叫正n边形;4、完成尝试应用我们学过的等边三角形、矩形、菱形、正方形是正多边形吗:(1)等边三角形的三个角都相等,三条边都相等,所以等边三角形是正多边形;(2)矩形的四条边不相等,所以不是正多边形;(3)菱形的四个角不相等,所以不是正多边形;(4)正方形的四个角相等,四条边相等,所以是正多边形.结论:正多边形需要满足的条件:各边都相等;各角都相等.研读二、认真阅读课本要求:思考“探究”中的问题,可以借助圆画一个正多边形;问题探究:(1)、利用圆画一个正8边形,把一个圆分成8条相等的弧,然后顺次连接8条弧的端点,得到一个正8边形.(2)、把一个圆分成8条相等的弧,则这8条相等的弧所对的弦什么关系?8条弧所对的圆心角什么关系?根据弧、弦、圆心角的关系可得:8条弧相等;则8条弧所对的弦相等;8条弧所对的圆心角也相等.结论:如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形检测练习二、5、正方形ABCD的外接圆圆心O叫做正方形ABCD的中心;正方形ABCD的内切圆的半径OE叫做正方形ABCD的边心距.6、等边三角形的中心是三边的垂直平分线的交点;7、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;这个圆是正n边形的外接圆。
九年级数学: 24.3 正多边形和圆学案
24.3 正多边形和圆学案【学习目标】1.正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,•正多边形的半径,正多边形的中心角,正多边形的边心距.2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系.3.正多边形的画法.【重点难点】重点:正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系.难点:通过例题使学生理解四者:正多边形半径、中心角、•弦心距、边长之间的关系.【课堂探究】一、自主探究问题一、如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF,连结AD、C F交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、•D、E、F都在这个圆上.问题二、我们以圆内接正六边形为例证明.如图所示的圆,把⊙O•分成相等的6•段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.问题三总结和归纳问题二、尝试应用1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.D EB AOM第- 1 -页共2页第- 2 -页 共2页2. 利用正多边形的概念和性质来画正多边形,利用手中的工具画一个边长为3cm 的正五边形(1)画法(2)步骤3. 巩固训练教材P108 练习1、2、 P119 探究题、练习.三、补偿提高1.在直径为AB 的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB ,顶点C 在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC •的矩形水池DEFN ,其中D 、E 在AB 上,如图24-94的设计方案是使AC =8,BC =6. (1)求△ABC 的边AB 上的高h . (2)设DN=x ,且h DN NFh AB-=,当x 取何值时,水池DEFN 的面积最大? (3)实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.四、小结与作业1.小结:通过本节课的学习.你有那些收获? 2.作业:(1)P106练习2.3P108习题24.3第2题,第6题 (2)圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( ). A .36°B .60°C .72° D .108° 3.若半径为5cm 的一段弧长等于半径为2cm 的圆的周长, 则这段弧所对的圆心角为( ). A .18°B .36°C .72° D .144°hFDEC B AN。
人教版九年级上册数学24.3正多边形和圆(1)教案
今天的课程中,我发现学生们对正多边形和圆的概念掌握得还不错,但在具体的计算和应用方面,部分学生仍然存在一些困难。在讲解正多边形性质时,我尽量用直观的图形和生活中的例子来帮助他们理解,这样的教学方法似乎效果不错,学生们能够更直观地感受到几何图形的魅力。
然而,当进行到正多边形面积和周长的计算时,我注意到一些学生在转换公式和应用公式上遇到了难题。这可能是因为他们对公式背后的原理理解不够深入。在今后的教学中,我需要更加注重让学生理解公式的来源和推导过程,而不仅仅是记住公式。
二、核心素养目标
1.培养学生的空间想象力和图形观察能力,通过正多边形和圆的学习,使学生能够直观想象几何图形在空间中的形态和结构;
2.提高学生的逻辑思维能力和推理能力,在学习正多边形性质和计算方法的过程中,引导学生运用逻辑推理和数学证明的方法解决问题;
3.增强学生的数学应用意识,通过解决实际问题时运用正多边形和圆的知识,培养学生将数学知识应用于现实生活的能力;
-实际应用:将正多边形和圆的知识应用于解决实际问题,如设计图案、计算土地面积等。
举例解释:
-正多边形的内角和公式:(n-2)×180°,其中n为正多边形的边数,这是计算正多边形内角的基础。
-正多边形的周长和面积计算:通过半径或边长求解,强调公式应用的正确性。
2.教学难点
-正多边形内角与外角关系的理解:特别是外角等于360°除以边数,这是学生容易混淆的地方。
4.培养学生的团队协作能力,在小组讨论和合作完成练习题的过程中,提高学生沟通交流和协作解决问题的能力。
三、教学难点与重点
1.教学重点
-正多边形的性质:包括对称轴、对称中心、内角与外角、边心距等概念,以及它们之间的关系。
-正多边形与圆的关系:圆的内接正多边形和外切正多边形的性质,以及如何通过半径和边长计算正多边形的面积和周长。
24.3正多边形与圆(导学案)-2024-2025学年九年级数学上册同步备课系列(人教版)(原卷版)
24.3 正多边形与圆学习目标:1.了解正多边形和圆的有关概念。
2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系。
3.画圆内接正多边形。
学习重点:正多边形的概念及正多边形与圆的关系。
学习难点:利用直尺和圆规画特殊的正多边形。
学习过程1)知识点回顾圆内接四边形的性质:2)课堂探究一、圆内接多边形【举例】在生活中,各边相等,各角相等的多边形的图案处处可见,尝试举例?【证明】如图,把⊙O分成相等的3段弧,依次连接各分点得到△ABC。
求证:△ABC是圆内接正三角形.【证明】如图,把⊙O分成相等的5段弧,依次连接各分点得到五边形ABCDE. 求证:五边形ABCDE是圆内接正五边形.【圆内接正多边形的相关概念】圆内接正多边形概念:把一个圆分成相等的_________段弧,依次连接_________所得多边形就是这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
正多边形的中心概念:一个正多边形的_________的圆心。
正多边形的半径概念:_________的半径。
正多边形的中心角概念:正多边形的每一条边所对的_________。
正多边形的边心距概念:中心到正多边形一边的_________。
【探索与思考】探索圆内接正多边形内角、外角、中心角、内角和【结论】正n边形的一个内角的度数是_________;中心角是_________;正多边形的中心角与外角的大小关系是_________.二、画圆内正多边形【探索与思考】下图中的正多边形,哪些是轴对称图形?哪些是中心对称图形?【问题】如何把一个圆分成相等的一些弧,并画出这个圆的内接正多边形?并指出有缺点?【问题】尝试画出圆内接正三角形、正方形、正五边形、正六边形?【练一练】1.若一个正多边形的中心角为40°,则这个多边形的边数是()A.9 B.8 C.7 D.62.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.C.D.4mm3.已知正六边形的边长为4,则这个正六边形的半径为()A.4 B.C.2 D.4.如图,五边形ABCDE是O的内接正五边形,AF是O的直径,则BDF的度数是()A.36°B.72°C.54°D.60°AB BC和AC分别为O内接正方形,正六边形和正n边形的一边,则n是().5.如图,,A.六B.八C.十D.十二6.半径为2cm的圆内接正六边形的面积等于()A.4 B.5 C.D.6)7A.B.C.D.8.若正方形的边长为4,则它的外接圆的半径为()A.B.4 C.D.29.如图,有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).【学后反思】通过本节课的学习你,你收获了什么?。
人教版九年级数学上册24.3 正多边形和圆导学案
九年制义务教育教科书数学(人教版)九年级上册《24.3 正多边形和圆》导学案一、学习目标1、了解正多边形和圆的有关概念;2、理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.重(难)点预见:应用多边形和圆的有关知识计算及画多边形二、探究学习1.复习(1)什么叫正多边形?(2)从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?2、自主学习:自学教材105--- 106页思考下列问题:1、正多边形和圆有什么关系?只要把一个圆分成的一些弧,就可以作出这个圆的,这个圆就是这个正多边形的。
2、通过教材图形,识别什么叫正多边形的中心、正多边形的中心角、正多边形的边心距?3、计算一下正五边形的中心角时多少?正五边形的一个内角是多少?正五边形的一个外角是多少?正六边形呢?4、通过上述计算,说明正n边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?三、巩固训练(一)抢答题:1、O是正△ABC的中心,它是△ABC的圆与圆的圆心。
2、OB叫正△ABC的,它是正△ABC的圆的半径。
3、OD叫作正△ABC的,它是正△ABC的圆的半径。
4、正方形ABCD的外接圆圆心O叫做正方形ABCD的5、正方形ABCD的内切圆的半径OE叫做正方形ABCD的6、⊙O是正五边形ABCDE的外接圆,弦AB的弦心距OF叫正五边形ABCDE的,它是正五边形ABCDE的圆的半径。
7、∠AOB叫做正五边形ABCDE的角,它的度数是8、图中正六边形ABCDEF的中心角是。
它的度数是9、你发现正六边形ABCDEF的半径与边长具有什么数量关系?为什么?(二)分别求出半径为R的圆内接正三角形,正方形的边长,边心距和面积.四、归纳小结本节课应掌握:1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,•正多边形的中心角,正多边的边心距.2.正多边形的半径、正多边形的中心角、边长、•正多边的边心距之间的等量关系.五、学习心得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。
1如有帮助欢迎下载支持 24.3 正多边形和圆(第一课时)
一、教学目标
1. 了解正多边形和圆的有关概念;
2. 根据定义会判断一个多边形是否为正多边形;
3. 理解并掌握正多边形半径和边长、边心距、中心角之间的关系。
二、自学指导:
1、把一个圆分成相等的n 段弧后作出的这个圆的内接多边形是正多边形吗?
你会证明吗?(2)正n 边形的对称性如何?
2、正n 边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外
角的大小有什么关系?
注:自学时间为5分钟,5分钟后比谁能更准确快速地完成检测题。
三、检测题:
1、矩形是正多边形吗?菱形呢?正方形呢?为什么?
2、如图,o 的内接正六边形ABCDEF 中,OP BC ⊥于点P, 则这个正六边形的中心为 ;它的半径为 ;
中心角是∠ ,是 度;边心距为 。
思考1:正多边形的中心、半径、中心角、边心距的定义是什么?
讨论1:正n 边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外
角的大小有什么关系?(3n ≥)
讨论2:正n 边形的对称性如何?(3n ≥)
(3)如图:在O 中,
AB BC CD DE EF AF =====,六边形ABCDEF 是O 的内接六边形,求证:六边形ABCDEF 是正六边形.
思考2:
1、各边相等的圆内接多边形是正多边形吗?各角相等的
圆内接多边形呢?如果是,请说明为什么,如果不是,举出
反例.
例:有一个亭子它的地基是半径为4m 的正六边形,求地
基的周长和面积(精确到0.1平方米).。